Title: A randomized clinical trial to stimulate the cholinergic anti-inflammatory pathway in patients with moderate COVID-19-pneumonia using a slow-paced breathing technique

Authors:

Balint, Elisabeth Maria, MD, Clinic for Psychosomatic Medicine and Psychotherapy, University Hospital Ulm, Germany

Grüner, Beate, MD, Prof., Clinic for Internal Medicine III, Division of Infectious Diseases, University Hospital Ulm, Germany

Haase, Sophia, Clinic for Psychosomatic Medicine and Psychotherapy, University Hospital Ulm, Germany

Kaw-Geppert, Mandakini, Clinic for Psychosomatic Medicine and Psychotherapy, University Hospital Ulm, Germany

Thayer, Julian, PhD, Prof., Department of Psychology, University of California, Irvine, USA

Gündel, Harald, MD, Prof., Clinic for Psychosomatic Medicine and Psychotherapy, University Hospital Ulm, Germany

Jarczok, Marc N., Dr. sc. hum., Clinic for Psychosomatic Medicine and Psychotherapy, University Hospital Ulm, Germany

Corresponding author:

Jarczok, Marc N., Dr. sc. hum.

Albert-Einstein-Allee, 23, 89081 Ulm, Germany

Marc.jarczok@uni-ulm.de

Phone: +49 731-50061810

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Balint et al: Slow-paced breathing and inflammation in patients with moderate COVID-19

Key points

Question: Can slow-paced breathing reduce Interleukin-6 (IL-6) in hospitalized patients with moderate coronavirus disease 2019 (COVID-19) pneumonia?

Findings: Single-center randomized controlled clinical trial including 46 patients hospitalized with moderate COVID-19 pneumonia. Compared to controls, IL-6 values were significantly lower (small-to-medium effect sizes) in patients who were instructed to practice six breaths per minute for 20 minutes three times a day. More minutes of slow-paced breathing were significantly correlated with lower IL-6 values the next morning.

Meaning: Slow-paced breathing could be a safe and feasible adjuvant therapeutic approach in moderate COVID-19 pneumonia.

Abstract

Importance: Vagus nerve stimulation via slow-paced breathing could serve as adjuvant therapeutic approach to reduce excessive inflammation in coronavirus disease 2019 (COVID-19) pneumonia.

Objective: Does a slow-paced breathing technique increasing vagal activity reduce Interleukin-6 (IL-6) in patients hospitalized with moderate COVID-19 pneumonia compared to standard care?

Setting: Ward for infectious diseases and temporary COVID-19 ward, Ulm University Hospital, Germany

Participants: Consecutive sample of patients hospitalized with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and moderate COVID-19 pneumonia (primary diagnosis). Of 131 patients screened, 48 patients were randomized and 46 patients analyzed (N=23 per group).
Interventions: Slow-paced 20-minute breathing exercise three times a day with six breaths per minute (inhale-to-exhale ratio 4:6).

Main outcomes and measures:

Differences between intervention and control group in IL-6 calculated using multilevel mixed-effect linear regression models with random slope including the covariates relevant comorbidities, COVID-19 medication, and age.

Results:

Mean age 57 years ± 13 years, N= 28 (60%) male, N=30 (65%) with relevant comorbidities.

The model including group by time interaction revealed a significantly lower trajectory of IL-6 in the intervention group compared to the control group (effect size Cohens $f^2=0.11$, LR-test $p=.040$) in the intention-to-treat sample, confirmed by treatment-per-protocol analysis ($f^2=0.15$, LR-test $p=.022$).

Exploratory analysis using the median split of practice time to predict IL-6 of the next morning indicated a dose-response relationship with beneficial effects of practice time above 45 minutes a day.

Three patients in each group were admitted at ICU, one died. Oxygen saturation increased during slow-paced breathing (from 95.1%±2.1% to 95.4%±1.6%, $p=0.006$).

Conclusion and relevance:

Patients practicing slow-paced breathing had significantly lower IL-6 values than controls without relevant side effects. Further trials should evaluate clinical outcomes as well as an earlier start of the intervention, i.e., at symptom onset. This would offer an access to a therapy option not only for high-income, but also for low- and middle-income countries.

