Global epidemiology of SARS-CoV-2 infection: a systematic review and meta-analysis of standardized population-based seroprevalence studies, Jan 2020-Oct 2021

Isabel Bergeri1,*, Mairead Whelan2,*, Harriet Ware3,*, Lorenzo Subissi1,*, Anthony Nardone1,*, Hannah C Lewis1,*, Zihan Li4,*, Xiaomeng Ma5,*, Marta Valenciano6,*, Brianna Cheng7,*, Lubna Al Ariqi7,*, Arash Rashidian7,*, Joseph Okeibunor8,*, Tasnim Azim8,*, Pushpa Wijesinghe8,*, Linh-Vi Le9,*, Aisling Vaughan10,*, Richard Pebody10,*, Andrea Vicari11,*, Tingting Yan12,*, Mercedes Yanes-Lane12,*, Christian Cao12,*, Matthew P Cheng13,*, Jesse Papenburg14,*, David Buckeridge13,*, Niklas Bobrovitz13,*, Rahul K Arora13,*, Maria D van Kerkhove14†, and the Unity Study Collaborator Group**

1 World Health Organization, Geneva, Switzerland
2 Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Canada
3 World Health Organization, Regional Office for Africa, Brazzaville, Congo
4 Faculty of Engineering, University of Waterloo, Canada
5 Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON, Canada
6 Epiconcept, Paris, France
7 World Health Organization, Regional Office for the Eastern Mediterranean, Cairo, Egypt
8 World Health Organization, Regional Office for South-East Asia, New Delhi, India
9 World Health Organization, Regional Office for the Western Pacific, Manila, Philippines
10 World Health Organization Regional Office for Europe, Copenhagen, Denmark
11 World Health Organization, Regional Office for the Americas (Pan American Health Organization), Washington DC, United States of America
12 Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
13 COVID-19 Immunity Task Force Secretariat, McGill University, Montreal, Canada
14 Division of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
15 Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
16 Department of Critical Care Medicine, University of Calgary, Canada
17 Institute of Biomedical Engineering, University of Oxford, UK

* Contributed equally as co-first authors
† Contributed equally as joint senior authors
** Full group author list is listed in the acknowledgements section

Address correspondence to: BERGERI Isabel, bergerii@who.int

Abstract

Background
COVID-19 case data underestimates infection and immunity, especially in low- and middle-income countries (LMICs). We meta-analyzed standardized SARS-CoV-2 seroprevalence studies to estimate global seroprevalence.

Objectives/Methods
We conducted a systematic review and meta-analysis, searching MEDLINE, Embase, Web of Science, preprints, and grey literature for SARS-CoV-2 seroprevalence studies aligned with the WHO UNITY protocol published between 2020-01-01 and 2021-10-29. Eligible studies were extracted and critically appraised in duplicate. We meta-analyzed seroprevalence by country and month, pooling to estimate regional and global seroprevalence over time; compared seroprevalence from infection to confirmed cases to estimate under-ascertainment; meta-analyzed differences in seroprevalence between demographic subgroups; and identified national factors associated with seroprevalence using meta-regression. PROSPERO: CRD42020183634.

Results
We identified 396 full texts reporting 736 distinct seroprevalence studies (41% LMIC), including 355 low/moderate risk of bias studies with national/sub-national scope in further analysis. By April 2021, global SARS-CoV-2 seroprevalence was 26.1%, 95% CI [24.6-27.6%]. Seroprevalence rose steeply in the first half of 2021 due to infection in some regions (e.g., 18.2% to 45.9% in Africa) and vaccination and infection in others (e.g., 11.3% to 57.4% in the Americas high-income countries), but remained low in others (e.g., 0.3% to 1.6% in the Western Pacific). In 2021 Q1, median seroprevalence to case ratios were 1.9:1 in HICs and 61.9:1 in LMICs. Children 0-9 years and adults 60+ were at lower risk of seropositivity than adults 20-29. In a multivariate model using data pre-vaccination, more stringent public health and social measures were associated with lower seroprevalence.

Conclusions

Global seroprevalence has risen considerably over time and with regional variation, however much of the global population remains susceptible to SARS-CoV-2 infection. True infections far exceed reported COVID-19 cases. Standardized seroprevalence studies are essential to inform COVID-19 control measures, particularly in resource-limited regions.

Introduction

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, continues to severely impact population health and health care systems. The 250 million cases and 5 million deaths reported as of 9 November 2021 (1) underestimate the global burden of this pandemic, particularly in low- and middle-income countries (LMICs) with limited capacity for contact tracing, diagnostic testing, and surveillance capacity (2).

Seroprevalence studies estimate the prevalence of SARS-CoV-2 antibodies. These studies are crucial to understand the true extent of infection overall, by demographic group, and by geographic area, as well as to estimate case underascertainment. As anti-SARS-CoV-2 antibodies are highly predictive of immune protection (3,4), seroprevalence studies are also indicative of population levels of protection, and therefore important to inform scenario modeling, public health planning, and national policies in response to the pandemic.

