The impact of music on health-related quality of life, as quantified by the SF-36: A systematic review and meta-analysis

J. Matt McCrary¹,²
Eckart Altenmüller¹
Clara Kretschmer¹
Daniel S. Scholz¹

¹Institute of Music Physiology and Musicians’ Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
²Prince of Wales Clinical School, University of New South Wales, Sydney, Australia

Corresponding Author:
J. Matt McCrary
Institute of Music Physiology and Musicians’ Medicine
Hannover University of Music, Drama and Media
Neues Haus 1
30175 Hannover
Germany
j.matt.mcrrary@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background/Objectives: Increasing evidence supports the ability of music to broadly promote wellbeing and health-related quality of life (HRQOL). However, the magnitude of music’s effects on HRQOL is still unclear, particularly relative to established interventions, limiting inclusion of music interventions in health policy and care. The SF-36 is the most widely used instrument to evaluate HRQOL, with broad validity in evaluating the effects of a range of interventions. This study aims to synthesize and contextualize the impact of music interventions on HRQOL, as assessed by the SF-36.

Methods: MEDLINE; EMBASE; Web of Science; PsycINFO, clinicaltrials.gov, and ICTRIP databases were searched on 30 July 2021. Randomized and single-group studies of music interventions which reported SF-36 data at pre- and post-intervention timepoints were included. Observational studies were excluded. The quality and certainty of evidence provided by included articles and meta-analysis results was appraised using GRADE. Inverse variance random effects meta-analyses quantified changes in SF-36 mental and physical component summary scores (respectively, ‘MCS’ and ‘PCS’) pre- to post-intervention and vs. common control groups.

Results: Analyses included 764 participants from 25 studies. Music interventions (music listening – 10 studies; music therapy – 7 studies; singing – 7 studies; gospel music – 1 study) significantly improved MCS (Mean difference (MD) [95% confidence interval]=3.0 [1.4, 4.6]; p<.001) and PCS (MD=1.0 [0.1, 2.0; p<.04] scores. In a subgroup (8 studies; music group – N=254; control – N=257) addition of music to standard treatment for a range of conditions significantly improved MCS scores vs. standard treatment alone (MD=3.7 [0.4, 7.1; p<.03). Effects did not vary between music listening, therapy and singing intervention types or doses (p≥.12); no evidence of small study or publication biases was present in any
analysis ($p \geq 0.31$). Music’s impact on MCS scores meets SF-36 minimum important difference thresholds (MD≥ 3) and is within the range of established interventions.

Conclusions: This study provides Moderate quality evidence that music interventions can generally be used to provide clinically meaningful improvements in HRQOL. Further study is needed to determine optimal music interventions and doses for distinct clinical and public health scenarios.

Funding: Alexander von Humboldt Foundation

Registration: PROSPERO (ID: CRD42021276204)

Introduction

Health-related quality of life (HRQOL) is a broad concept capturing ‘an individual’s or group’s perceived physical and mental health over time.’ HRQOL is closely related to and frequently used interchangeably with ‘well-being’, with the importance of these broad health concepts reflected by their prominence in United Nations Sustainable Development Goal #3: ‘To ensure healthy lives and promote well-being for all at all ages’.

Listening to and making music (e.g. by singing or playing instruments) is increasingly advocated, including in a recent World Health Organization report, as a means of improving HRQOL and various domains of well-being in clinical and healthy populations. However, a lack of clarity regarding the magnitude of music effects on HRQOL, particularly compared to other established health interventions, presents clear challenges to the inclusion of music in health policies and care at local, national and international levels. Additionally, optimal music intervention types and doses for specific scenarios are still unclear. In short, evidence supporting music’s impact on HRQOL is presently broad and narrative, while
specific, quantitative evidence is needed to justify an increased use of music interventions in health policy and care.

The Short Form (SF)-36 HRQOL questionnaire is the most widely used patient-reported outcome instrument in health research, demonstrating strong validity, sensitivity, and reliability across a range of languages, interventions and clinical and healthy populations.10-12 The SF-36 has also been frequently used in studies of music interventions,3,4 providing a means of both quantifying and easily contextualising the magnitude of music’s effects on HRQOL using a broadly valid and applicable instrument. Accordingly, the aim of this study is to quantitatively synthesize and contextualize the impact of music interventions on HRQOL using the SF-36. A secondary study aim is to evaluate the relative impact of music intervention types and doses on HRQOL.

Methods

Review registration

The protocol for this systematic review and meta-analysis was prospectively registered with PROSPERO (ID: CRD42021276204).