Trial registration: German register of clinical trials (ID: DRKS00023971) https://www.drks.de,

Universal Trial Number (UTN) U1111-1263-8658;
Introduction

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still occupies politics and health care. Though immunization is available now and knowledge about therapy options has widely progressed, there is still an urgent need especially for cheap, broadly accessible interventions that could be spread globally.

A characteristic problem occurring in coronavirus disease 2019 (COVID-19) are excessive elevations of pro-inflammatory cytokines such as interleukin-6 (IL-6) and C-reactive protein (CRP) which are associated with worse clinical courses. Several trials have tested anti-inflammatory agents, including dexamethasone or IL-6 antagonists with beneficial outcomes. Next to drugs, there exists a clinically relevant, non-pharmaceutical way to reduce inflammation through Vagus nerve stimulation (VNS). The latter is involved in the regulation of the immune response via the cholinergic anti-inflammatory reflex. Specifically, the efferent vagally mediated reflex arc regulates inflammation and the release of pro-inflammatory cytokines such as IL-6 from acetylcholine-synthesizing T-cells. Measures of vagal activity and inflammatory parameters such as IL-6, CRP, and tumor necrosis factor α (TNF-α) are strongly correlated. In the specific case of infection with SARS-CoV-19, insufficient vagal activity appears to be the cause of both unhindered viral replication and uncontrolled cytokine release along the virus-driven NF-κB pathway. Therefore, increasing vagal activity seems to be a promising therapeutic approach.

The vagus nerve can be stimulated with electric devices. The authors from a randomized controlled study proved feasibility for auricular electrical VNS in 31 patients hospitalized due to COVID-19 and did not report side effects, but were not able to show clinical improvement. Two case reports describe decreasing IL-6 and CRP after onset of electrical VNS in four COVID-19 patients suffering from moderate or severe COVID-19 pneumonia. However, electrical VNS has the limitation that no device has yet been certified for this anti-inflammatory use, this intervention must be performed by medical professionals, and is therefore limited in the respect of personal and financial resources. In contrast, there is a currently urgent need to alleviate recumbency and symptom...
Balint et al: Slow-paced breathing and inflammation in patients with moderate COVID-19

severity. To our knowledge, no study investigated the effect of non-electrical VNS in patients with COVID-19. A simple way to increase the activity of the vagus nerve is a specific breathing technique with reduced frequency and prolonged exhalation phase (slow-paced breathing).16,17 Though some studies show effects of slow-paced breathing on IL-6, CRP or TNF-\(\alpha\) after several days or weeks in patients with hypertension18 and irritable bowel syndrome19, the effect of slow-paced breathing in infectious diseases was not yet investigated.

Therefore, we performed a randomized controlled trial in patients with moderate COVID-19 pneumonia to investigate the hypothesis whether a breathing technique that increases vagal activity reduces inflammatory levels (primary outcome: IL-6; secondary outcome: CRP, leukocytes) in patients with COVID-19 pneumonia compared to a control group of patients with treatment as usual.
Materials and methods

The present study design is a prospective, two-arm, open-label, single-center randomized controlled trial. The protocol was approved by the Institutional Review Board of Ulm University (No. 3/21, 01/02/2021) and registered prior to screening start at the German Clinical Trials Register (ID: DRKS00023971), Universal Trial Number (UTN) U1111-1263-8658. The study was conducted in compliance with the Declaration of Helsinki, the Guideline for Good Clinical Practice, and local regulatory requirements. All patients provided written informed consent prior to inclusion.

Patients

Patients enrolled were hospitalized with SARS-CoV-2-infection confirmed by positive polymerase chain reaction assay and the primary diagnosis of a moderate degree of COVID-19 according to WHO definition. The following exclusion criteria were applied: 1) Severe COVID-19 pneumonia with fever and bilateral lung infiltrates and respiratory rate>30/min or SpO2<90% on room air (adapted from WHO), or 2) condition after surgery/trauma/acute event (stroke, myocardial infarction, acute COVID-independent infection) in the last four weeks, i.e., other primary diagnoses than COVID-19, or 3) current pregnancy, or 4) patients with pre-existing pulmonary disease who were on oxygen prior to infection (e.g., due to pulmonary fibrosis, COPD), or 5) limited ability to give consent (e.g., due to dementia), or 6) limited ability to perform breathing maneuvers independently (e.g., high frailty), or 7) limited ability to provide self-care (German care level two or three), or 8) insufficient language skills, or 9) seizures in the medical history.

