Title: Convalescent plasma for outpatients with early COVID-19

Subtitle: A pooled analysis of two randomized clinical trials

Running title: Convalescent plasma for outpatients with COVID-19

Version November 18, 2021

Word count: 3044
List of authors:


(*) Contributed equally as first and last authors

(*) Contact information corresponding author

Bart J.A. Rijnders
Department of infectious diseases, internal medicine. Erasmus MC.
’s Gravendijkwal 230
3015CE Rotterdam
Tel. +31610363002 (Amsterdam-Brussels time)

b.rijnders@erasmusmc.nl
Affiliations of authors:

Pere Millat-Martinez\textsuperscript{1,2}: \texttt{pere.millat@isglobal.org}

Arvind Gharbharan\textsuperscript{3}: \texttt{a.gharbharan@erasmusmc.nl}

Andrea Alemany\textsuperscript{1,4,5}: \texttt{aalemany@flsida.org}

Casper Rokx\textsuperscript{3}: \texttt{c.rokx@erasmusmc.nl}

Corine Geurtsvankessel\textsuperscript{9}: \texttt{c.geurtsvankessel@erasmusmc.nl}

Grigorios Papageourgiou\textsuperscript{6}: \texttt{g.papageorgiou@erasmusmc.nl}

Nan van Geloven\textsuperscript{7}: \texttt{N.van_Geloven@lumc.nl}

Carlijn Jordans\textsuperscript{3}: \texttt{c.jordans@erasmusmc.nl}

Geert Groeneveld\textsuperscript{8}: \texttt{G.H.Groeneveld@lumc.nl}

Francis Swaneveld\textsuperscript{10}: \texttt{F.Swaneveld@sanquin.nl}

Ellen van der Schoot\textsuperscript{11}: \texttt{e.vanderschoot@sanquin.nl}

Marc Corbacho-Monné\textsuperscript{1,4,5,12}: \texttt{marc.corbach@gmail.com}

Dan Ouchi\textsuperscript{1,13}: \texttt{douchi@irsicaixa.es}

Francini Piccolo Ferreira\textsuperscript{14}: \texttt{Francini.Ferreira@bioclever.com}

Pierre Malchair\textsuperscript{15}: \texttt{pierre.malchair@bellvitgehospital.cat}

Sebastian Videla\textsuperscript{1,16,17}: \texttt{svidela@bellvitgehospital.cat}

Vanesa García García\textsuperscript{15}: \texttt{vgarcia@bellvitgehospital.cat}

Anna Ruiz-Comellas\textsuperscript{18,19,20}: \texttt{annaruizcom@gmail.com}

Anna Ramírez-Morros\textsuperscript{18}: \texttt{amramirez.cc.ics@gencat.cat}

Joana Rodríguez Codina\textsuperscript{21}: \texttt{jrodriguez@hsb.cat}

Rosa Amado Simon\textsuperscript{21}: \texttt{rousy80@gmail.com}

Joan-Ramon Grifols\textsuperscript{4,22}: \texttt{igrifols@bst.cat}

Julian Blanco\textsuperscript{23}: \texttt{JBlanco@irsicaixa.es}

Ignacio Blanco\textsuperscript{6,24}: \texttt{iblanco.germanstrias@gencat.cat}

Jordi Ara\textsuperscript{4,25}: \texttt{gterritorial.mn.ics@gencat.cat}
Quique Bassat\textsuperscript{2,26,27,28,29}: quique.bassat@isglobal.org

Bonaventura Clotet\textsuperscript{1,4,20,23}: BClotet@irsicaixa.es

Bàrbara Baro\textsuperscript{2}: barbara.baro@isglobal.org

Andrea Troxel\textsuperscript{32}: Andrea.Troxel@nyulangone.org

Jaap Jan Zwaginga\textsuperscript{30}: j.j.zwaginga@lumc.nl

Oriol Mitjà\textsuperscript{1,4,20,31}: omitja@flsida.org

Bart Rijnders\textsuperscript{3}: b.rijnders@erasusmc.nl

\textsuperscript{1}Fight AIDS and Infectious Diseases Foundation, Badalona, Spain

\textsuperscript{2}ISGlobal, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain

\textsuperscript{3}Department of Internal Medicine, Section of Infectious Diseases and department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands

\textsuperscript{4}Hospital Universitari Germans Trias i Pujol, Badalona, Spain

\textsuperscript{5}Facultat de Medicina-Universitat de Barcelona, Barcelona, Spain

\textsuperscript{6}Department of Biostatistics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands

\textsuperscript{7}Department of Biomedical Data Sciences, Section of Medical Statistics, Leiden University Medical Center, Leiden, the Netherlands

\textsuperscript{8}Department of Infectious Diseases and Acute Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands

\textsuperscript{9}Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands

\textsuperscript{10}Unit of Transfusion Medicine, Sanquin Blood Supply, Amsterdam, The Netherlands

\textsuperscript{11}Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands

\textsuperscript{12}Hospital Universitari Parc Taulí, I3PT, 08028, Sabadell, Spain

\textsuperscript{13}Universitat Autònoma de Barcelona, Barcelona, Spain
14 Bioclever

15 Emergency Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, Spain

16 Clinical Research Support Unit (HUB-IDIBELL: Bellvitge University Hospital & Bellvitge Biomedical Research Institute), Bellvitge University Hospital, L’Hospitalet de Llobregat, Barcelona, Spain

17 Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and 33 Health Sciences, IDIBELL, University of Barcelona, L’Hospitalet de Llobregat, Spain

18 Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain

19 Health Promotion in Rural Areas Research Group, Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain

20 Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), Vic, Spain

21 Salut Catalunya Central, Hospital de Berga, Berga, Spain

22 Blood Bank Department – Banc de Sang i Teixits (BST), Barcelona, Spain.

23 IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 39 08916, Badalona, Spain

24 Metropolitana Nord Laboratory, Institut Català de la Salut, Badalona, Spain

25 Gerència Territorial Metropolitana Nord, Institut Català de la Salut, Barcelona, Spain

26 Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique

27 ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain

28 Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain

29 Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain

31 Lihir Medical Centre - International SOS, Lihir Island, Papua New Guinea

32 Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
Study group for CoV-Early

Erasmus MC
Peter Katsikis, Yvonne Muller, Marion Koopmans, Susanne Bogers, Jelle Miedema, Henk Russcher,
Cees Scherpenisse, Rene van Engen, Ayten Karisli

GGD Rotterdam
Hannelore Götz

Gezondheidscentrum Mathenesserlaan
Jelle Struik, Lotte Rokx-Niemantsverdriet

Leids Universitair Medisch Centrum
Lisa Zwaginga, Josine Oud, Romy Meier, Erik van Zwet, Simon Mooijaart, Arjan Albersen

Sanquin Blood Supply
Hans Vrielink, Leo van de Watering, Boris Hogema

Amphia Hospital, Breda
Peter van Wijngaarden, Ronald van Etten, Adriaan van Gammeren, Nanda Maas, Betty van Ginneken

Maasstad ziekenhuis, Rotterdam,
Jan den Hollander, Jose Verstijnen, Juliette van den Berg – Rahman

Groene hart hospital, Gouda
Faiz Karim, Siepke Hiddema, Kim van Elst
St Antonius hospital, Nieuwegein
Elena van Leeuwen-Segarceanu, Annette Reitsma, Karin Molenkamp

Spaarne Gasthuis
Robert Soetekouw, Caterina Band, José de Droog,

Isala Hospital
Jolanda Lammers, Lonneke Buitenhuiss

Universitair medisch centrum Groningen
Douwe Postma, David Koster, Michaël Lukens, Thea Scholtens, Maartje van den Boomgaard,
Machiel Vonk

Medical Center Leeuwarden
Linda Kampschreur, Marit van Vonderen, Loes Vrolijk

Centrum voor Infectieziektebestrijding, RIVM
Chantal Reusken, Johan Reimerink

NHS Blood and Transplant
Heli Harvala
Study group for ConV-ert:

Fight AIDS and Infectious Diseases Foundation

Hospital Universitari Germans Trias i Pujol (HUGTIP)
Glòria Bonet Papell, Maria Delgado Capel, Beatriz Díez Sánchez, Maria Pons Barber, Cristian Gonzalez Ruiz, Laura Navarrete Gonzalez, David González García, Ainhoa Vivero Larraza, Victor Carceles Peiró, Clàudia Roquer López, Magí Ferrer

Hospital Universitari de Bellvitge
Carlota Gudiol, Aurema Otero, Jose Carlos Ruibal Suarez, Alvaro Zarauza Pellejero, Ferran Llopis Roca, Orlando Rodriguez Cortez, Pablo Casares Gonzalez, Gemma Arcos Vila, Begoña Flores Aguilera, Vanesa Garcia Garcia, Graciela Rodriguez-Sevilla, Macarena Dastis Arias

CUAP Manresa
Judit Roca Font, Katherine M. Carrasco Matos, Glòria Saúch Valmaña, Carla Vidal Obradors,

Hospital Comarcal de Sant Bernabé
Silvia Tarres García, Margarida Curriu Sabatès, Raquel Nieto Rodríguez

Blood Bank Department - Banc de Sang i Teixits (BST)
Anna Millan, Enric Contreras, Àgueda Ancochea, Rosa Linio, Miriam Fornos, Natàlia Casamitjana, Eva Alonso, Núria Martinez, Laura Analía Maglio, Laura Comellas Fernandez, Nadia Garcia, Luis Hernández, Maria Isabel González, Anna Bravo, Yolanda García