During 2021, many regions have experienced third and fourth waves of SARS-CoV-2 infection(1); concurrently, some countries have vaccinated most residents, while others remain unable to achieve high vaccine coverage due to challenges with supply and uptake (5). A new wave of well conducted seroprevalence studies, including many in LMICs, provides robust estimates of seroprevalence in late 2020 and 2021(6–8). Synthesizing these studies is crucial to understand the shifting global dynamics and true extent of SARS-CoV-2 infection, humoral immunity, and population susceptibility. Previous global systematic reviews of seroprevalence (8–11) largely pooled results from all studies done in 2020, and have not systematically examined changes in seroprevalence over time. Moreover, these reviews have limited LMIC coverage (11-23% of included studies), meaning their findings may not equitably represent global seroprevalence. These meta-analyses also highlight the importance of improved standardization and study quality to enable more robust analysis (9–11).

Estimates of seroprevalence can be difficult to compare systematically across different settings due to variations in design aspects including sampled populations, testing and analytical methods, timing in relation to waves of infection, and study quality and reporting. The World Health Organization’s UNITY
Initiative aims to help produce harmonized and representative seroprevalence study results in accordance with global equity principles (2). The UNITY population-based, age-stratified seroepidemiological investigation protocol (the SEROPREV protocol) (2) provides a standard study design and laboratory approach to general population seroprevalence studies. WHO UNITY and its partners have supported the implementation of SEROPREV by providing financial and technical resources, including a well-performing serologic assay. SEROPREV has been implemented in 74 countries globally and in 51 LMICs as of September 2021 (12), enabling further analysis of these comparable studies to answer key questions about the progress of the pandemic globally.

This systematic review and meta-analysis synthesized seroprevalence studies worldwide aligned with the WHO SEROPREV protocol, regardless of whether the study received support from WHO. Our objectives were to: (i) estimate changes in global and regional seroprevalence over time by WHO region and country income level, including LMICs; (ii) assess the level of undetected infection, by global and regional case ascertainment over time by calculating the ratio of seroprevalence to reported cases; and (iii) identify factors associated with seropositivity including demographic differences by 10-year age band and sex through meta-analysis, and study design and country-level differences such as public health and social measure (PHSM) stringency through multivariable meta-regression.

Methods

Search strategy and selection criteria

We conducted a systematic review of seroprevalence studies (hereafter “studies”) published from 1 January 2020 to 29 October 2021. We designed a search strategy in MEDLINE, Embase, Web of Science, and Europe PMC using key terms such as SARS-COV-2, COVID-19, seroprevalence, and serology; We included published research articles, preprints, institutional reports, grey literature, and media reports (full strategy in Supplementary file S.3.1). We also contacted WHO UNITY study collaborators that had not yet made results available to the general public prior to our inclusion dates, to upload their aggregated, standardized results to the Zenodo research data repository(13). This systematic review and meta-analysis is registered with PROSPERO (CRD42020183634) (14), reported according to the PRISMA guidelines (15) (Supplementary file S1), and search and extraction conducted per the SeroTracker protocol (16).

Studies were screened, and data were extracted, and critically appraised by two independent researchers. Conflicts were resolved by consensus. The following inclusion and exclusion criteria were designed to align with the SEROPREV protocol (Supplementary File S2.2 and S2.3). We searched for and included studies regardless of whether they explicitly cited following the SEROPREV Unity protocol. Briefly, we included studies that were cross-sectional or longitudinal cohort studies with the objective of estimating SARS-CoV-2 seroprevalence in the general population (see S.2.1 for list of included sampling frames). Both random or non-random (i.e., convenience, sequential, quota) sampling methods were included. Studies had to use serological assays with at least 90% sensitivity and 97% specificity as reported by the manufacturer or study authors (Supplementary file S2.1), unless conducted in vulnerable countries as defined in the Global Humanitarian Response Plan (HRP) (17). Multi-assay testing algorithms were included if the combined sensitivity and specificity met these performance thresholds (18). We excluded studies sampling specific closed populations (such as prisons, care homes, or other single-institution populations), recruiting participants without a clear sampling frame approximating the target population or testing strategy, and studies that excluded people previously diagnosed with or vaccinated against COVID-19 after initial sampling.
From each study, we extracted seroprevalence estimates for the overall sample, and stratified by age, sex, vaccination status, and timing of specimen collection. We extracted information on study population, laboratory assay used, any corrections made in estimating seroprevalence (e.g., for population or assay performance), seroprevalence, and denominator. Standardized results uploaded to Zenodo by UNITY study collaborators additionally included information on the proportion of asymptomatic seropositive individuals.

We critically appraised all studies using a modified version of the Joanna Briggs Institute (JBI) checklist for prevalence studies (19). JBI checklist ratings were initially completed for each study by two independent reviewers, with conflicts resolved by consensus. To assess the overall risk of bias for studies included in this review, we used an automated decision rule that assigned a rating of low, moderate, or high risk of bias based on the specific combination of JBI checklist ratings for that study (20). This decision rule was developed based on guidance on estimating disease prevalence (21,22) and was validated against overall risk of bias assessments derived manually by two independent reviewers for previously collected seroprevalence studies in the SeroTracker database, showing good agreement with manual review (intraclass correlation 0.77, 95% CI 0.74-0.80; n = 2070 studies) (20).

