Adolescent vaccination with BNT162b2 (Comirnaty, Pfizer-BioNTech) vaccine and effectiveness of the first dose against COVID-19: national test-negative case-control study, England

Annabel A Powell,¹ Freja Kirsebom,² Julia Stowe,² Kelsey McOwat,² Vanessa Saliba,² Mary E Ramsay,¹,² Jamie Lopez-Bernal,¹,²,³ Nick Andrews,¹,²* Shamez N Ladhani ¹,4*

¹ Joint senior authors

1. UK Health Security Agency, London, United Kingdom
2. NIHR Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine, London, United Kingdom
3. NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, United Kingdom
4. Paediatric Infectious Diseases Research Group, St George’s University of London, London, UK

Abstract

Adolescents in the UK were recommended to have their first dose of mRNA vaccine during a period of high community transmission due to the highly transmissible Delta variant, followed by a second dose at an extended interval of 8–12 weeks. We used national SARS-CoV-2 testing, vaccination and hospitalisation data to estimate vaccine effectiveness (VE) using a test-negative case-control design, against PCR-confirmed symptomatic COVID-19 in England. VE against symptomatic disease increased to 80% within two weeks of the first dose of BNT162b2 vaccine (higher than in adults aged 18–64 years) and then declines rapidly to 40% within 8 weeks (similar to adults). Early data in 16–17-year-olds also indicate high protection against hospitalisation and a rapid increase in VE against symptomatic COVID-19 after the second dose. Our data highlight the importance of the second vaccine dose for protection against symptomatic COVID-19 and raise important questions about the objectives of an adolescent immunisation programme. If prevention of infection is the primary aim, then regular COVID-19 vaccine boosters will be required.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Background

Children and adolescents have a low risk of severe COVID-19. In the UK, COVID-19 vaccination for adults began in December 2020. Because of concerns about rare but potentially severe myocarditis after mRNA vaccination, mainly after the second dose in young adult males, the UK Joint Committee on Vaccination and Immunisation (JCVI) initially recommended one dose for 16-17-year-olds from 4 August 2021, and recommended against vaccinating 12-15-year-olds because of marginal risk-benefits, although UK ministers subsequently recommended vaccinating this group with BNT162b2 (Comirnaty, Pfizer-BioNTech) or mRNA-1273 (Spikevax, Moderna) from 13 September 2021 to prevent education disruption. Contrary to the authorised 3-week interval, the UK recommends 8-12 weeks between doses, because of the high protection the first dose provides and higher antibody responses after a later second dose. The UK strategy provided a unique opportunity to assess single-dose mRNA vaccine effectiveness (VE) in adolescents during a period of high community infection with the highly-transmissible Delta variant.

Methods

We used a test-negative case-control design to estimate VE after one BNT162b2 dose against PCR-confirmed symptomatic COVID-19 in England, as described previously. Vaccination status in symptomatic 12-15-year-olds and 16-17-year-olds with PCR-confirmed SARS-COV-2 infection was compared with vaccination status in symptomatic adolescents in the same age-groups who had a negative SARS-COV-2 PCR test. Because of small numbers, we only assessed VE against hospitalisation after dose one in 16-17-year-olds (full details in Supplement 1).
Results

From week 32 2021 onwards, there were 404,744 eligible tests for 12-15-year-olds and 138,273 for 16-17-year-olds, with a test date within 10 days of symptom onset date, and which could be linked to the National Immunisation Management system (match rate: 93.2% and 91.0%, respectively) (Supplement 2&3). Vaccine uptake and confirmed infections by age-group and over time are summarised in Supplement 4.

For 16-17-year-olds, VE against symptomatic disease after dose one peaked at 2 weeks (75.9%; 95%CI 74.3-77.4), declined gradually and plateaued just under 40% after 8-9 weeks (Figure 1, Supplement 5). After dose two, VE increased and reached 94.6% (95%CI 92.8-95.9) at 2-9 weeks (Supplement 5) VE against hospitalisation at 14+ days post-dose one was 84.5% (95%CI, 64.6-93.2). (Supplement 6)

Since 12-15-year-olds were vaccinated after 16-17-year-olds, follow-up was limited to 8-9 weeks post-dose one but followed a similar trajectory, with VE peaking at two weeks (75.4%; 95%CI, 73.9-76.9) before declining to 46.8% (95%CI, 14.9-66.7) by 8-9 weeks. (Figure 1, Supplement 5).

Similar to adolescents, VE in adults also peaked at two weeks after dose one, but reached a lower peak of 63.0% (95%CI, 62.2-63.8) in 18-39 year-olds and 54.5% (95%CI, 49.7-58.8) in 40-64 year-olds, with more gradual decline to 41.4% and 36.0% after 10-12 weeks (Figure 1, Supplement 5). After dose two, VE peaked after one week at 92.2% (95%CI, 91.9-92.5) for 18-39 year olds and 87.1% (95%CI, 85.5-88.5) before declining to 88.7% (95%CI, 88.5-88.8) and 84.1% (95%CI, 83.6-84.5), respectively, at 2-9 weeks (Figure 1, Supplement 5).

Discussion

VE in both 12-15-year-olds and 16-17-year-olds peaked higher than in adult populations but, declined rapidly to around 40% by 8-12 weeks after the first dose. In 16-17-year-olds, VE after dose 2
increased rapidly and plateaued at 95% at 2-9 weeks, also higher than adult VE in this period. This is, so far, the only VE evaluation after a single mRNA dose in adolescents. Pre-licensure trials reported 93% (mRNA-1273) to 100% (BNT162b2) efficacy in preventing COVID-19 among 12-15 year-olds from 7 days (BNT162b2) or 14 days (mRNA-1273) after two doses given 3-4 weeks apart, but the short interval between doses prevents comparison with our cohort. Real-world VE data against two BNT162b2 doses includes a US study using a similar test-negative case-control design estimating 93% (95%CI, 83%–97%) VE against hospitalisation during June-September 2021, and another reporting 81% VE (95%CI, -55 to 90%) VE against hospitalisation in 12–15-year-olds, although this included only 45 cases, whilst early Israeli data estimated 91.5% (95%CI, 88.2%–93.9%) VE against SARS-CoV-2 infection in 12–15-year-olds.

VE against symptomatic COVID-19 wanes quickly after the first dose and is also expected to wane after the second dose. The adolescent immunisation programme as a stand-alone intervention is unlikely to sustain suppression of infections in the medium-to-long term. If the aim of the programme is to reduce infections, then regular boosters will likely be needed.

Funding: None

Conflict of interest: None

Ethics approval: UKHSA has legal permission, provided by Regulation 3 of The Health Service (Control of Patient Information) Regulations 2002, to process patient confidential information for national surveillance of communicable diseases and as such, individual patient consent is not required to access records.
REFERENCES

Figure 1. Vaccine effectiveness with 95% confidence intervals against symptomatic, PCR-confirmed COVID-19 among adolescents and adults after one and two doses of BNT162b2 (Comirnaty, Pfizer-BioNTech in England. Children aged 12-15 years have yet to receive their second dose of vaccine in England.

VACCINE EFFECTIVENESS AFTER DOSE 1:

a) 12-15-year-olds

b) 16-17-year-olds

c) 18-39-year-olds

d) 40-64-year-olds
VACCINE EFFECTIVENESS AFTER DOSE 2:

a) 16-17-year-olds

b) 18-39-year-olds

c) 40-64-year-olds