Gerència Territorial Metropolitana Nord

Núria Prat, Joaquim Verdaguer, Thatiana Vértiz Guidotti, Sergio Benavent, Andrea Sofia Bianco, Ney Nicanor Briones Zambrano, Maria Viozquez Meya

Gerència Territorial Catalunya Central

Anna Forcada, Josep Vidal-Alaball

Metropolitan Nord Laboratory

Montserrat Giménez, Alexa París, Gema Fernández Rivas, Cristina Casañ Lopez, Águeda Hernández, Antoni E. Bordoy, Victoria González Soler

IrsiCaixa AIDS Research Institute

Edwars Pradenas, Silvia Marfil, Benjamin Trinité

Bioclever

Mireia Bonet, Josep Cantoni

London School of Hygiene and Tropical Medicine

Michael Marks
Abstract

Background: Convalescent plasma (CP) for hospitalized patients with COVID-19 has not demonstrated clear benefits. However, data on outpatients with early symptoms are scarce. We aimed to assess whether treatment with CP administered during the first 7 days of symptoms reduced the disease progression or risk of hospitalization of outpatients. Methods: Two double-blind randomized trials (NCT04621123, NCT04589949) were merged with data pooling starting when <20% of their predefined sample size had been recruited. A Bayesian adaptive individual patient data meta-analysis was implemented. Analyses were done with Bayesian proportional odds and logistic models, where odds ratios (OR)<1.0 indicate a favorable outcome for CP. Fourteen study sites across the Netherlands and Catalonia in Spain participated in the trial. The two studies included outpatients aged ≥50 years and diagnosed with COVID-19 and symptomatic for ≤7 days. The intervention consisted of one unit (200-300mL) of CP with a predefined minimum level of antibodies. The two primary endpoints were (a) a 5-point disease severity scale (fully recovered by day 7 or not, hospital or ICU admission and death) and (b) a composite of hospitalization or death. Results: Of 797 patients included, 390 received CP and 392 placebo. At baseline, they had a median age of 58 years, 1 comorbidity, symptoms for 5 days and 93% tested negative for SARS-CoV-2 S-protein IgG antibodies. Seventy-four patients were hospitalized, 6 required mechanical ventilation and 3 died. The OR of CP for an improved disease severity scale was 0.936 (credible interval (CI) 0.667-1.311). The OR for hospitalization or death was 0.919 (CI 0.592-1.416). The effect of CP on hospital admission or death was largest in patients with ≤5 days of symptoms (OR 0.658, 95% CI 0.394-1.085). CP did not decrease the time to full symptom resolution (p=0.62). Conclusion: Treatment with CP of outpatients in the first 7 days of symptoms did not improve the outcome of COVID-19. The possible beneficial effect in patients with ≤5 days of symptoms requires further study.
Registration:

NCT04621123 and NCT04589949 on https://www.clinicaltrials.gov

Funding source:

ZONMW, the Netherlands, grant number 10430062010001.

SUPPORT-E, grant number 101015756

YoMeCorono, www.tomecorono.com

The Fight AIDS and Infectious Diseases Foundation with funding from the pharmaceutical company Grifols S.A.
Introduction

The unprecedented pace and amount of research on the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the availability of mortality-reducing therapies within a year after the start of the coronavirus disease 2019 (COVID-19) pandemic (1-3). For non-hospitalized COVID-19 patients, only anti-SARS-CoV-2 monoclonal antibodies have emerged as a treatment that reduces hospital admission but only when given in the first week of illness. However, they are typically unavailable to middle and low-income countries (4-7).

Convalescent plasma (CP) from COVID-19 recovered patients contains polyclonal anti-SARS-CoV-2 antibodies, can be collected in large quantities at relatively low costs and was used as a therapeutic strategy in previous viral outbreaks (8, 9). So far, randomized trials were unable to generate convincing evidence in support of CP for hospitalized patients with COVID-19 (10-18). However, because an autologous SARS-CoV-2 antibody response typically precedes hospital admission, CP is more likely to be beneficial when it is administered very early after symptom onset (19). Indeed, the only evidence from a randomized trial in favor of CP for COVID-19 comes from a small study in which elderly outpatients received CP in the first 72 hours after symptom onset (20). In a more recent trial, CP did not reduce the risk of disease progression of COVID-19 in patients with early disease (≤7 days). However, in this trial, patients were recruited at emergency rooms and were, therefore, more likely to manifest severe symptoms (21). This approach resulted in a trial profile of patients with moderate or late-stage disease, opposed to what was intended in the design. Hence, whether early treatment with CP improves the outcome of outpatients with COVID-19 remains an important question.