Data synthesis and analysis

We classified seroprevalence studies by geographic scope (local, sub-national, or national), sample frame, sampling method, and type of serological assay (Supplement S2.1, Table 5). Where multiple summary estimates were available per study, we prioritized estimates based on estimate adjustment (population adjustment, test adjustment), antibody isotypes measured (Total Ab > IgG > IgM > other), test type used (Neutralization > Chemiluminescent immunoassay [CLIA] > Enzyme-linked immunosorbent assay [ELISA] > Lateral flow immunoassay [LFIA] > other), and antibody targets measured (Multiple targets > Spike > Nucleocapsid) (full details: Supplement S3.1). We included multiple estimates per study where broken down by time frame in our analysis over time.

Countries were classified according to WHO region (23), vulnerability via HRP status (17), and World Bank income level. We stratified the European Region (EUR) and Region of the Americas (AMR) by high-income countries (HIC) and LMICs due to inter-country diversity in pandemic responses and vaccine roll-out (24). We pooled HIC and LMIC together in the Eastern Mediterranean (EMR) and Western Pacific region (WPR) due to the lower number of studies. In the Africa (AFR) and South-East Asia regions (SEAR), we pooled LMIC (the only two HIC in these regions, Mauritius and Seychelles, had no studies).

As all non-HRP studies used assays with at least 90% sensitivity and at least 97% specificity, we used seroprevalence estimates uncorrected for test characteristics. We anchored each estimate to the date halfway between sampling start and end (“sampling midpoint date”) to best reflect the time period of the study.

We described the characteristics of all identified studies (dataset 0). To select the most representative and high quality studies for analysis, we used only sub-national or national studies rated low or moderate risk of bias to estimate seroprevalence in the general population over time and identify factors associated with seroprevalence (sub-dataset 1). Finally, we used only national studies rated low or moderate risk of bias to estimate case ascertainment (sub-dataset 2).

To estimate monthly regional and global population-weighted seroprevalence in the general population, we first grouped studies in 8-week rolling windows by country and pooled effect sizes by random-effects meta-analysis, then produced regional estimates as weighted averages by country population (25). Global
estimates were population-weighted averages of regional estimates (full details: Supplement S3.2). We produced 95% confidence intervals for the mean seroprevalence estimate, reflecting uncertainty in the summary effect size (26). To capture the trend in seroprevalence, we used nonparametric regression to fit a smooth function of time to the meta-analysis estimates (full details: Supplement S3.2).

We also estimated to what extent confirmed SARS-CoV-2 cases, as reported to WHO (27), underestimated the true burden of disease based on seroprevalence studies. First, for studies that sampled participants in 2021, we used national seroprevalence estimates and vaccination rates (Our World In Data(28)) to calculate seroprevalence attributable to infection only. In countries administering only vaccines using Spike (S) protein antigens (e.g., mRNA, viral vector), we calculated the ascertainment ratio using only studies that detected anti-nucleocapsid (N) seroprevalence, as a proxy for infection-induced seroprevalence. In countries administering inactivated vaccines that may generate both anti-S and anti-N responses (e.g., Sinopharm, Bharat Biotech), we adjusted the reported seroprevalence based on the vaccination rate in the country of the study using a standard formula (29). We then produced regional and global estimates of seroprevalence using the steps in the previous paragraph, and computed the ratio to the corresponding cumulative incidence of confirmed SARS-CoV-2 cases. We stratified by HIC vs. LMIC in all regions to identify any trends in ascertainment by income level.

Aggregated results shared by UNITY collaborators reported the proportion of seropositives that were symptomatic at some time point prior to sampling (dependent on individual study parameter definitions), which were summarized using the median and interquartile range, and tested for differences in distribution across age and sex groups using the Kruskal-Wallis H-test.

To quantify population differences in SARS-CoV-2 seroprevalence, we identified studies with seroprevalence estimates for sex and age subgroups. We calculated the ratio in seroprevalence between groups within each study, comparing each age group to adults 20-29 and males to females. We then aggregated the ratios across studies using inverse variance-weighted random-effects meta-analysis. The amount of variation attributable to between-study heterogeneity vs. within-study variance was quantified using the I² statistic.

To examine study and national factors affecting seroprevalence estimates, we constructed a Poisson generalized linear mixed-effects model (30). To focus on factors associated with seroprevalence from infection, we excluded studies where over 5% of the national population was vaccinated two weeks before the sampling midpoint date. Independent predictors were defined a priori as WHO region, income group, geographic scope, sample frame, transmission phase (i.e. pandemic timing; before peak of 1st wave, after peak of 1st wave, or after peak of 2nd wave), cumulative confirmed cases, and average London School of Hygiene and Tropical Medicine (LSHTM)/WHO public health and social measure (PHSM) stringency index (31). We compared the full model to all models dropping a single predictor at a time and selected the model with the lowest Akaike Information Criterion (AIC) (full details on the model and predictor definitions: Supplement S3.2).