Search Strategy

Four databases – MEDLINE; EMBASE; Web of Science; PsycINFO – and three clinical trials registries – Cochrane Central Register of Controlled Trials (CENTRAL); clinicaltrials.gov; International Clinical Trials Registry Platform (ICTRP) – were searched for peer-reviewed articles, clinical trial registrations and ‘grey’ research reports on 30 July 2021 using the following query:

(Music* OR singing OR listening) AND (SF12 OR SF36 OR SF-12 OR SF-36 OR ‘short form 36’ OR ‘short form 12’)

All related subject headings were included where possible and no limitations on study date or language were imposed. The reference lists of included studies and relevant systematic reviews were also hand searched for additional relevant studies.

Article screening and inclusion/exclusion criteria

Following removal of duplicate records, titles and abstracts of database search results were screened, followed by full-text review of potentially relevant abstracts against inclusion/exclusion criteria. Screening and full-text review were performed independently in duplicate by two study authors (JMM and CK), with disagreements resolved through discussion.

Inclusion criteria were randomized and non-randomized studies investigating the impact of music-making (e.g. instrumental music; singing; ‘active’ music therapy) and/or music listening (e.g. to recorded or live music; ‘receptive’ music therapy) interventions on HRQOL in adults using the SF-36 or SF-12 (reduced version) questionnaires. No restrictions were made on eligible control groups. Studies that investigated the impact of music on HRQOL as either a primary or secondary objective were both eligible for inclusion. Additionally, studies must have reported the SF-36/SF-12 Mental Component Summary (MCS) score and/or Physical Component Summary (PCS) score, or data enabling the calculation of a MCS and/or PCS score (e.g. data from all 8 SF-36/SF-12 subscales), at both pre-intervention and immediate post-intervention timepoints. Higher MCS and PCS scores indicated better mental and physical HRQOL, respectively. MCS and PCS from the SF-12 and SF-36 have demonstrated good consistency across a range of populations.\(^{13,14}\)

MCS and PCS scores are both calculated using norm-based scoring methods including all 8 subscales of the SF-36/12: Physical Functioning; Role Physical; Bodily Pain; General Health; Vitality; Social Functioning; Role-Emotional; Mental Health. MCS scores are more heavily weighted towards Vitality, Social Functioning, Role-Emotional, and Mental Health subscale.
scores. PCS scores are more heavily weighted towards Physical Functioning, Role-Physical, Bodily Pain and General Health subscale scores.15

Exclusion criteria were observational and cross-sectional studies and studies which investigated other music-related activities that do not focus on music-making or listening (\textit{e.g.} songwriting).

\textit{Study and Evidence Appraisal (GRADE)}

The quality of evidence supporting review conclusions was appraised using the GRADE system. GRADE provides a framework for evaluating the risk of bias of individual studies, as well as the level of certainty supporting specific review results.16 GRADE was selected for this review because of its broad applicability to different study types and because it has been “designed for reviews…that examine alternative management strategies.”16

The risk of bias of individual studies was evaluated using the following standard criteria: allocation concealment; blinding (of assessors & data analysts); % lost to follow-up; intention to treat analysis; selective outcome reporting; use of individual randomization; control for carryover effects (crossover study design).17 Based on these criteria, an evidence quality rating of High, Moderate, Low, or Very Low was assigned to each study using established procedures.17 All studies were appraised independently by two study authors (JMM and CK), with any disagreements resolved through discussion. The overall quality and certainty of evidence supporting the results of each meta-analysis was then appraised by the primary author in consultation with the authorship team using the same rating scale.17
Data extraction

Demographic, music and control intervention, and pre- and post-intervention SF-36/SF-12 data were extracted in duplicate by two study authors (JMM and CK). Data from all available SF-36/SF-12 subscales were extracted, as well as MCS and PCS summary scores. To maximize consistency of data across studies, MCS and PCS scores were recalculated where possible from underlying subscale data using the methodology of Ware, Kosinsky and Keller. Missing MCS and PCS standard deviations were imputed from Mental Health and Physical Function subscale scores, respectively, or median/minimum/maximum/interquartile range data as per established methods. Authors of studies meeting inclusion criteria but reporting unclear or incomplete SF-36/SF-12 data were contacted to retrieve compatible MCS and/or PCS data.