As soon as effective vaccines against COVID-19 became available in high-income countries, they were prioritized for individuals at higher risk for a poorer COVID-19 outcome. Because studies on CP for outpatients with COVID-19 focus on these high-risk populations as well, a high vaccination uptake will reduce the number of COVID-19 patients eligible for these studies. More importantly, the risk for a severe outcome will be small when patients become infected despite vaccination. Therefore, we anticipated that vaccination would slow down recruitment, reduce the number of events in the
recruited patients and result in individual studies being underpowered. In light of the uncertainty for achieving recruitment goals, real-time pooling of individual patient data from ongoing clinical trials was proposed as a tool for providing timely data to respond to the public health crisis (22). With this in mind, we initiated the COntinuous Monitoring of Pooled International trials of convaLEscent plasma for COVID-19 patients at home Consortium (COMPILEmore), which provided a platform to pool individual patient data continuously and in real-time from randomized clinical trials (RCTs) on CP for outpatients with COVID-19 (22). The COMPILE was conceived very early in the CCP initiative, anticipating the downstream challenges pertaining to enrollment and study power. This COMPILEmore consortium merged the data from 2 double-blind RCTs, the CoV-Early (NCT04589949) and the CONv-ert (NCT04621123) studies, to assess the effectiveness of high-titer CP for COVID-19 outpatients.

**Methods**

**Overview of Study Design and research partners**

Beginning in November 2020, we systematically searched for RCTs recruiting outpatients that compared treatment with CP with a blinded or unblinded control arm in the European (https://www.clinicaltrialsregister.eu/) and American (www.clinicaltrials.gov) trial register. Search terms were convalescent plasma, COVID-19, phase 2 or phase 3, adult, and recruiting or not recruiting. Studies were selected if they were RCTs on outpatients, if their inclusion criteria were confined to patients who had symptoms less than 7 days, and if they had a planned sample size of at least 100 participants of age 50 or older. Investigators of qualifying trials were contacted and informed about COMPILEmore and invited to collaborate in the study.

The full COMPILEmore protocol is available as an online supplement. The study was designed as a Bayesian adaptive individual patient data meta-analysis of ongoing clinical trials. Prior to the start of pooling, the study teams agreed upon a minimal set of data required to analyze the primary and secondary endpoints was agreed upon by the study teams. Each trial provided updated data every 6 weeks. The pooled data were monitored by 2 unblinded statisticians and a data and safety monitoring board.
(DSMB) every 6 weeks using a pre-established stopping guideline for efficacy. At each interim analysis, a posterior distribution of the treatment effect was estimated.

**Study patients and selection criteria**

Although the exact inclusion and exclusion criteria could vary across the trials, all the subjects had to fulfill the following criteria; 1) Participant of a trial that joined the COMPILEhome consortium, 2) Confirmed COVID-19 diagnosis by a diagnostic PCR or antigen test, 3) Neither hospitalized nor at the emergency room department of a hospital before or at the time of randomization, 4) Symptomatic with illness onset ≤7 days at the time of screening for the study, and 5) Age 50 or older. Trials had to be approved by the institutional review boards, and competent authorities of the countries involved, and all patients gave written informed consent.

**Intervention**

To qualify for COMPILEhome, participants randomly assigned to the experimental group had to receive an infusion of ABO-compatible CP with high antibody titers as determined via a semi-quantitative antibody test against the spike protein or a virus neutralization assay. Only trials in which the participants were masked for the intervention were included.

**Outcomes**

Two primary efficacy outcome variables were selected. The first primary endpoint incorporated the speed of recovery and the progression of COVID-19 that would lead to hospital or intensive care unit (ICU) admission or death. It was defined as the highest score on a 5-point ordinal disease severity scale in the 28 days after randomization. A patient was scored 1 if he/she was fully recovered within seven days after transfusion, 2 when continued symptoms attributable to COVID-19 were present on day seven, 3 when admission to a hospital was required at any point, 4 when invasive ventilation was required at any point, and 5 when the patient had died at any moment. The second primary endpoint was the occurrence of hospitalization or death within 28 days.

Secondary endpoints were time to full symptom resolution (assessed by the blinded study team during a telephone contact on day 7, day 14, and day 28) and the safety of CP in outpatients with
COVID-19. Pre-planned subgroup analyses assessed the efficacy of the 2 primary outcomes in the following subgroups: 1) days since disease onset (1-5 or >5 days), 2) level of neutralizing antibody anti-SARS-CoV-2 titers in transfused plasma and 3) Negative serum anti-SARS-CoV-2 IgG status (Trimeric Spike antibody test, Liaison, Diasorin, Saluggia, Italy).