Data was analyzed using R statistical software version 4.1.0 (32).

Results

We identified 69,528 titles and abstracts in our search, of which 17,108 were grey literature and 37 were aggregated results from WHO UNITY study collaborators (Figure 1). Of these, 4,682 full text articles were included in full text screening. 396 seroprevalence data sources aligned with the SEROPREV protocol were
included, 370 published and 26 aggregated results from collaborators, that contained a total of 736 unique seroprevalence studies included from 396 full-text sources (detailed references and information available in Supplement, S4.1-S4.3, S5).

Figure 1. PRISMA Flow Diagram of Inclusion.
In cases where sources contained multiple primary estimates of seroprevalence (i.e. in non-overlapping populations, separate methodological seroprevalence studies reported in the same article, etc), the source (full text) was split into multiple individual studies included in the analysis. For this reason, we report more unique seroprevalence studies than original full text articles included.

A total of 45% (88/194) of WHO Member States (MS) and four WHO Countries, areas and territories, across all 6 WHO regions, were represented among the seroprevalence studies included in the descriptive analysis (Figure 2). Sixteen of 47 MS were represented in AFR; 11 of 21 MS and one territory in EMR; 12 of 35 MS and one territory in AMR; 36 of 53 MS and two territories in EUR; 5 of 11 MS in SEAR; and 8 of 27 MS in WPR. (Figure 2). Data from 53 of 135 LMICs and from 29 of 63 vulnerable HRP countries were included. A large proportion of studies included in the descriptive analysis were conducted in LMIC (41%) and in vulnerable HRP countries (21%). Of studies included in the meta-analysis and meta-regression, these proportions were 31% and 15%, respectively.
Among the 736 studies included in the descriptive analysis, 41% reported results at a local level, 36% at a national level, and 24% at a sub-national level. The most common sampling frame and method was households (52%) and probability sampling (58%), respectively. Among the testing strategies used to measure seroprevalence, most studies used ELISA (39%) or CLIA assays (32%) and few studies used a lateral flow immunoassay (12%) or multiple assay testing algorithm (8.6%). A small proportion of included studies from vulnerable countries (7.1%, 52/736) used tests that fell below the 90% sensitivity or 97% specificity threshold. The majority of studies (86%) had no vaccination at the sampling midpoint date in the country of the study (Table 1).

Most (49%) studies were rated moderate risk of bias, followed by high risk of bias (29%) and low risk of bias (21%). A summary of overall risk of bias ratings and breakdown of each risk of bias indicator for all studies is available (Figure S1 and Table S8, respectively). In this meta-analysis of observational studies, most studies were not pre-registered and the seroprevalence estimated typically would not influence an attempt to publish.

Table 1. Characteristics of Included Studies, Jan 2021- Oct 2021.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>ALL STUDIES</th>
<th>LOW AND MODERATE RISK OF BIAS STUDIES; NATIONAL OR SUBNATIONAL SCOPE</th>
<th>LOW AND MODERATE RISK OF BIAS STUDIES; NATIONAL SCOPE ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N = 736</td>
<td>N = 355</td>
<td>N = 168</td>
</tr>
<tr>
<td>1</td>
<td>N = 234</td>
<td>N = 92</td>
<td>N = 32</td>
</tr>
<tr>
<td>2</td>
<td>N = 20</td>
<td>N = 6</td>
<td>N = 3</td>
</tr>
</tbody>
</table>

Number of studies

Study Characteristics:

Income level
Low income country	86 (12%)	22 (6.2%)	22 (13%)
Lower middle income country	80 (11%)	37 (10%)	18 (11%)
Upper middle income country	138 (19%)	50 (14%)	16 (9.5%)
High income country	432 (59%)	246 (69%)	112 (66%)
Vulnerable countries (Humanitarian response plan [HRP])			
Vulnerable HRP country	154 (21%)	54 (15%)	18 (11%)
WHO region			
Africa region (AFR)	122 (17%)	37 (10%)	30 (18%)
Americas region (AMR)	192 (26%)	85 (24%)	20 (11%)
Eastern Mediterranean region (EMR)	36 (4.9%)	17 (4.8%)	14 (8.3%)
Europe region (EUR)	317 (43%)	190 (54%)	92 (55%)
South-East Asia region (SEAR)	43 (5.8%)	17 (4.8%)	5 (3.0%)
Western Pacific region (WPR)	26 (3.5%)	9 (2.5%)	7 (4.2%)
Geographic scope			
Local	299 (41%)	0 (0%)	0 (0%)
Subnational	174 (24%)	142 (40%)	0 (0%)
National	263 (36%)	213 (60%)	168 (100%)
Study population			
Blood donors	164 (22%)	69 (19%)	50 (30%)
Residual sera	144 (20%)	65 (18%)	26 (15%)
Household and community samples	386 (52%)	211 (59%)	84 (50%)
Pregnant or parturient women	33 (4.5%)	9 (2.5%)	8 (4.8%)
Persons living in slums	4 (0.5%)	0 (0%)	0 (0%)
Multiple general populations	5 (0.7%)	1 (0.3%)	0 (0%)
Sampling method			
Convenience sampling	162 (22%)	38 (11%)	17 (10%)
Sequential sampling	139 (19%)	47 (13%)	24 (14%)
Quota sampling	11 (1.5%)	3 (0.8%)	3 (1.8%)
Probability sampling	424 (58%)	267 (75%)	124 (74%)
Test type			
CLIA	229 (32%)	94 (27%)	46 (27%)
ELISA	286 (39%)	149 (42%)	82 (49%)
LFIA	90 (12%)	43 (12%)	12 (7.1%)
IFA	55 (7.5%)	50 (14%)	20 (12%)
Multiple Assay Testing Algorithm: Binding Assays + Confirmatory Testing with Neutralization Assay	39 (5.3%)	8 (2.3%)	6 (3.6%)
Multiple Assay Testing Algorithm: Other Strategies	25 (3.4%)	9 (2.5%)	2 (1.2%)
Other	3 (0.4%)	1 (0.3%)	0 (0%)
Neutralization	5 (0.7%)	1 (0.3%)	0 (0%)
Overall risk of bias			
Low	158 (21%)	100 (28%)	65 (39%)
Moderate	364 (49%)	255 (72%)	103 (61%)
High	214 (29%)	0 (0%)	0 (0%)
Percent vaccinated at sampling midpoint			
0%	635 (86%)	272 (77%)	140 (83%)
Above 0% up to 5%	32 (4.3%)	21 (5.9%)	9 (5.4%)
Sub-national and national studies at low or moderate risk of bias were included in the subsequent results.

We estimated population-weighted seroprevalence in a series of separate meta-analyses each month and found in mid-April 2021, global seroprevalence from infection or vaccination (combined seroprevalence) was 26.1%, 95% CI [24.6-27.6%] - a 6.7 fold increase since the June 2020 estimate of 3.9% [2.9-5.4%]. In mid-April 2021, global seroprevalence attributable to infection was 21.0% [19.9-22.1%]. (Supplementary file S.4.3, Table S10)

Regional analyses began in January 2020 and ended in December 2020-Apr 2021, depending on when seroprevalence studies in each region sampled participants. In December 2020, combined seroprevalence was 51% [49-53%] in EUR LMIC, a 2.5x increase since July 2020. Combined seroprevalence in February 2021 was 1.6% [1.3-2.1%] in WPR (9.8x since June 2020), 21% [20-22%] in AMR LMIC (8.0x since June 2020), 43% [38-48%] in EMR (3.3x since June 2020), and 44% [43-45%] in SEAR (5.9x since June 2020). In April 2021, combined seroprevalence was 46% [44-48%] in AFR (11.3x since June 2020), 33% [22-47%] in EUR HIC (9.1x since June 2020), and 57% [42-71%] in AMR (HIC) (6.8x since June 2020). (Figure 3, middle panel). The full list of countries pooled by region and date is shown in Supplementary file S.4.3, Table S9. Heterogeneity (I²) in the country-level meta-analyses with at least 2 studies (n=105) ranged from 0 to 100%, with 7% (7/105) showing moderate heterogeneity from 30% to 60%, 21% (22/105) substantial heterogeneity from 50% to 90%, and 70% (73/105) considerable heterogeneity from 75% to 100% (26).

Snapshots of seroprevalence to confirmed case ratios (ascertainment), based on estimated population-weighted seroprevalence using national studies, are shown in Table 2. Globally, the median ratio was 34:1 in 2020 Q3 and 16:1 in 2021 Q1. In 2020 Q3, the median ratio ranged from 5:1 in AMR (HIC) to 183:1 in EMR (LMIC). In 2021 Q1, this ranged from 2:1 in EUR (HIC) to 185:1 in AFR (Table 2).
Figure 3. Reported seroprevalence from January 2020 to June 2021, and average population-weighted seroprevalence globally and by WHO region from January 2020 to April 2021.

We produced population-weighted point estimates of seroprevalence by grouping studies in 8-week rolling windows, prioritizing national studies, and weighting reported seroprevalence by study sample size and country population. To capture the trend in seroprevalence in each WHO region and globally, we fit a flexible, smooth function of time using non-parametric regression (full details: Supplement S.4.2). Cumulative incidence data is sourced from WHO; vaccine administration data, measuring the number of people per region with at least a first dose of a COVID-19 vaccine, is sourced from OWID.

Table 2: Median estimated seroprevalence to case ratios by WHO region, World Bank income level, and quarter using national studies.

NA = national studies not available. Seroprevalence studies that sampled participants in 2021 were adjusted for antibody target and vaccination rate to calculate seroprevalence attributable to infection (full details: Methods and Supplement S3.2). *There are no high income countries in the WHO South-East Asia region; the two high-income countries in the WHO Africa region, Mauritius and Seychelles, both have no seroprevalence studies and were hence not included in this analysis.
Asymptomatic seroprevalence in the by age and sex subgroups for studies reporting subgroups on symptoms are shown in Supplementary Figure S2. Median asymptomatic prevalence was similar across age groups, ranging from 54.5% in ages 50-59 to 69.4% in ages 30-39 (Kruskal-Wallis (KW) H-test p = 0.28). Median asymptomatic prevalence in males was 59.8% compared to 51.4% in females (KW H-test p = 0.46).