Study design

Screening was performed starting from 23/02/2021 until 17/06/2021 on either the ward for infectious diseases or the temporary ward for patients suffering from COVID-19 at the Clinic for Internal Medicine III (Infectious Diseases, hematology, oncology) of the University Medical Center Ulm (Germany). Consenting patients were randomized in a 1:1 ratio to receive the breathing intervention (intervention group, IG) or standard care (control group, CG). The randomization list was created prior
Balint et al: Slow-paced breathing and inflammation in patients with moderate COVID-19

to screening start by MNJ with blocks of 20, 16, 14, and 16 numbers to account for the adaptive design (see below Statistical methods section) using the software STATA20 and was not accessible for recruiting study personnel (EMB, SH, MKG).

Patients randomized to intervention group were asked to perform the 20-minute breathing exercise three times a day with six breaths per minute and an inhale to exhale ratio of 4:6 seconds. To support the correct technique, the free application BreathBall (https://breathball.com/de/home-de/) was shown on a smartphone. The application facilitates tactual breathing by displaying a decreasing (exhale) and increasing (inhale) ball, combined by sound if preferred. The study personnel monitored the first exercise to assist and register side effects. Standard breathing scheme was 6 per minute with an inhale/exhale ratio of 4:6 seconds (see Supplement for the instruction). If the patients did not support this scheme, the scheme was adapted slightly up to a breathing frequency of 10 per minute. Further exercises should be done independently and the time spent in the exercise should be self-recorded.

The control group received standard care. Both groups were visited bi-daily by the study personnel to assess symptoms, check for side effects, record the practice times and to collect oxygen saturation, oxygen flow and breathing frequency. Blood samples were taken in routine around 8 o’clock in the morning and analyzed by the clinical chemistry within four hours by accredited procedures to gain IL-6, CRP, and leucocytes and tumor-necrosis-factor alpha (TNF-\(\alpha\)).

Four weeks after discharge, patients were contacted via telephone to assess symptoms and adverse events (follow-up). Follow-up was completed on July 22nd, 2021.

Measures

Only one blood sample measurement was included per day. If several blood samples were available, we included the measurement closest to 8 o’clock. Values below the detection limit (IL6<1.5 pg/ml, CRP < 0.6 mg/l, TNF-\(\alpha\) < 8.1 pg/ml) were set to the value of the detection limit.

Breathing protocol adherence was defined as follows: if the breathing intervention was performed at least once autonomously and if the percentage of minutes in paced breathing were at least 50% of
the required minutes, i.e., min. 30 minutes per day averaged over the whole stay. The per protocol sample (PP) included only those patients meeting the adherence criteria.

Adverse events were defined as transfer to ICU or death.

Screening for depressive and anxious symptoms was performed using the PHQ-4 (positive screening if sum score ≥ 3). 21

Statistical analysis

The Institutional Review Board requested an adaptive design (power of 80% and an alpha of .05). After N=30, N=46 and N=60 of patients, the effect size can be calculated. The intervention can be stopped at N=46 if an effect size of greater than f=0.16 exists. After N=46, data were reviewed resulting in a significant effect size of f=.11 (ITT) and f=.14 (PPT). Taking into account the given seasonal circumstances (infection rate lowering, no further patient admissions) the study was discontinued mid of June 2021 to avoid delay (new patient admissions expectable only five months later) and to limit the sample to one wave.

Statistics: For comparisons between intervention and control group, chi square tests and the Mann-Whitney U test were used if appropriate. For repeated measurements (oxygen saturation, oxygen flow, breathing frequency), multilevel-mixed effect linear regression models were calculated.

Due to a skewed distribution, IL-6, TNF-α, leucocytes, and CRP were log-transformed to the base of e prior to parametric statistical testing to better approximate Gaussian distribution. The level of significance was set a priori to p<.05 (two-sided). Data management and analysis were performed using STATA 15.1 SE (STATA Corp., College Station, Texas, USA).