Statistical analysis

The first primary endpoint was analyzed with a Bayesian proportional odds model with normally distributed priors. The model included a main treatment effect shared among the trials (using a skeptical standard deviation of 0.4), main trial effects (using standard deviation 0.5 for the prior distribution), and trial by treatment interactions (using a standard deviation of 0.14 for the prior distribution). The following covariates were included with a standard deviation of 0.5 for the prior distribution: age, sex, number of comorbidities (0-9), oxygen saturation at baseline (in %), immunocompromised state (Y/N) and duration of time (in days) since COVID-19 symptom onset (Appendix Table 1). The second primary endpoint was analyzed with a Bayesian logistic model with a similar specification.

The use of the Bayesian framework and stopping rules enables continuous monitoring of the accrued data, and allowed for real-time decisions without penalties for multiple data looks associated with the classic frequentist approach. The results of each interim analysis were reported to the unblinded DSMB. The process and pre-specified thresholds for efficacy are described in detail in the protocol. The full statistical analysis plan is available as an online supplement.

The number of studies and patients included in COMPILEhome was not restricted and there was no pre-determined minimum or maximum sample size. The monitoring was planned to continue until the DSMB determined that there was sufficient evidence to recommend stopping the study. This situation could be achieved when the predefined stopping thresholds signaled efficacy or when the included studies had finished enrollment or any future recruitment was very unlikely to change the conclusion.
Results
Trials profile

The search for trials resulted in 35 identified studies, thirty-one of which did not meet the selection criteria of the consortium (Appendix Figure 1). Of the four remaining studies, one study team opted to abstain from pooling data while another never responded to repeated emails and calls, resulting in two trials included in the pooled analysis: The CONV-ert study (NCT04621123) and the CoV-Early study (NCT04589949). The CONV-ert study received approval from the Institutional Review Board of the Hospital Germans Trias I Pujol (reference PI 20-313) and the CoV-Early study received approval from the Institutional Review Board of the Erasmus Medical Centre Rotterdam (reference MEC-2020-0682). Briefly, the CONV-ert study randomized outpatients at 4 sites in Catalunya (Spain) aged ≥50 years with ≤7 days of symptoms to one unit (200-300 mL) of CP or sterile 0.9% saline solution, both covered with opaque tubular bags for blinding investigators and patients. The CONV-ert study joined the consortium when 65 of 474 patients were enrolled. CoV-Early enrolled outpatients at 10 sites aged ≥50 years with ≤7 days of symptoms and at least one additional risk factor for severe COVID-19 to receive either one unit (300 mL) of CP or non-convalescent plasma (donated before 01/2020) masked to investigators and patients. It had randomized 150 of the 690 planned patients when they joined the consortium. Details about the allocation concealment, blinding and selection of CP donors in both trials can be found in Appendix Table 2 and the study protocols.

The two trials used a different assay to measure the titer of SARS-CoV-2 neutralizing antibodies. Therefore, a panel of 15 plasma samples was provided for comparison by the Support-E consortium, aimed at harmonizing CP evaluation in Europe (23). These results confirmed the linearity of both assays and allowed conversion of all neutralizing antibody titers into international units (IU/mL). The median neutralizing antibody titer in the plasma units was 1:386 (IQR 1:233-1:707) IU/mL, which is twice the median titer we previously observed in Dutch CP donors.(19)

More details are described in the online supplementary data, in Appendix Table 1 and Appendix...
Study patients and recruitment

Between November 2020 and July 2021, the CoV-Early and COν-ert study teams contacted approximately 4450 outpatients with a positive SARS-CoV-2 PCR or an antigen test. The majority of exclusions occurred for one of the following reasons: few remaining or clearly improving symptoms, no comorbidities, >7 days of symptoms, unable to come to study site or declined to participate. The online supplement provides more information about the recruitment procedures of each trial.

The rapid uptake of COVID-19 vaccination in Europe, which significantly affected recruitment rate in both studies (Appendix Figure 2) and the authorization of specific anti-SARS-CoV-2 monoclonal antibodies for high-risk outpatients resulted in early trial termination (COν-ert on 8th of June and CoV-Early on 13th of July 2021) following recommendations of their DSMBs. By that time, 797 participants had been enrolled and 782 of them had received the allocated intervention and could be pooled for the analysis (Figure 1).

Patients included in the analysis had a median age of 58 years (IQR 53-64), a median of 5 days (IQR 4-6) from symptom onset, and a median of 1 comorbidity (IQR 0-2). According to the baseline assessment, 688 patients (93%) had a negative result for serum IgG anti SARS-CoV-2 S-protein, and 21 had completed their COVID-19 vaccination. 14 participants had received one of 2 doses of a mRNA vaccine at the time of inclusion. Baseline characteristics were comparable between both study arms (Table 1).