Within studies, compared to the reference category of 20-29 years old, seroprevalence was significantly lower for children 0-9 years (prevalence ratio [PR] 0.78, 95% CI [0.69-0.89]) and adults 60+ years (0.79 [0.69-0.91]). There were no differences between other age groups nor between males and females. (Full results: Figure 4)

In the multivariate analysis, the final model included all a priori independent predictors except sampling frame (model comparison and diagnostics: S.4.3, Table S11). Sub-national studies reported higher seroprevalence estimates compared to national studies (PR 1.47, 95% CI [1.18-1.82]). Compared to HIC, higher seroprevalence estimates were reported by low income (PR 9.51 [4.42-20.45], lower-middle income (PR 9.16 [5.32-15.76]), and upper middle income countries (PR 4.09 [2.95-5.67]). Higher cumulative incidence of reported cases was associated with higher seroprevalence (PR 1.34 [1.21-1.48]), while more stringent PHSM measures up to the sampling midpoint date, measured on a continuous scale from 0 to 10, were associated with lower seroprevalence (PR 0.88 [0.78-0.99]).

Figure 4. Factors associated with seroprevalence: meta-analysis of seroprevalence differences by demographic groups, and meta-regression of seroprevalence to identify study design and national context factors associated with seroprevalence.

Left panel: Meta-analysis results. We calculated the ratio in prevalence between subgroups within each study then aggregated the ratios across studies using inverse variance-weighted random-effects meta-analysis. Heterogeneity was quantified using the I² statistic. Each row represents a separate meta-analysis. **Right panel: Regression results.** We fit a log-Poisson generalized linear mixed-effects model, excluding studies where over 5% of the geographic population had received at least one dose of any vaccine. We performed model comparison and selected the model with the lowest AIC criterion (Appendix 6). Sampling frame was dropped from the final model. Public health and
social measures (PHSM) data was taken from the London School of Hygiene and Tropical Medicine global dataset. The PHSM index scale ranged from 0 (least stringent) to 10 (most stringent) (see Supplement S4). k = 282; τ(se) = 0.76 (0.87). The marginal R2, or variation between studies explained only by fixed effects, was 60.4%. (1) Multivariate analysis included additional controls for WHO region and transmission phase not shown in figure.

Discussion

We synthesized data from over 700 seroprevalence studies worldwide (41% from LMIC) published up to October 2021, providing global and regional estimates of SARS-CoV-2 seroprevalence over time with substantial representation of regions with limited available seroprevalence data. We estimate that approximately one quarter (26.1%) of the global population has antibodies against SARS-CoV-2 in April 2021 (21.0% when excluding vaccination). Global seroprevalence has risen considerably over time, from 8.3% in October 2020.

Our findings provide evidence of regional variation in the estimated seroprevalence, from 1.6% in WPR in February 2021 to 43-46% in SEAR, EMR and AFR in February-April 2021 and up to 57% in AMR HIC. Regional variation is driven by differences in the extent of SARS-CoV-2 infection and vaccination. This is exemplified by our monthly timeline of seroprevalence by region, 2020-2021, which provides estimates of evolving temporal changes of the global pandemic. This timeline shows rapid increases in seroprevalence since December 2020 due to infection in some regions (e.g., 18% to 46% in AFR) and vaccination and infection in others (e.g., 11% to 57% in the AMR HIC), while seroprevalence in other regions remains low (e.g., 0.3% to 1.6% in WPR). Our analysis adds global representation and principled estimation of changes in seroprevalence over time as compared to previous evidence syntheses (8–10). These estimates are similar to estimates of true infections by global epidemiological models. For example, our global estimate of seroprevalence attributable to infection (21%) is similar to the Institute of Health Metrics and Evaluation cumulative infection incidence estimate of 24% in mid-April 2021 (34). Our analysis provides an orthogonal estimate based solely on seroprevalence data, using a method that has the added value of being easily interpretable and with fewer assumed parameters.

Our results provide evidence of considerable case under-ascertainment, indicating that many cases of SARS-CoV-2, including subclinical cases, are not captured by surveillance systems which in many countries are based on testing of symptomatic patients. There was wide variation in under-ascertainment (as estimated through seroprevalence-case ratios) in all regions, income groups and over time, with higher ratios consistently observed in LMICs compared to HICs. Our ratios of seroprevalence to reported cases in late 2020 were comparable to other studies for AMR, EUR, and SEAR (9–12). Our estimates of seroprevalence to case ratios for AFR, WPR, and EMR are novel, with no other analyses we found having systematically estimated ascertainment through seroprevalence in these regions; moreover, estimates of true infections from epidemiological models suggest the high levels of under-ascertainment suggested by this study are plausible (34).