Trial outcome analysis method

Per outcome, four multilevel mixed-effect linear regression models were calculated and compared, as recommended by a recently published best practice guidance for linear mixed-effects models. 22 The covariance was set to unstructured. The first model included random effect only (individuum),
the second additionally included the main fixed effects for group (IG vs. CG) and time (days since study inclusion). Since clinically meaningful differences existed between the study groups (see Table 1) additional covariates were also included. These were: relevant comorbidities (no vs. yes), COVID-19 pneumonia medication (count), and age (years). The third model additionally included the variable time to the random effect equation. The fourth model additionally included the interaction between group and time in the fixed effect part. The model fit was compared between these four models and parsimonious model improvement was tested using likelihood ratio tests (see Table 2). Additionally, information criteria (Aiken IC and Bayesian IC) were investigated.

These models were calculated for each outcome and each analysis sample (ITT and PP). The analyses were restricted to a maximum of thirteen days after study inclusion, because afterwards no observations were available in the IG. This led to a deletion of three observations from three patients of the CG.

Post hoc analyses

Potential dose-response effects from categorized breathing minutes on daily IL-6 values were analyzed in all patients from the intervention group. Daily total breathing minutes were dichotomized at median value (45 minutes). Categorized minutes of breathing were related to blood samples from the following morning to retain temporal relationship. Two multilevel mixed-effect linear regression models were calculated for the primary outcome IL-6. The first model included the categorized practice time in the fixed effect part. The random effect part included the individuum and the practice time as cross-level interaction with the underlying assumption that categorized breathing minutes as random effect are systematic to this category and common to all intervention patients. Findings for analyses of end points other than the primary end point should be interpreted as exploratory due to the potential for type I error using multiple comparisons.
Results

Study population

Of 131 patients screened, 81 met exclusion criteria (see Figure 1). Main exclusion reasons were invasive procedures, trauma or acute myocardial infarction/stroke during the last four weeks (N=35, 43%), followed by high frailty and dementia (N=23, 28%) and insufficient knowledge of German language (N=16, 20%). Out of the remaining 50 patients, two patients (4%) were not willing to participate. A total of 48 patients (37% out of 131 patients screened) were randomized. Monitoring during the study revealed an exclusion criterion in two patients (severe COVID-19 pneumonia before study entry). Therefore, 46 patients (N=23 patients per group) were available for ITT analysis. Seven patients in the intervention group practiced less than 50%. Two stopped because they had difficulties with the implementation of the breathing exercise in terms of concentration and technique. Two were transferred to ICU within two days of study entry due to deterioration of COVID-19 pneumonia. Three practiced continuously, but with shorter duration or less frequently, in total less than 50% of the required time. Thus, 16 patients of the IG and 23 of the CG entered the TPP analysis.

Characteristics of the study samples are shown in Table 1. The study sample was between 23 and 83 years old (57 years±13 years), 60% were male. N=30 (65%) had relevant comorbidities. All patients showed pulmonal infiltrates in thoracic computer tomography. Mean hospitalization length was 9.8±3.1 days (range 5-19 days).

Although no statistically significant differences were found between intervention and control group for baseline variables, clinically relevant differences were apparent. Patients in the intervention group were older (M=58.8±13.2 vs. M=54.3±13.4), had more relevant comorbidities (N= 18, 78% vs. N=12, 52%) and a higher number of COVID-19- and pneumonia-associated medication during hospital stay (M=2.8±1.0 vs. M=2.3±1.3) (see Table 1).
Balint et al: Slow-paced breathing and inflammation in patients with moderate COVID-19

Primary outcome

Estimated marginal mean course of log-transformed IL-6 for all patients of the ITT-sample (N=46) is shown in Figure 2A. The prediction models included the covariates set to mean (relevant comorbidities (no/yes), count of COVID-19 pneumonia medication, and age (years). Multilevel fixed-effect linear regression models were compared using likelihood-ratio tests (see Table 2). These LR tests identified a random slope model with group by time interaction as the superior model for IL-6 (LR \(\chi^2 \) (13) = 23.18; \(p = .040 \)). The graphical results of the model (marginal means displayed in Figure 1) on average show lower values of IL-6 in the IG (effect size Cohens \(f^2 \) = 0.11, LR-test \(p = .040 \)). Treatment-per-protocol analysis (N=39) confirmed these results (\(f^2 = 0.14 \), LR-test \(p = .022 \)).