Data analysis and statistics (including meta-analysis)

Weighted inverse variance random effects meta-analyses were conducted to determine the aggregate pre- to post-intervention change in MCS and PCS scores. Additionally, inverse variance random effects meta-analyses were performed on post-intervention MCS and PCS scores in music vs. control groups common to at least 3 studies. The presence of statistical heterogeneity, indicating significant variation in the overall effects of music interventions on MCS and PCS scores, was evaluated using the χ^2 test and I2 statistic. Potential small study/publication biases were evaluated using Egger’s test. Sensitivity analyses were performed where possible according to music intervention types (e.g. music therapy, singing, music listening) and quality of study evidence (very low/low vs. moderate/high). Additionally, exploratory non-parametric Spearman correlation analyses were performed to evaluate potential links between key characteristics of the music intervention ‘dose’ (intervention
duration; music session frequency and length) and MCS and PCS scores. Significance was set at $\alpha=0.05$ for all statistical tests except meta-analysis main effects – $\alpha=0.033$ was used for meta-analysis main effects to control for multiplicity of related MCS and PCS outcomes. Analyses were conducted in RevMan v5.4 (Cochrane Collaboration; London, United Kingdom) and SPSS v26 (IBM; Armonk, NY, USA).

Finally, published meta-analyses of MCS and PCS scores from established non-pharmaceutical/medical health interventions were retrieved to serve as a basis for comparison with results of the present study.

Results

Data from 25 eligible studies and N=764 total participants (mean age = 60 (standard deviation=11 years)) were included in the present study (Figure 1)(see Supplementary Appendix for full details of excluded studies). Included studies were conducted in Australia, Brazil, China (Hong Kong SAR), Germany, India, Italy, The Netherlands, Spain, Sweden, Thailand, Turkey, the United Kingdom, and the United States. Included studies were comprised of: 21 investigations of clinical populations and 4 of healthy populations; 10 investigations of music listening, 7 music therapy, 7 singing, and 1 ‘gospel music’ intervention; 19 RCTs and 6 single-group studies; 8 RCTs included comparisons to a ‘treatment as usual’ control group, 3 RCTs used meditation control groups, and 8 RCTs used a range of other disparate control groups. MCS and PCS scores were available for 24 studies; MCS data only was available in one additional study.

Evidence quality was High in 5 studies, Moderate in 10 studies, Low in 7 studies, and Very Low in 3 studies (see Supplementary Appendix for further details regarding GRADE ratings for each study).
Pre-post changes

Music interventions significantly increased both MCS and PCS scores from pre-intervention values by an average of 3.0 ($p<.001$) and 1.0 ($p=.032$) points, respectively (Standardized mean differences [95% confidence interval]: MCS=0.25[0.14,0.36] PCS=0.15[0.05,0.25]) (Figures 2 and 3). MCS scores ($N=764$ participants) were significantly greater in Moderate/High vs. Very Low/Low quality studies ($p=.03$) and varied significantly across intervention types ($p=.03$)(Figure 2). However, MCS scores did not significantly vary across intervention types when the one ‘gospel music’ intervention study was excluded ($p=0.12$). PCS scores ($N=748$ participants) did not significantly vary according to study quality ($p=0.30$) or intervention type ($p=0.26$).

No key characteristics of the music intervention ‘dose’ (intervention duration; music session frequency and length) were significantly correlated with MCS or PCS scores ($p>.32$). No significant statistical heterogeneity (MCS: $p=0.12$; PCS: $p=0.80$) or evidence of small study/publication bias (MCS: $p=0.31$; PCS: $p=0.70$)(see Supplementary Appendix for further details) was present in either analysis. Results of these meta-analyses were also judged to be minimally affected by individual study biases but limited by the imprecision of relatively wide confidence intervals. Accordingly, results are appraised to provide Moderate quality evidence, indicating that ‘the true effect is probably close to the estimated effect’.16

Music + Treatment as Usual vs. Treatment as Usual alone

Adding music interventions to Treatment as Usual (TAU) significantly increased MCS scores vs. TAU alone by an average of 3.7 points ($p=.029$; standardized mean difference [95% confidence interval] = 0.24[0.02,0.45])(Music+TAU – N=254 participants; TAU alone – N=257)(Figure 4). Similar effects were not observed for PCS scores ($p=.16$)(Music+TAU –
N=254 participants; TAU alone – N=257 (Figure 5). Improvements in MCS in music + TAU vs. TAU groups did not vary significantly with study quality or music intervention type ($p>.28$). No significant statistical heterogeneity (MCS: $p=.26$; PCS: $p=.78$) or evidence of small study/publication biases (MCS: $p=.72$; PCS: $p=.64$) (see Supplementary Appendix) was present in either analysis. Results of these meta-analyses were judged to be minimally affected by individual study biases but limited by the imprecision of wide confidence intervals. Accordingly, results are appraised to provide Moderate quality evidence.