Primary endpoints

Table 2 shows the distribution of patients across the five categories of the disease severity scale. The overall estimated OR for patients treated with CP was 0.936 (posterior mean, 95% credible interval 0.667-1.311) with a 64.9% posterior probability of benefit (OR <1). Hospital admission or death occurred in 34 of 390 (8.7%) patients treated with CP and in 40 of 392 (10.2%) patients in the control arm with an OR of 0.919 (posterior mean, 95% credible interval 0.592-1.416) and a 64.3% posterior
probability of benefit. The results of all covariates included in the primary analysis can be found in the online supplement (Appendix Figure 5 and 6).

**Secondary endpoints**

No differences between CP and control patients regarding time to complete resolution of COVID-19 symptoms was seen (log-rank p=0.62, Figure 2). The effect size of CP on the binary outcome of hospital admission or death was larger in patients with ≤5 days of symptoms (OR 0.658, 95% CI 0.394-1.085) compared to those with >5 days (1.427, 95% CI 0.789-2.580) and comparable results (OR 0.720 95% CI 0.486-1.064) were observed for the ordinal outcome (Appendix Figure 7 and 8).

Finally, the OR for patients who received CP with neutralizing antibody titers above or below the median titer were identical (Appendix Figure 9). Also, no notable difference was observed when patients with IgG anti-SARS-CoV-2 antibodies detected at baseline were excluded (OR 0.880 95% CI 0.590-1.310 for the binary outcome, 0.892 95% CI 0.643-1.236 for ordinal outcome, Appendix Figures 7 and 8).

**Safety**

The intervention was well-tolerated. 89 serious adverse events (SAE) were reported, 4 were considered related to the plasma transfusion (3 in the control arm). Three patients could leave the hospital <24 hours after transfusion while the fourth was hospitalized for 5 days one week after the CP transfusion and diagnosed with thrombophlebitis at the infusion site and a pulmonary embolism (Table 3).

**Discussion**

In this analysis of 782 patients with COVID-19 randomized to high-titer CP or placebo within 7 days of disease onset, treatment with CP did not prevent COVID-19 progression, hospitalization, or other clinical outcomes. Our results agree with those by Korley et al, in patients of the same age and symptom duration but with probably more severe symptoms as they were recruited at emergency rooms in the USA (21). These findings differ from those of a smaller trial that used CP within 72 hours
of symptom onset in much older patients (≥75 years) (20). We explored signs of efficacy in various subgroups most likely to benefit from CP. The only subgroup in our study that we found that could potentially benefit from CP was the subgroup with ≤5 days from the onset of symptoms (OR 0.70, CI 0.47-1.03). The potential effect of CP when administered early after disease onset has been suggested by other authors (24), and could explain the results reported by Libster et al. study (20). However, in our study this was a secondary endpoint and the confidence interval was wide, so confirmation in other studies is needed. Regarding the safety parameters of this strategy, our study shows no major concerns, with only 4 SAEs related to the plasma infusion; these findings are in line with those described in previous studies (25).

Our study has several strengths. It is the largest of its kind, studying the effect of CP for high-risk outpatients with COVID-19 early after initiation of symptoms. The fact that 93% of all patients were SARS-CoV-2 antibody negative at the time of inclusion confirms that they were recruited in the early stage of the disease. Pooling of the data from both studies was pre-planned and initiated before any interim analyses were performed and when both studies were early in their recruitment. Both teams remained fully blinded as the (interim) analyses were done by an unblinded statistical team that shared the results with the DSMB on a regular basis. We, therefore, consider our results methodologically sound.

Several limitations should be mentioned. Although we only included patients aged ≥50, and most of them also had comorbidities, the hospital admission rate was relatively low at 9.3%. Therefore, the study was not powered to exclude a small overall treatment effect. However, administering CP to infectious and symptomatic outpatients is complex and labor-intensive. Hence, we think that small CCP’s clinical role is significantly diminished if unable to establish something greater than “a small effect” because it ceases to be practical. As vaccination uptake progressed in patients aged 50 or older and monoclonal antibody-based therapy with proven effectiveness in high-risk outpatients became available, the recruitment dropped dramatically as of June 2021. This resulted in the recommendation by the individual and COMPILEhome DSMBs that further enrollment was unlikely to
change the results, and both studies were discontinued. Regarding the advent of the SARS-CoV-2 variants that may be less susceptible to antibodies induced by the original SARS-CoV-2 virus or the alpha variant, it is reassuring that >95% of the patients in both countries were included at a time when the delta variant was still rare (<5%) (Appendix Figure 3 and 4). The last limitation of our study (and all studies on CP for COVID-19 so far) is the lack of a proper phase 2 dose-finding study. In a recent study, we administered 600 mL of CP to 25 SARS-CoV-2 antibody-negative B-cell depleted patients diagnosed with COVID-19 (26). While all seroconverted immediately after transfusion, the median virus neutralization titer only rose to 1:40. This is 4 times lower than the median titer in immunocompetent convalescent COVID-19 patients and up to 100 times lower than titers observed after treatment with monoclonal antibodies (7, 19). Therefore, we postulate that the range of neutralizing antibody titers present in the 200-300 mL of plasma we used may well have been too low. That underdosing may partially explain our findings is also suggested by a study in which human CP with a neutralizing antibody titer of 1:320 did not prevent disease in hamsters while a titer of 1:2560 did (27). Hence, we recommend that any future study on CP for COVID-19 should use donors at the upper extreme end of antibody titers (e.g., >1:2560 IU). Although, this was virtually impossible in 2020, this should no longer be difficult now as plasma donors recently vaccinated or boosted with a mRNA SARS-CoV-2 vaccine can be selected.