Secondary outcomes

Estimated marginal mean course of log-transformed leucocytes, CRP and TNF-\(\alpha \) for all patients of the ITT sample (N=46) is shown in Figure 2B, C, D. The model comparison for the secondary outcomes leucocytes, CRP and TNF-\(\alpha \) showed no relevant group by time interaction (see Table 2).

Post hoc analyses

To further explore the relationship between slow-paced breathing and IL-6, we modeled a dose-response analysis using the minutes of slow-paced breathing of a day to predict IL-6 of the next day. Marginal mean values from adjusted multilevel mixed-effect linear regression models are shown in Figure 3. The model indicates a dose-response relationship with beneficial effects of practice time above 45 minutes a day (\(b = -.82 \), 95%CI lower -1.55; upper -.01).

Adverse events

Six patients (N=3, 13% in each study group) were admitted at ICU, of whom one patient died (CG). All 23 patients practiced at least once. Most patients (N=18, 78%) managed the breathing exercise well. Nine patients (39%) reported the exercise at least from time to time as demanding. Two stopped due to difficulties with the implementation of the breathing exercise in terms of concentration and
Balint et al: Slow-paced breathing and inflammation in patients with moderate COVID-19

technique. There was one case of dizziness that resolved by reducing the depth of breath a little. Four out of the 23 patients (17%) who practiced at least once complained about coughing especially at the beginning of the exercise, and one had to stop the exercise once due to coughing. Weighted mean breathing frequency at rest was 18.5/min±4.5/min (range 10-30.5/min) for IG with no significant difference to the CG (M= 19.2/min±3.6/min, range 13.5-28.3/min; p=0.431. During the exercise, mean breathing frequency was 6.4/min±1.0/min (range 5.7-10/min) in IG. Six patients felt uncomfortable breathing at 6/min and had adjusted frequencies up to 10/min. 34 patients received nasal oxygen at least once during hospital stay with a patient weighted mean flow of 1.9l ± 1.8l per min. Oxygen saturation was comparable between IG (95.1%±2.1%) and CG (94.7%±1.8%) at rest (p=0.444) but increased during slow-paced breathing (95.4%±1.6%, p=0.003).

Discussion

This clinical trial of patients with moderate COVID-19 pneumonia showed that slow-paced breathing is effective to reduce IL-6 in COVID-19 pneumonia, though with uncertain clinical importance. Further, the data showed that reducing breathing frequency to 6/min is safe and feasible in moderate COVID-19 pneumonia and did not deteriorate oxygen saturation.

A non-invasive, non-pharmaceutical, not device depending treatment option in COVID-19 disease has several advantages. It reduces the risk of toxicity held by IL-6 receptor antagonists. Costs are low as no devices have to be bought or certified. The technique itself is easy to learn and the exercises can be supported via free apps on the patient's own smartphone. Therefore, the intervention can be scaled easily by training medical assistance staff that informs about the breathing techniques and supports first practice sessions. This would offer an access to a therapy option not only for industrial, but also for low-income countries.

Our data adds to the knowledge about the effect of VNS on inflammation marker. To our knowledge, this is the first study showing a statistically significant direct effect of non-invasive VNS via paced-breathing on IL-6 of the following day. The exploratory dose-response analysis proposes a linear...
relationship with more minutes in slow-paced breathing reducing IL-6 values more the next day. The dose necessary for this effect was 45 minutes of paced breathing a day at a breathing frequency of 6/min with an inhale/exhale ratio of 4:6. Though data about the effect of slow breathing in acute inflammation is missing, the data available for the effect of interventions including slow breathing on IL-6 seems to depend highly on the frequency and duration, with an effect only in studies with at least half an hour of practice daily. More detailed studies should further explore the necessary frequency, ratio and dose for a meaningful reduction in IL-6.