Music listening vs. meditation

No significant differences in MCS or PCS scores in music listening vs. meditation intervention studies were present across three included studies ($p>.30$) (Music listening – N=57; Meditation – N=64) (see Supplementary Appendix). Once again, no significant statistical heterogeneity or evidence of small study/publication biases was present in either analysis ($p>.34$). Results are, however, limited by the small number of studies and wide confidence intervals and judged to provide Low quality evidence – ‘the true effect might be markedly different from the estimated effect’.16

Music effects in context

Effects of music interventions pre-post and vs. TAU on MCS scores meet or exceed, respectively, the proposed 3-point minimum important difference threshold for MCS and PCS scores.15 Pre-post changes in PCS scores (1 point improvement) fall below this threshold. Music intervention effects on MCS scores are similar to the impact of weight loss on PCS scores in studies of obese adults (2.8 point improvement; no significant MCS change).47 However, the magnitude of music intervention effects on both MCS and PCS
scores is substantially smaller than the effects of resistance exercise (i.e. strength training) in older adults from mixed clinical and healthy populations vs. mixed control groups

(standardized mean difference – MCS=0.54, PCS=0.50)48 and mixed modes of exercise in participants with knee osteoarthritis vs. inactive or psycho-educational control groups

(standardized mean difference – MCS=0.44, PCS=0.52).49

Discussion

This meta-analysis of 25 studies of music interventions provides clear and quantitative Moderate quality evidence that music interventions have a clinically significant impact on mental HRQOL. Additionally, a subset of 8 studies demonstrated a clinically significant benefit to mental HRQOL of adding music interventions to usual treatment for a range of conditions. The impact of music interventions on physical HRQOL is substantially smaller and of potentially equivocal practical importance.15

Included studies presented considerable heterogeneity in study populations and geographic locations, music intervention types and doses, and TAU control groups. However, no statistical heterogeneity or evidence of small study or publication bias was present in any analyses. This suggests that results approximate the true, albeit general, effects of music interventions on HRQOL. Further research is still needed to provide guidance regarding optimal music interventions and doses in distinct clinical and public health scenarios.

The effects of music interventions on MCS scores (pre-post and music+TAU vs. TAU) are within the range, albeit on the low end, of established non-pharmaceutical/medical,47-50 as well as medical/pharmaceutical,51-53 health interventions and likely to be clinically significant.15 Accordingly, this review quantitatively confirms previous narrative literature syntheses asserting that music interventions can produce meaningful improvements in
wellbeing and HRQOL. Of particular interest for future study and health policy is the fact that these benefits are achieved through a broadly rewarding activity. While uptake and adherence challenges persist with other non-pharmaceutical/medical interventions (e.g., weight loss, exercise), music is ‘reliably ranked as one of life’s greatest pleasures.’ As such, music interventions may present a more attractive and effective non-pharmaceutical alternative to other health interventions. Further study is required to investigate this hypothesis and clarify the specific utility of music vs. other established interventions.

Additional, targeted research is also needed to provide insights into the mechanisms of music interventions’ positive impacts on HRQOL – the who/what/when/where/how underpinning their effectiveness. The absence of any significant differences between music intervention types and doses in the present analyses is intriguing but not definitive; these results could also be simply explained by the diversity of included populations and interventions, even within specific intervention types (particularly clearly demonstrated for ‘music listening’ interventions in Table 1). Broad confidence intervals of both main and intervention type-specific effects likely also reflect the influence of diverse interventions. A recent analysis indicates that the mechanisms of music’s impact on health are complex and specific to distinct settings, suggesting that targeted study is required to determine optimal music intervention characteristics in each setting. However, other analyses propose that such targeted research may be able to be rapidly generalized to other settings if foundational physiologic mechanisms of music intervention effects can be identified and targeted.

This review is limited by its broad inclusion criteria which limits conclusions regarding the effects of specific music interventions in particular scenarios, especially given the diversity of included interventions. Additionally, standardized mean differences describing the magnitude of pre-post intervention effects have been shown to be prone to bias and must be interpreted with caution. However, the similar effect size of music interventions on mental HRQOL in
Music+TAU vs. TAU analyses provide additional confidence in the magnitude of pre-post MCS changes. Finally, this review is ultimately limited to studies evaluating the impact of music interventions HRQOL using the SF-36 or SF-12 instruments, a possibly skewed subset of music intervention studies. Statistical homogeneity, the absence of apparent publication/small study biases, and the broad psychometric rigor of the SF-36 and SF-1213,14 suggest that results of the present review approximate the true effect of music interventions on HRQOL. However, the possibility remains that this subset of studies is not representative of music’s general effects on HRQOL or that the SF-36/12 instruments do not completely capture the impact of music on HRQOL. This uncertainty is reflected in the Moderate quality rating of key review results, indicating that ‘the true effect is probably close to the estimated effect’16

Conclusions

This study provides Moderate quality quantitative evidence of a clinically significant impact of music interventions on mental HRQOL. The impact of music on physical HRQOL is potentially equivocal. The magnitude of music’s impact on mental HRQOL is within the range, albeit at the low end, of effects of established non-pharmaceutical/medical interventions (\textit{e.g.} exercise, weight loss). Future research is needed to clarify optimal music interventions and doses for use specific clinical and public health scenarios.

