Coping with COVID-19 Stressors:

Adverse and Protective Factors Responding to Emotions in a Chinese Sample

Rui Xu¹, Xinfeng Zhang², Danni Liu³, Qiang Li³, Yanping Wang¹, Rong Jiao⁴, Ximei Gong⁵, Xueyan Hou⁶, Tao Xu⁷, Xuemei Qing⁸, Kangxing Song⁹, Voyko Kavcic¹⁰, Shiyan Yan¹¹, Ruolei Gu¹²,¹³, Terry Stratton¹⁴, Yang Jiang¹⁴

¹ Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
² Information Department, Beijing University of Technology, Beijing 100124, China
³ Comprehensive Logistic Support Division, China Southern Airlines Company Limited, Guangzhou 510406, China
⁴ The First Clinical College, Hainan Medical University, Haikou 570100, China
⁵ Ophthalmologic Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
⁶ Shenyang Medical College, Shenyang 110034, China
⁷ Air Force Healthcare Center for Special Services Hangzhou, Hangzhou 310007, China
⁸ Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
⁹ Department of Cardiology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
¹⁰ Institute of Gerontology, Wayne State University, Detroit, MI, 48202, USA

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: The potential roles of affective responses to environmental stressors in individuals’ physical and mental health are complex and multi-faceted. This study, then, explores Chinese citizens’ emotional responses to COVID-19-related stressors and influence factors which may boost or buffer such effects.

Methods: From late March to early June (2020), a cross-sectional study was conducted using an anonymous online questionnaire included demographic characteristics, COVID-19-related stressors related to individuals’ daily functioning, and the self-assessed impact of protective and adverse internal factors on emotions.

Results: 1,662 questionnaires were received from residents in 32 Chinese provinces...
classified by prevalence level according to COVID-19 infections. Among the 17 positive
and negative emotional responses, agglomerative hierarchical clustering revealed four
subclassification: (1) stress relations; (2) missing someone relations; (3) individual
relations; and (4) social relations. Additionally, heightened regional prevalence levels
positively corresponded to intensity of stress relations. Lowest intensity of social
relations was found in the areas surrounding Wuhan and coastal areas. Specially,
economic- and work-related stressors as well as negative self-perceptions (e.g.,
suppression, emotionally unstable, self-denial) implicated in negative emotions. While
positive emotions were tied to demographic characteristics (e.g., high education,
young age and male) and protective traits (e.g., creativity, sympathy, social
responsibility), and inversely linked to relationships- and pandemic-related stressors,
etc.

Conclusion: Associations were clearly noted among Chinese residents’ emotions to
specific stressors during pandemic. Providing appropriate psychological
resources/supports during future or extended public health crises may help offset the
cognitive burden of individuals striving to regain an adequate level of normalcy and
emotional well-being.

Keywords: COVID-19; Emotion; Stressors; Self-perception; LASSO regression

Introduction

Coronavirus disease 2019 (COVID-19) have resulted in over 170 million diagnosed
cases, including more than 3 million deaths worldwide (WHO, 2021). During the
outbreak of COVID-19, countries imposed tight restrictions on personal behavior to
halt the spread of the virus, which have also led to disruptions of routine social and
economic activities, as well as health seeking behavior (Ebohon, Obienu, Irabor,
Amadin, & Omoregie, 2021; Gupta & Sengupta, 2020; Shah, Quint, Nwaru, & Sheikh, 2021). The negative impact of the pandemic on world economics is already evident, as the risk of global economic crisis has been accumulating (Bank, 2021). Under these influences, the mental health of the public is of great concern during the pandemic (Alfawaz et al., 2021; Shanahan et al., 2020).

When individuals are exposed to traumatic events, their emotional responses would be modulated, which may further lead to irrational and impulsive behavior (Ceschi, Billieux, Hearn, Furst, & Van der Linden, 2014; Scott & Montgomery, 1984). Indeed, public fear-driven behaviors during the COVID-19 pandemic led to increases in doctor visits, pressures on the healthcare system, hoarding of food and daily necessities, and misuse of personal protective gear (PPG), etc. (Mahase, 2020; Oosterhoff & Palmer, 2020). Reports of irrational behaviors (e.g., delays in seeking necessary medical attention) and violence against doctors and vulnerable groups increased significantly during the restrictions (Gaballa, AlJaf, Patel, Lindsay, & Hlaing, 2020; Ghosh, 2018).