We cannot distinguish effects of VNS and placebo. Psychosocial interventions have been shown to affect the immune system. Though the amount of attention by study personnel was about the same in both groups, patients in the IG might have felt more self-efficient and this might have influenced their inflammatory marker. Though this effect would not be triggered by VNS, it would still originate in the central autonomic network and still, the anti-inflammatory pathway would be triggered drug- and device-free. From a patient's point of view, this is very important. We had a very high rate of patients willing to participate (97.6%) because most patients were very interested in a study that investigates a therapeutic approach without drugs and devices. Furthermore, most patients were very happy to perform the intervention because it was their only possibility to manage their disease. This alleviated their feeling of being helpless and without control, introducing the feeling of self-efficacy.

Limitations

First limitation is the sample size that could not address clinical outcomes. Second, early discharge was not included in the model. Third, the intervention was not blinded. Another trial could include a sham intervention. Fourth, we did not control objectively the amount of time spent in slow-paced breathing but relied on self-report.

Conclusion

This small, single-center randomized controlled clinical trial showed that reducing breathing frequency to 6/min is effective in reducing IL-6 levels in moderate COVID-19 pneumonia without
relevant side effects. Larger RCTs need to confirm these results as well as evaluate clinical outcomes. This would offer an access to a therapy option not only for industrial, but also for low-income countries.

Acknowledgements

We thank the directors of the Clinic for Internal Medicine III, Prof. Hartmut Döhner, and Clinic for Internal Medicine I, Prof. Thomas Seufferlein, for their support in conducting this study. Special thanks to Andreas Binzberger, Jinny Scheffler, the ward physicians in charge, who supported us during study conduction. Thanks to Michael Holl, developer of the BreathBall App, for the inspiring interaction.

Data availability:

Data is available upon request at MNJ for non-profit research.
Balint et al: Slow-paced breathing and inflammation in patients with moderate COVID-19

References

9. Kevin J. Tracey, Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory

Balint et al: Slow-paced breathing and inflammation in patients with moderate COVID-19

Figure legends

Figure 1: Flowchart Recruitment

![Flowchart Recruitment](image)

- **Enrollment**
 - Assessed for eligibility (n=131)
 - Excluded (n=83)
 - Not meeting inclusion criteria (n=81)
 - Declined to participate (n=2)
 - Excluded after randomization: 2 (exclusion criteria revealed by monitoring)
- **Allocation**
 - Randomized (n=48)
 - Allocated to intervention (n=23)
 - Meeting adherence criteria (n=16)
 - Not meeting adherence criteria (n=7)
 - Allocated to control (n=23)
- **Follow-Up**
 - Lost to follow-up (no response) (n=1)
 - Lost to follow-up (n=0)
- **Analysis**
 - Analysed: (n=23)
 - Intention to treat: n=23
 - Treatment to protocol: n=16
 - Analysed: (n=23)
 - Intention to treat: n=23
 - Treatment to protocol: n=23
Figure 2 Trajectories of inflammatory outcomes:

Marginal mean prediction of (A) ln(IL-6[pg/ml]), (B) ln(leucocytes[giga/l]), (C) ln(CRP[mg/l]) and (D) ln(TNF-α [pg/ml]) values for IG and CG from multilevel fixed-effect linear regression models with random slope (N=46 individuals with N=208 observations; average observations per individual=4.5). Note: Negative ln values translate to parameter values <1. Covariates: relevant comorbidities (no vs. yes), COVID-19 pneumonia medication (count), and age (years). Model predictions were calculated at covariate mean values.
Figure 3: Dose response analysis using categorized breathing minutes from 22 patients and 61 days.