Acknowledgements

J. Matt McCrary is supported by a Postdoctoral Fellowship from the Alexander von Humboldt Foundation. The authors have no competing interests to declare.

Data Availability

All review data is contained in the manuscript and supplementary appendix.
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Study Design</th>
<th>Population</th>
<th>Type</th>
<th>Session Duration</th>
<th>Session Frequency</th>
<th>N</th>
<th>Male/ Female</th>
<th>Mean Age</th>
<th>Control Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altena et al.</td>
<td>2009</td>
<td>RCT</td>
<td>Clinical (hypertension)</td>
<td>Music listening (‘slow music’)</td>
<td>9 weeks</td>
<td>Daily</td>
<td>15</td>
<td>8/7</td>
<td>59</td>
<td>Exercises with breathing device</td>
</tr>
<tr>
<td>Ashok, Shanmugam & Soman</td>
<td>2019</td>
<td>RCT</td>
<td>Clinical (coronary bypass)</td>
<td>Music listening (sedative music without lyrics with tempo 60-80 beats per minute) + TAU</td>
<td>1 week</td>
<td>Daily</td>
<td>20</td>
<td>6/14</td>
<td>60.8</td>
<td>TAU (cardiac rehabilitation)</td>
</tr>
<tr>
<td>Atiwannapat et al.</td>
<td>2016</td>
<td>RCT</td>
<td>Clinical (major depressive disorder)</td>
<td>Music therapy (individual, active)</td>
<td>12 weeks</td>
<td>Weekly</td>
<td>5</td>
<td>1/4</td>
<td>41.6</td>
<td>Group counselling</td>
</tr>
<tr>
<td>Bittman et al.</td>
<td>2020</td>
<td>RCT</td>
<td>Clinical (2 or more metabolic risk factors)</td>
<td>Gospel music program (singing and playing musical instruments (Clavinovas, guitars, drums)) + Health education</td>
<td>1 year</td>
<td>Weekly</td>
<td>36</td>
<td>6/30</td>
<td>62.5</td>
<td>Health education (cardiovascular risk reduction)</td>
</tr>
<tr>
<td>Burrai et al.</td>
<td>2020</td>
<td>RCT</td>
<td>Clinical (heart failure)</td>
<td>Music listening (recorded classical music: experimenter selected tracks with tempo 60-80 beats per minute)</td>
<td>12 weeks</td>
<td>Daily</td>
<td>82</td>
<td>47/35</td>
<td>71.6</td>
<td>TAU (heart failure)</td>
</tr>
<tr>
<td>Corvo, Skingley & Cliff</td>
<td>2020</td>
<td>Single group study</td>
<td>Healthy (older people)</td>
<td>Singing (group 'Silver Song Club')</td>
<td>12 weeks</td>
<td>Weekly</td>
<td>41</td>
<td>‘Predominantly female’</td>
<td>No data</td>
<td>-</td>
</tr>
<tr>
<td>Coulton et al.</td>
<td>2015</td>
<td>RCT</td>
<td>Healthy (older people)</td>
<td>Singing (group 'Silver Song Club')</td>
<td>14 weeks</td>
<td>Weekly</td>
<td>131</td>
<td>25/106</td>
<td>69.2</td>
<td>Wait list</td>
</tr>
<tr>
<td>Davidson et al.</td>
<td>2014</td>
<td>Single group study</td>
<td>Healthy (older people)</td>
<td>Singing (group)</td>
<td>8 weeks</td>
<td>Weekly</td>
<td>29</td>
<td>21/8</td>
<td>77.5</td>
<td>-</td>
</tr>
<tr>
<td>Gale et al.</td>
<td>2012</td>
<td>Single group study</td>
<td>Clinical (cancer survivors)</td>
<td>Singing (group 'Sing for Life')</td>
<td>12 weeks</td>
<td>Weekly</td>
<td>30</td>
<td>Unspecified</td>
<td>60.2</td>
<td>-</td>
</tr>
<tr>
<td>Groener et al.</td>
<td>2015</td>
<td>RCT</td>
<td>Clinical (diabetes)</td>
<td>Music therapy (group + Health education)</td>
<td>3 days</td>
<td>Daily</td>
<td>18</td>
<td>14/4</td>
<td>46</td>
<td>Health education</td>
</tr>
<tr>
<td>Hagemann, Martin & Neme</td>
<td>2020</td>
<td>Single group study</td>
<td>Clinical (chronic kidney disease)</td>
<td>Music therapy (group, active)</td>
<td>4 weeks</td>
<td>Twice weekly</td>
<td>23</td>
<td>12/11</td>
<td>54.9</td>
<td>-</td>
</tr>
<tr>
<td>Innes et al.</td>
<td>2018</td>
<td>RCT</td>
<td>Clinical (knee osteoarthritis)</td>
<td>Music listening (recorded classical music – patient choice of 80 experimenter-selected songs)</td>
<td>8 weeks</td>
<td>Twice daily</td>
<td>11</td>
<td>5/6</td>
<td>58.8</td>
<td>Meditation (Mantra)</td>
</tr>
<tr>
<td>Innes et al.</td>
<td>2016</td>
<td>RCT</td>
<td>Clinical (cognitive decline)</td>
<td>Music listening (recorded classical music – patient choice of 80 experimenter-selected songs)</td>
<td>12 weeks</td>
<td>Daily</td>
<td>30</td>
<td>5/25</td>
<td>60.2</td>