We also provide more granular evidence of significant variation in infection by age by 10-year band. Children aged <10 years, but not children aged 10-19, were less likely to be seropositive compared to adults aged 20-29 years; similarly, adults aged >60 years, but not those aged 30-39, 40-49, or 50-59, were less likely to be seropositive than adults 20-29. These findings add nuance and granularity to differences in seroprevalence by age observed by other studies (10). Lower seroprevalence in adults 60+ could be explained by immunosenescence that can lead to quicker seroreversion (35), higher mortality and hence a lower proportion of individuals with evidence of past infection, or more cautious behaviour resulting in fewer infections in this age group. There are several possible explanations for lower seroprevalence in children: milder infections, which are generally associated with lower antibody titers (36); school closures; and ineligibility for vaccination.
We found that, in a multivariate model including geographic region, income class, and transmission phase, an increase in overall PHSM stringency was associated with lower seroprevalence. Our and other work has shown that the use of PHSM was associated with reduced SARS-CoV-2 infections, especially when implemented early and limiting population mobility (37–39).

Our regional and global meta-analysis estimates are timely, robust and geographically diverse with estimates from all WHO regions. The laboratory and epidemiological standardization enabled by the SEROPREV protocol, as well as the inclusion of only studies assessed to have low or moderate risk of bias using a validated risk of bias tool (20), enabled analysis of high-quality and comparable data. In line with the equity principles of the UNITY initiative, our dataset had global coverage, including a broad range of LMICs (one third of studies included in our meta-analysis of seroprevalence over time, n=109) and vulnerable HRP countries (15% of included studies). UNITY study collaborators shared timely evidence by uploading their aggregated and standardized early results to an open data repository, enabling geographic coverage and reducing publication bias.

A few limitations were encountered during the course of this study. First, although we conducted meta-regression to explore heterogeneity of the included studies, there remained some residual heterogeneity that could not be explained quantitatively — likely driven by differences in disease transmission in the different countries and time points that serosurveys were conducted. Second, we did not account for waning of population immunity, so the present study likely underestimates the extent of past infection and case ascertainment. Thirdly, seroprevalence studies are cumulative, meaning that results reflect all COVID-19 countermeasures implemented up to the time of participant sampling and, thus, we cannot isolate the contributions of particular PHSM. Fourthly, while we screened study eligibility based on high assay performance criteria, different serological assays may yield varying results which should be taken into account when interpreting seroprevalence data. Finally, at certain points in time, our meta-analysis estimates were driven by studies from specific countries — either very populous countries (i.e. SEAR: India, AMR HIC: USA, AMR LMIC: Brazil, WPR: China), or countries in regions with scarce data during the time in question (e.g. EMR: 2 countries in early 2021). We also could not produce global estimates for mid to late 2021 due to the delays between when seroprevalence studies sampled participants and released results.

Our global estimates of infections based on seroprevalence far exceed reported cases. Seroprevalence has increased considerably in past months, due to infection in some regions and vaccination in others. Nevertheless, much of the global population remains susceptible to COVID-19. The pandemic persists in large because of inequitable access to pharmaceutical tools such as vaccines in LMIC; emphasizing the importance of equitable vaccine deployment globally, and of tailored PHSM to mitigate disease transmission until high population protection is achieved.

Seroprevalence studies have been invaluable throughout the COVID-19 pandemic to understand the true extent and dynamics over time of SARS-CoV-2 infection and immunity. These studies would be even more valuable if further standardized and their results made more rapidly available. As we enter the third year of the COVID-19 pandemic, we have the opportunity to develop a global system for continuous, multi-pathogen, and standardized serosurveillance (40,41). Through this learning process we have leveraged our knowledge and strengthened health system capacities, and built on the UNITY framework for standardized investigations. Implementing such a system would be a crucial next step to monitor the COVID-19 pandemic and contribute to readiness for other emerging respiratory pathogens. Globally standardised and quality seroprevalence data continue to be essential to inform health policy decision-making around COVID-19 control measures, particularly in capacity-limited regions, which are currently still not benefitting from equitable access to vaccines.
Supplementary material

Supplementary material file is attached.

Contributors

Conceptualization: IB, LS, TN, MVK, RKA, NB.

Data curation: HCL, AnV, LA, JO, TA, LL, AiV, MW, XM, ZL, NB, HW, CC, MYL, ML, MS, GRD, NI, CZ, SP, HPR, TY, KCN, DK, SAA, ND, CD, NAD, EL, RKI, ASB, ELB, AS, JC.

Formal analysis: HW, RKA, DB, JP, MPC.

Funding acquisition: IB, MVK, RKA, NB, TY.

Methodology: HW, RKA, DB, NB, ML, HQ, CPY, TW, ND, CD, TE.

Project administration: IB, MVK, MW, NB, RKA, TY, PM, HQ, OMK, EC, OAN, IYR, EAA, SO, AB, MS, PC, SAA, ZN, AR, GSF, RKI, TS, FI, AR, ECB, ASB, BLH.

Resources: LS, BC, HCL, AnV, LA, AR, JO, TA, LL, AiV.