Marginal mean values from multilevel mixed-effect linear regression models adjusted for relevant comorbidities (no vs. yes), COVID-19 pneumonia medication (count), and age (years). Prediction at covariate mean values. Obs. = Observations (patient days breathing)
Table 1:

<table>
<thead>
<tr>
<th></th>
<th>Intervention group (N=23)</th>
<th>Control group (N=23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age [years]</td>
<td>58.8 ± 13.2</td>
<td>54.3 ± 13.4</td>
</tr>
<tr>
<td>Sex [male]</td>
<td>14 (61%)</td>
<td>14 (61%)</td>
</tr>
<tr>
<td>Ethnicity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>10 (43%)</td>
<td>9 (39%)</td>
</tr>
<tr>
<td>Turkish</td>
<td>5 (22%)</td>
<td>2 (9%)</td>
</tr>
<tr>
<td>Russian</td>
<td>3 (13%)</td>
<td>5 (22%)</td>
</tr>
<tr>
<td>other</td>
<td>5 (22%)</td>
<td>7 (30%)</td>
</tr>
<tr>
<td>BMI [kg/m²]</td>
<td>30.6 ± 5.1</td>
<td>30.2 ± 6.1</td>
</tr>
<tr>
<td>living in partnership</td>
<td>18 (78%)</td>
<td>16 (70%)</td>
</tr>
<tr>
<td>smoking</td>
<td>1 (4%)</td>
<td>1 (4%)</td>
</tr>
<tr>
<td>regular physical activity</td>
<td>9 (39%)</td>
<td>9 (39%)</td>
</tr>
<tr>
<td>working status: working</td>
<td>13 (57%)</td>
<td>13 (57%)</td>
</tr>
<tr>
<td>practicing a relaxation method at least once a week</td>
<td>0 (0%)</td>
<td>2 (9%)</td>
</tr>
<tr>
<td>self-rated health (last 6 months)</td>
<td>6.9 ± 2.6</td>
<td>7.5 ± 2.6</td>
</tr>
<tr>
<td>screened positive for depressive symptoms</td>
<td>2 (9%)</td>
<td>5 (22%)</td>
</tr>
<tr>
<td>screened positive for anxious symptoms</td>
<td>3 (13%)</td>
<td>5 (22%)</td>
</tr>
<tr>
<td>no. of patients with relevant comorbidities*</td>
<td>18 (78%)</td>
<td>12 (52%)</td>
</tr>
<tr>
<td>diabetes</td>
<td>5 (22%)</td>
<td>4 (17%)</td>
</tr>
</tbody>
</table>
Balint et al: Slow-paced breathing and inflammation in patients with moderate COVID-19

<table>
<thead>
<tr>
<th>Condition</th>
<th>Frequency</th>
<th>Percentage</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>12</td>
<td>52%</td>
<td>9</td>
<td>39%</td>
</tr>
<tr>
<td>Asthma</td>
<td>4</td>
<td>17%</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>Obesity (BMI>30)</td>
<td>13</td>
<td>57%</td>
<td>13</td>
<td>57%</td>
</tr>
<tr>
<td>Medication at admission: total number</td>
<td>3.4</td>
<td>12%</td>
<td>2.0</td>
<td>7%</td>
</tr>
<tr>
<td>Asthma spray</td>
<td>3</td>
<td>13%</td>
<td>2</td>
<td>9%</td>
</tr>
<tr>
<td>Beta-blocking agent</td>
<td>7</td>
<td>30%</td>
<td>5</td>
<td>22%</td>
</tr>
<tr>
<td>Number of COVID-19- and pneumonia-associated medication</td>
<td>2.8</td>
<td>10%</td>
<td>2.3</td>
<td>10%</td>
</tr>
</tbody>
</table>

in detail:

<table>
<thead>
<tr>
<th>Medication</th>
<th>Frequency</th>
<th>Percentage</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexamethason</td>
<td>21</td>
<td>91%</td>
<td>19</td>
<td>83%</td>
</tr>
<tr>
<td>Casirivimab/Imdevimab (monoclonal antibodies)</td>
<td>5</td>
<td>22%</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>Ruxcoflam</td>
<td>5</td>
<td>22%</td>
<td>5</td>
<td>22%</td>
</tr>
<tr>
<td>Antiviral agent (Remdesivir)</td>
<td>13</td>
<td>57%</td>
<td>11</td>
<td>48%</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>20</td>
<td>87%</td>
<td>17</td>
<td>74%</td>
</tr>
</tbody>
</table>