<td>Meditation (Kirtan Kriya)</td>
</tr>
<tr>
<td>Lavretsky et al.</td>
<td>2013</td>
<td>RCT</td>
<td>Clinical (dementia caregivers with music)</td>
<td>Music listening (recorded music, experimenter provided CD)</td>
<td>8 weeks</td>
<td>Daily</td>
<td>16</td>
<td>2/14</td>
<td>60.6</td>
<td>Meditation (Kirtan Kriya)</td>
</tr>
<tr>
<td>Study Authors</td>
<td>Year</td>
<td>Study Design</td>
<td>Population</td>
<td>Intervention Description</td>
<td>Duration</td>
<td>Frequency</td>
<td>Length</td>
<td>Control</td>
<td>P Value</td>
<td>Outcome</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Lee, Chan & Mok²⁶</td>
<td>2010</td>
<td>RCT</td>
<td>Healthy (older people)</td>
<td>Music listening (Patient choice of experimenter-selected music: meditative; Asian classical; Western classical; slow jazz; Chinese classical)</td>
<td>4 weeks</td>
<td>Weekly</td>
<td>30 minutes</td>
<td>Inactive</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Logtenberg et al.</td>
<td>2007</td>
<td>RCT</td>
<td>Clinical (type 2 diabetes + hypertension)</td>
<td>Music listening (‘various kinds of random music’)</td>
<td>8 weeks</td>
<td>Daily</td>
<td>Not specified</td>
<td>Film workshops + breathing device</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Lord et al.⁴⁰</td>
<td>2012</td>
<td>RCT</td>
<td>Clinical (COPD)</td>
<td>Singing (group) + breathing education</td>
<td>8 weeks</td>
<td>Twice weekly</td>
<td>1 hour</td>
<td>No data</td>
<td>68.6</td>
<td></td>
</tr>
<tr>
<td>Mandel et al.⁴⁶</td>
<td>2007</td>
<td>RCT</td>
<td>Clinical (cardiac rehabilitation)</td>
<td>Music therapy (active, individual) + TAU</td>
<td>10 weeks</td>
<td>Every other week</td>
<td>1.5 hours</td>
<td>TAU (cardiac rehabilitation)</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Mateu et al.³⁴</td>
<td>2018</td>
<td>Single group crossover</td>
<td>Clinical (low-back pain)</td>
<td>Music listening (relaxing music; patient choice of songs from provided CD)</td>
<td>8 weeks</td>
<td>Daily</td>
<td>Not specified</td>
<td>Progressive muscle relaxation with ‘low-level background music’</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Mujdeci et al.³⁷</td>
<td>2015</td>
<td>Single group study</td>
<td>Clinical (tinnitus)</td>
<td>Music therapy (receptive – listening to patient preferred recorded music, edited to be 70% music and 30% noise)</td>
<td>8 weeks</td>
<td>Daily</td>
<td>2 hours</td>
<td></td>
<td>46.8</td>
<td>-</td>
</tr>
<tr>
<td>Philip et al.⁴¹</td>
<td>2020</td>
<td>RCT</td>
<td>Clinical (COPD)</td>
<td>Singing (group ‘Singing for Lung Health’) + TAU</td>
<td>12 weeks</td>
<td>Weekly</td>
<td>1 hour</td>
<td>TAU (COPD)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Ribeiro²⁴</td>
<td>2018</td>
<td>RCT</td>
<td>Clinical (NICU mothers)</td>
<td>Music therapy (individual; receptive) + TAU</td>
<td>7 weeks</td>
<td>Weekly</td>
<td>45 minutes</td>
<td>TAU (NICU)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Wahlstöm et al.³⁵</td>
<td>2020</td>
<td>RCT</td>
<td>Clinical (atrial fibrillation)</td>
<td>Music listening (relaxing recorded music (MediCure) delivered in group setting) + TAU</td>
<td>12 weeks</td>
<td>Weekly</td>
<td>30 minutes</td>
<td>TAU (atrial fibrillation)</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Zanini et al.²⁵</td>
<td>2009</td>
<td>RCT</td>
<td>Clinical (hypertension)</td>
<td>Music therapy (group, active) + TAU</td>
<td>12 weeks</td>
<td>Weekly</td>
<td>1 hour</td>
<td>TAU (hypertension)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Zeppegno et al.³¹</td>
<td>2021</td>
<td>RCT</td>
<td>Clinical (breast cancer)</td>
<td>Music therapy (group, active) + TAU</td>
<td>6 weeks</td>
<td>Weekly</td>
<td>1 hour</td>
<td>TAU (radiotherapy)</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Characteristics of included studies. RCT= randomized controlled trial; TAU = treatment as usual; COPD = chronic obstructive pulmonary disorder; NICU = neonatal intensive care unit.
Records identified from*:
Medline (n = 140)
Embase (n = 126)
Web of Science (n = 323)
PsycINFO (n = 270)
CENTRAL (n = 628)