Writing – original draft: IB, LS, HCL, AN, MW, HW, RKA.
Writing – review & editing: all authors.

All authors debated, discussed, edited, and approved the final manuscript. All authors had full access to the full data in the study and accepted responsibility to submit for publication.

Declaration of interests

Competing interests: WHO had a role in study design, data collection, data analysis, data interpretation, and writing of the report. No other funders had any such role. The corresponding authors had full access to all the data in the study and had final responsibility for the decision to submit for publication. Authors were not precluded from accessing data in the study, and they accept responsibility to submit for publication.

Potential other competing interests of named co-authors include: RKA, MW, HW, ZL, XM, CC, MYL, DB, JP, MPC, ML, MS, GRD, NI, CZ, SP, HPR, TY, KCN, DK, SAA, ND, CD, NAD, EL, RKI, ASB, ELB, AS, JC and NB report grants from Canada’s COVID-19 Immunity Task Force through the Public Health Agency of Canada, and the Canadian Medical Association Joule Innovation Fund. RKA, MW, HW, ZL, CC, MYL, NB also report grants from the World Health Organization and the Robert Koch Institute. RKA reports personal fees from the Public Health Agency of Canada and the Bill and Melinda Gates Foundation Strategic Investment Fund, as well as equity in Alethea Medical (Outside the submitted work). MPC reports grants from McGill Interdisciplinary Initiative in Infection and Immunity and Canadian Institute of Health Research, and personal fees from GEn1E Lifesciences (Outside the submitted work), nplex biosciences (Outside the submitted work), Kanvas biosciences (Outside the submitted work). JP reports grants from MedImmune (Outside the submitted work) and Sanofi-Pasteur (Outside the submitted work), grants and personal fees from Merck (Outside the submitted work) and AbbVie (Outside the submitted work), and personal fees from AstraZeneca (Outside the submitted work). DB reports grants from the World Health Organization, Canadian Institutes of Health Research, Natural Sciences and Engineering Council of Canada (Outside the submitted work), Institute national d’excellence en santé et service sociaux (Outside the submitted work), and personal fees from McGill University Health Centre (Outside the submitted work) and Public Health Agency of Canada (Outside the submitted work).

Data sharing

Standardized results uploaded to Zenodo by UNITY study collaborators supporting the findings of this study are available at this community and DOIs for each included Zenodo study are cited in the Supplementary File (S5) https://zenodo.org/communities/unity-sero-2021?page=1&size=20 (13). Summary datasets are available in Supplement S4. Open access datasets generated and analysed are available in a data repository (doi:10.5281/zenodo.5773152) and additional datasets are available from the Zenodo community upon request. All code necessary to reproduce this analysis will be added to a separate GitHub repository.
Acknowledgements

This work was supported by WHO through funding from the WHO Solidarity Response Fund and the German Federal Ministry of Health COVID-19 Research and Development. IB, LS, AnV, LA, AR, JO, TA, PW, LL, AIV, RP, MVK are employed by WHO, and HCL, AN, MV, BC are WHO consultants; the authors alone are responsible for the views expressed in this publication and they do not necessarily represent the decisions, policy, or views of WHO.

SeroTracker (led by RKA, including MW, HW, ZL, XM, TY, CC, MYL, JP, MPC, DB, ML, MS, GRD, NI, CZ, SP, HPR, TY, KCN, DK, SAA, ND, CD, NAD, EL, RKI, ASB, ELB, AS, JC). is grateful for support from WHO, Canada’s COVID-19 Immunity Task Force through the Public Health Agency of Canada, the Robert Koch Institute, and the Canadian Medical Association Joule Innovation Fund. RKA additionally thanks the Rhodes Trust for its support.

We thank colleagues at partner organizations including WHO/Dubai Logistics Team; Myrna Charles, Kathleen Gallagher, Amen Ben Hamida, Christopher Murrill, Toni Whistler, Venkatachalam Udhayakumar (US Centers for Disease Control and Prevention); Eeva Broberg, Erika Duffell, Maria Keramarou and Pasi Penttinen (European Centre for Disease Prevention and Control), Vincent Richard (Institut Pasteur and the Institut Pasteur International Network); WHO regional offices (Jacob Barnor, Alina Guseinova, Jason M Mwenda, Dmitriy Pereyaslov, Harimahefa Razafimandimby, and WHO HQ (Michael Ryan).

We would especially like to thank all WHO UNITY Study Collaborator Group, who are also named co-authors of this paper and listed in the section below. These and other collaborators are recognized on a dedicated webpage on the UNITY and WHO website,(42) in all the countries who embarked in this global response effort to COVID-19, as well as all individuals who supported, conducted or participated in each of the studies supported.

Unity Study Collaborator Group

18Aden University, Yemen
19Nigerian Institute of Medical Research
20Hadramout University, Al Mukalla, Yemen
21Ethiopian Public Health Institute, Addis Ababa, Ethiopia
22University of East Sarajevo Faculty of Medicine Foča, Bosnia and Herzegovina (Republic of Srpska)
23Public Health Ontario, Toronto, Ontario, Canada
24Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
References