In conclusion, treatment of COVID-19 with CP in the first 7 days after symptom onset did not improve the outcome. Proper dose-finding studies should be conducted, preferentially in patients with ≤5 days of symptoms before future phase 3 studies on CP are initiated.

**Acknowledgements**

For the CoV-Early study group

The DSMB members for COMPILEhome (Jan Nouwen, Andrea Troxel, Greg Papageorgiou, David Boulware, Josep Puig). All GGD contact tracers who informed potential study candidates. All infectiologists at Erasmus MC who worked even harder during COVID times to let the study team
focus on the COVID trials (Adam Anas, Hannelore Bax, Mariana de Mendonça-Melo, Els van Nood, Jan Nouwen, Karin Schurink, Lennert Slobbe, Dorine de Vries-Sluijs) and the ER physicians and colleagues from the department of internal medicine who referred patients and facilitated patient recruitment. The medical students who contacted the patients (Romée Land, Eva Pruijt, Silje Taal, Liselotte Jeletich, Willem Sebrechts, Femke de Vries, Tia Rijljaarsdam). The many research assistants, research nurses and other participants who helped in facilitating the study (Maartje Wagemaker, Marita Tjauw Joe Kim – Amadmoestar, Diane Struik, Denise Heida-Peters, Sabine Harinck, Marjo van der Poel, Greetje van Asselt, Danielle Orij – Westerhof, Marloes Romeijn, Marlies Bouterse, Pepita de Vries, Dewi Dubbelaar, Cynthia Oud, Jo Anne den Ouden, Milly Haverkort). Stichting Hemato-Oncologie voor Volwassenen Nederland (HOVON) for building the eCRF and providing real-time support with the eCRF on very short notice (Henk Hofwegen, Ronnie van der Holt, Mirjam Stomp, Marleen Luten, Monique Steijart). Professor Eva Petkova at NYU Langone who co-designed the COMPILE concept. All the persons involved in the blinding and distribution of plasma products at the sites. Last but certainly not least, all patients that participated in the trial, the thousands of plasma donors and the COVID test centers who informed patients across the Netherlands about the study. This study was made possible by a research grant from ZONMW, the Netherlands (10430062010001). Sanquin Blood Supply provided convalescent plasma free of charge for study sites in the Netherlands.

**For the ConV-ert study group**

The trial was sponsored by the Fight AIDS and Infectious Diseases Foundation with funding from the pharmaceutical company Grifols S.A and the crowdfunding campaign YoMeCorono (www.yomecorono.com). The study received support of the Hospital Universitari Germans Trias i Pujol, and Banc de Sang i Teixits de Catalunya (BST). We thank all the plasma donors and the participants in this study and all the effort they made to attend the visits for follow up. We thank Gerard Carot-Sans for providing medical writing support with manuscript preparation and Roser Escrig for her support in the study design and medical writing assistance with the study documentation. We also thank Laia Bertran, Mireia Clua, Jordi Mitjà, Claudia Laporte, Sergi Gavilan,
Miquel Àngel Rodríguez, Joan Mercado and Enric Nieto for the operational and financial management of the project. We thank the personnel from the Fight Aids and Infectious Diseases Foundation for their support in administration, human resources and supply chain management. We thank the independent DSMB for their time and dedication: Cinta Hierro (Catalan Institute of Oncology, Badalona, Spain), Natalia Tovar (Hospital Clinic, Barcelona, Spain), Binh Ngo (University of Southern California, Los Angeles, US), David Boulware (University of Minnesota, Minneapolis, US), Robin Mogg (Bill and Melinda Gates Research Institute, Seattle, US). ISGlobal receives support from the Spanish Ministry of Science and Innovation through the “Centro de Excelencia Severo Ochoa 2019–2023” Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program. CISM is supported by the Government of Mozambique and the Spanish Agency for International Development (AECID). BB was supported by a Beatriu de Pinós postdoctoral fellow granted by the Government of Catalonia’s Secretariat for Universities and Research, and by Marie Skłodowska-Curie Actions COFUND Programme (BP3, 801370). EP was supported by a doctoral grant from National Agency for Research and Development of Chile (ANID): 72180406. OM was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme.