Records removed before screening:
Duplicate records removed (n = 234)

Records screened (n = 1253)

Records excluded** (n = 1113)

Reports sought for retrieval (n = 109)

Reports not retrieved (n = 0)

Reports assessed for eligibility (n = 109)

Reports excluded:
No use of SF-36/12 (n = 17)
No music-focused intervention (n = 5)
Compatible SF-36/12 data unavailable (n = 23)
Study still ongoing (n = 4)
Review (n = 24)

Studies included in review (n = 25)
Reports of included studies (n = 39)

Records identified from:
Citation searching (n = 4)

Reports sought for retrieval (n = 4)

Reports not retrieved (n = 0)

Reports assessed for eligibility (n = 4)

Reports excluded:
Compatible SF-36/12 data unavailable (n = 2)

Figure 1. PRISMA flow diagram detailing the results of record screening and exclusion procedures.61
Figure 2. Meta-analysis of pre- to post-intervention effects of music interventions on SF-36 MCS scores, stratified by music intervention type. IV = ‘inverse variance’. ‘Total’ refers to the total number of participants included in analyses at pre- and post-intervention timepoints.
Figure 3. Meta-analysis of pre- to post-intervention effects of music interventions on SF-36 PCS scores, stratified by music intervention type. IV = ‘inverse variance’. ‘Total’ refers to the total number of participants included in analyses at pre- and post-intervention timepoints.
Figure 4. Effects of music interventions added to Treatment as Usual (TAU) vs. TAU alone on SF-36 MCS scores, stratified by music intervention type. IV = ‘inverse variance’. ‘Total’ refers to the total number of participants included in analyses at pre- and post-intervention timepoints.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Music + TAU</th>
<th>TAU</th>
<th>Mean Difference</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
</tr>
<tr>
<td>1.1.1 Music Therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mandel et al. 2007</td>
<td>52.2</td>
<td>20.1</td>
<td>55</td>
<td>51</td>
</tr>
<tr>
<td>Ribeiro 2018</td>
<td>43</td>
<td>16</td>
<td>10</td>
<td>44.4</td>
</tr>
<tr>
<td>Zanini et al. 2009</td>
<td>57.7</td>
<td>11.3</td>
<td>23</td>
<td>44.6</td>
</tr>
<tr>
<td>Zepperno et al. 2021</td>
<td>50.8</td>
<td>16.1</td>
<td>26</td>
<td>43.6</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>114</td>
<td>110</td>
<td>36.2%</td>
<td>4.63 [-0.89, 10.15]</td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>Tau² = 4.69; Chi² = 3.48, df = 3 (P = 0.32); I² = 14%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 1.65 (P = 0.10)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5. Effects of music interventions added to Treatment as Usual (TAU) vs. TAU alone on SF-36 PCS scores, stratified by music intervention type. IV = ‘inverse variance’. ‘Total’ refers to the total number of participants included in analyses at pre- and post-intervention timepoints.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Music + TAU</th>
<th>TAU</th>
<th>Mean Difference</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
</tr>
<tr>
<td>1.1.2 Music Listening</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ashok, Shanmugam & Soman 2019</td>
<td>43.7</td>
<td>23.2</td>
<td>20</td>
<td>45.3</td>
</tr>
<tr>
<td>Burrai et al. 2020</td>
<td>51.8</td>
<td>11.8</td>
<td>82</td>
<td>47</td>
</tr>
<tr>
<td>Wahlstöm et al. 2020</td>
<td>44.2</td>
<td>16</td>
<td>29</td>
<td>46.2</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>131</td>
<td>138</td>
<td>59.0%</td>
<td>1.92 [-3.19, 7.03]</td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>Tau² = 9.03; Chi² = 3.45, df = 2 (P = 0.18); I² = 42%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 0.74 (P = 0.46)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.1.3 Singing