Virus variant

<table>
<thead>
<tr>
<th>Variant</th>
<th>Frequency</th>
<th>Percentage</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildtype</td>
<td>1</td>
<td>4%</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>B 1.1.7 alpha</td>
<td>11</td>
<td>48%</td>
<td>11</td>
<td>48%</td>
</tr>
<tr>
<td>n.a.</td>
<td>11</td>
<td>48%</td>
<td>11</td>
<td>48%</td>
</tr>
<tr>
<td>temporary COVID-19-only ward</td>
<td>8</td>
<td>35%</td>
<td>8</td>
<td>35%</td>
</tr>
<tr>
<td>ward for infectious diseases</td>
<td>15</td>
<td>62%</td>
<td>15</td>
<td>65%</td>
</tr>
<tr>
<td>hospital stay [days]</td>
<td>10.1</td>
<td>2.9</td>
<td>9.3</td>
<td>3.2</td>
</tr>
</tbody>
</table>

*cardiovascular, renal, respiratory, autoimmune disease, diabetes
Table 2: Model comparison of ITT analysis by outcome (N=46). **BOLD** lines indicate favored model

<table>
<thead>
<tr>
<th>DV</th>
<th>Obs</th>
<th>Model Number</th>
<th>Model specification</th>
<th>Fixed Effects added</th>
<th>Random effects</th>
<th>Model fit</th>
<th>LRT Test against nested</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6 ln[pg/ml]</td>
<td>208</td>
<td>1</td>
<td>RE only</td>
<td>-</td>
<td>intercepts</td>
<td>684.1391</td>
<td>3 694.1518 -339.06957</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>M1 + FE main effects</td>
<td>Group + Day</td>
<td>intercepts</td>
<td>682.5409</td>
<td>749.2917 -321.2705</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>M2 + RE</td>
<td>-</td>
<td>intercepts</td>
<td>674.3049</td>
<td>747.7307 -315.1524</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>M3 + Interaction</td>
<td>Group X</td>
<td>intercepts</td>
<td>677.1227</td>
<td>793.9366 -303.5614</td>
</tr>
<tr>
<td>Leucocytes ln[giga/l]</td>
<td>214</td>
<td>1</td>
<td>RE only</td>
<td>-</td>
<td>intercepts</td>
<td>195.8852</td>
<td>205.9832 -94.94262</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>M1 + FE main effects</td>
<td>Group + Day</td>
<td>intercepts</td>
<td>127.7382</td>
<td>195.0577 -43.86911</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>M2 + RE</td>
<td>-</td>
<td>intercepts</td>
<td>111.1439</td>
<td>185.1954 -33.57196</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>M3 + Interaction</td>
<td>Group X</td>
<td>intercepts</td>
<td>124.6047</td>
<td>239.0478 -28.30233</td>
</tr>
<tr>
<td>CRP ln[mg/l]</td>
<td>222</td>
<td>1</td>
<td>RE only</td>
<td>-</td>
<td>intercepts</td>
<td>718.8937</td>
<td>729.1018 -356.4469</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>M1 + FE main effects</td>
<td>Group + Day</td>
<td>intercepts</td>
<td>589.4273</td>
<td>657.4808 -274.7136</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>M2 + RE</td>
<td>-</td>
<td>intercepts</td>
<td>504.5118</td>
<td>579.3707 -230.2559</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>M3 + Interaction</td>
<td>Group X</td>
<td>intercepts</td>
<td>516.4878</td>
<td>635.5815 -223.2439</td>
</tr>
<tr>
<td>TNF-α ln[pg/ml]</td>
<td>151</td>
<td>1</td>
<td>RE only</td>
<td>-</td>
<td>intercepts</td>
<td>189.4543</td>
<td>198.5061 -91.72714</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>M1 + FE main effects</td>
<td>Group + Day</td>
<td>intercepts</td>
<td>182.9308</td>
<td>243.2764 -71.46538</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>M2 + RE</td>
<td>-</td>
<td>intercepts</td>
<td>170.7575</td>
<td>237.1376 -63.37873</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>M3 + Interaction</td>
<td>Group X</td>
<td>intercepts</td>
<td>175.1232</td>
<td>274.6934 -54.5616</td>
</tr>
</tbody>
</table>

CC-BY-NC 4.0 International license It is made available under a perpetuity.