**Declaration of interest**

The authors declare that they have no competing interests.

**Role of funding source**

The funders had no role in the design or conduct of the study; collection, management, analysis, or interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.
References


### Table 1. Baseline characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total (n = 782)</th>
<th>CP* (n = 390)</th>
<th>Control (n = 392)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex – no. (%)</td>
<td>522 (66.8%)</td>
<td>267 (68.5%)</td>
<td>255 (65.1%)</td>
</tr>
<tr>
<td>Age - median (IQR)</td>
<td>58 (53 – 64)</td>
<td>58 (53 – 64)</td>
<td>58 (54 – 65)</td>
</tr>
<tr>
<td>O₂ saturation - median (IQR)†</td>
<td>97 (96 – 98)</td>
<td>97 (96 – 98)</td>
<td>97 (96 – 98)</td>
</tr>
<tr>
<td>Severe immunodeficiency – no. (%)</td>
<td>13 (1.7%)</td>
<td>5 (1.3%)</td>
<td>8 (2.1%)</td>
</tr>
<tr>
<td>Number of comorbidities - median (IQR)‡</td>
<td>1 (0 – 2)</td>
<td>1 (0 – 2)</td>
<td>1 (0 – 2)</td>
</tr>
<tr>
<td>Days since first symptoms - median (IQR)</td>
<td>5 (4 – 6)</td>
<td>5 (4 – 6)</td>
<td>5 (4 – 6)</td>
</tr>
<tr>
<td>Positive antibody status at baseline – no. (%)</td>
<td>53 (7.0%)</td>
<td>28 (7.7%)</td>
<td>24 (6.4%)</td>
</tr>
</tbody>
</table>

*Convalescent plasma

†Baseline oxygen saturation without supplementary oxygen

‡Obesity, cardiac disease, lung disease, neurological disease, diabetes, chronic renal failure, cancer and/or liver disease. See the supplementary appendix for additional details of the comorbidities.

### Table 2. Distribution of the outcome of the patients in the 28 days after inclusion across the 5-points disease severity scale.

<table>
<thead>
<tr>
<th>Worst Disease Severity Score</th>
<th>Total (n = 782)</th>
<th>CP* (n = 390)</th>
<th>Control (n = 392)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovered – no. (%)†</td>
<td>143 (18.3%)</td>
<td>74 (19.0%)</td>
<td>69 (17.6%)</td>
</tr>
<tr>
<td>Continued symptoms – no. (%)‡</td>
<td>565 (72.3%)</td>
<td>282 (72.3%)</td>
<td>283 (72.2%)</td>
</tr>
<tr>
<td>Admitted to hospital but no invasive ventilation needed – no. (%)</td>
<td>65 (8.3%)</td>
<td>31 (7.9%)</td>
<td>34 (8.7%)</td>
</tr>
<tr>
<td>Admitted to hospital and invasive ventilation needed – no. (%)</td>
<td>6 (0.8%)</td>
<td>2 (0.5%)</td>
<td>4 (1.0%)</td>
</tr>
<tr>
<td>Death – no. (%)</td>
<td>3 (0.4%)</td>
<td>1 (0.3%)</td>
<td>2 (0.5%)</td>
</tr>
</tbody>
</table>

*Convalescent plasma  †Recovered with no symptoms within 7 days after inclusion

‡Continued symptoms attributable to COVID-19
<table>
<thead>
<tr>
<th>SAE category</th>
<th>Total</th>
<th>CP&lt;sup&gt;b&lt;/sup&gt;</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Prolongation of) hospital admission – no.&lt;sup&gt;†&lt;/sup&gt;</td>
<td>80</td>
<td>37</td>
<td>43</td>
</tr>
<tr>
<td>Death – no.</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Serious transfusion related adverse event – no.&lt;sup&gt;§&lt;/sup&gt;</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Life threatening transfusion reaction – no.&lt;sup&gt;</td>
<td></td>
<td>&lt;/sup&gt;</td>
<td>2</td>
</tr>
<tr>
<td>Other AE</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*Serious adverse events (SAE) were registered in all patients that signed the informed consent form (n=797) regardless of being transfused or not.

†When a patient is hospitalized more than once, each admission is counted separately.

§Convalescent plasma

||Any transfusion reaction associated with a plasma transfusion that was considered as a SAE

||2 patients with anaphylaxis very soon after discharge that required urgent therapy by paramedics
Figure 1. CONSORT flow diagram
**Figure 2:** Time to full symptom resolution up until day 28 (end of follow-up). CP=Convalescent plasma. Log-rank test $p=0.62$. 

![Graph showing time to full symptom resolution](image)