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Music + TAU</th>
<th>TAU</th>
<th>Mean Difference</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
</tr>
<tr>
<td>Phillip et al. 2020</td>
<td>53.7</td>
<td>15.7</td>
<td>9</td>
<td>39.8</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>9</td>
<td>9</td>
<td>4.8%</td>
<td>13.90 [-0.61, 28.41]</td>
</tr>
<tr>
<td>Heterogeneity: Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 1.88 (P = 0.06)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI) | 254 | 257 | 100.0% | 3.72 [0.40, 7.05] | |

Heterogeneity: Tau² = 4.84; Chi² = 8.94, df = 7 (P = 0.26); I² = 22%
Test for overall effect: Z = 2.19 (P = 0.03)
Test for subgroup differences: Ch² = 2.47, df = 2 (P = 0.29), I² = 19.0%

1.2.1 Music Therapy

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Music + TAU</th>
<th>TAU</th>
<th>Mean Difference</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
</tr>
<tr>
<td>Mandel et al. 2007</td>
<td>44</td>
<td>25.7</td>
<td>55</td>
<td>40.3</td>
</tr>
<tr>
<td>Ribeiro 2018</td>
<td>46</td>
<td>23.2</td>
<td>10</td>
<td>48.2</td>
</tr>
<tr>
<td>Zanini et al. 2009</td>
<td>46.8</td>
<td>19.5</td>
<td>23</td>
<td>42.3</td>
</tr>
<tr>
<td>Zepperno et al. 2021</td>
<td>48.8</td>
<td>20.5</td>
<td>26</td>
<td>46.5</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>114</td>
<td>110</td>
<td>17.3%</td>
<td>2.96 [-3.26, 9.17]</td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>Tau² = 0.00; Chi² = 0.29, df = 3 (P = 0.96); I² = 0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 0.93 (P = 0.35)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2.2 Music Listening

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Music + TAU</th>
<th>TAU</th>
<th>Mean Difference</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashok, Shanmugam & Soman 2019</td>
<td>43.7</td>
<td>22.6</td>
<td>20</td>
<td>39.8</td>
</tr>
<tr>
<td>Burrai et al. 2020</td>
<td>43.8</td>
<td>19.9</td>
<td>82</td>
<td>40.5</td>
</tr>
<tr>
<td>Wahlstöm et al. 2020</td>
<td>46.2</td>
<td>12</td>
<td>29</td>
<td>48.7</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>131</td>
<td>138</td>
<td>77.1%</td>
<td>1.56 [-2.44, 5.55]</td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>Tau² = 3.68; Chi² = 2.69, df = 2 (P = 0.26); I² = 26%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 0.76 (P = 0.45)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2.3 Singing

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Music + TAU</th>
<th>TAU</th>
<th>Mean Difference</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phillip et al. 2020</td>
<td>30.8</td>
<td>11.8</td>
<td>9</td>
<td>34.2</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>9</td>
<td>9</td>
<td>5.6%</td>
<td>-3.40 [-14.30, 7.50]</td>
</tr>
<tr>
<td>Heterogeneity: Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 0.61 (P = 0.54)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI) | 254 | 257 | 100.0% | 1.85 [-0.74, 4.44] | |

Heterogeneity: Tau² = 0.00; Chi² = 4.01, df = 7 (P = 0.78); I² = 0%
Test for overall effect: Z = 1.40 (P = 0.16)
Test for subgroup differences: Ch² = 0.99, df = 2 (P = 0.61), I² = 0%
References

33. Logtenberg SJ, Kleefstra N, Houweling ST, Groenier KH, Bilo HJ. Effect of device-guided breathing exercises on blood pressure in hypertensive patients with type 2