While much attention has been paid to complex emotional responses (e.g., anxiety and depression) to COVID-19 (Barzilay et al., 2020), basic emotions (e.g., happiness, sadness, fear, etc.) remain largely ignored. However, the spontaneous expression of basic emotions is more typical in “routine” social life and, subsequently, vulnerable during disruptive or anomic conditions, such as natural disaster (Y. Li et al., 2020). For instance, citizens in Croatia frequently exhibited fear, discouragement, and sadness during ten days of the COVID-19 lockdown (Dogas et al., 2020). Additionally, the public’s basic emotional expression has become a sensitive early warning indicator of infectious outbreaks such as measles, H1N1, and Ebola(Ahmed, Bath, Sbafi, & Demartini, 2019; Du et al., 2018; Ofoghi, Mann, & Verspoor, 2016).

China has experienced the spread of COVID-19 peaked, plateaued, and declined
during the first half of 2020 (Huang et al., 2020) – and infective prevalence and double-edged policies (e.g., lockdowns) subjected residents to complicated or contradictory emotional states (Jin et al., 2020; Y. Li et al., 2020). In fact, residents were forced to overcome difficulties prior to encountering social isolation and conflict (Singh & Subedi, 2020; Venkatesh, 2020; Williams, Armitage, Tampe, & Dienes, 2020). Throughout all this, the relationship of basic emotions and environmental stressors was not fully studied. Additionally, little information was available to assess perceived feelings during pandemic, although cognition was recognized to play a key role between such environmental insults and emotions. Thus, our study aimed to investigate the basic emotions and the links with self-perceived stressors, all of which facilitate governments to provide timely and effective responses to the pandemic.

Methods

Participants

The cross-sectional study utilized a non-random “snowball” sample designed to elicit maximum participation by consenting Chinese adults. We used an online platform of “Wenjuanxing” (https://www.wjx.cn/) and advertised by WeChat, a popular social networking platform. From late March to early June (2020), respondents to an anonymous online questionnaire came from 32 Chinese provincial districts – which were classified by prevalence level (1 = lowest, 5 = highest) according to cumulative COVID-19 infections compiled prior to the data collection deadline (see Appendix 1).

Instrumentation

The questionnaire was devised by the authors and contained demographic information (i.e., sex, age, marital status, education) as well as self-assessed: (1) emotional responses to the COVID-19 pandemic (i.e., 9 negative emotion and 8 positive emotion); (2) environmental stressors and individuals’ daily functioning (e.g., time spent indoors);
and (3) protective and adverse aspects of well-being (e.g., creative, facing death from COVID-19 infection) (see Appendix 2).

In particular, the instrument gauged respondents’ experiences with seventeen basic emotions which, based on Traditional Chinese Medicine (TCM) and recent related researches (Keltner, Sauter, Tracy, & Cowen, 2019; Ye, Cai, Cheung, & Tsang, 2019; Zhan et al., 2018). Emotions in TCM including five original types – joy (xi), anger, thinking (si), sadness, and fear – are generally considered basic, mutually-related human responses (Zhan et al., 2018). Further, each emotional type consists of varied but similar properties. For example, fear combines meanings of fearfulness and being frightened – whereas anger could be directed toward oneself or others (Praill, Gonzalez-Prendes, & Kernsmith, 2015). Additionally, thinking (si) might encompass annoyance and distracted thinking (Du, 2000). Conversely, in Chinese culture, joy (xi) represents positive emotions such as happiness/joy, comfort/relaxation, a sense of accomplishment, and safety (Dictionary Editing Room, 2011). All emotions could result in response to a pandemic, which were assessed on a 4-point Likert-type scale ranging from 0 (“Not at all”) to 3 (“A great deal”).

Environmental stressors assessed during the COVID-19 pandemic focused on disruptions to daily life, difficulties, or personal experiences resulting from infection or infective prevalence. Subjects also assessed protective and adverse internal factors impacting their emotions. All items were derived from established Chinese COVID-19-related guidelines for psychological assistance/service/counseling provided by various resources and organizations (Ma, 2020; Shen & Wang, 2020; Wu & Zhang, 2020; Zhao & Liu, 2020).

Statistical Analysis

Agglomerative hierarchical clustering

As a data reduction technique, and to identify underlying data structures, we used the
maximum coefficient method of agglomerative hierarchical clustering (James & Tibshirani, 2013). In this iterative process, items initially treated as individual clusters are progressively collapsed based on Pearson correlation coefficients (Casella & Berger, 2001). The correlation matrix is then recalculated and the maximum coefficient again identified between the new and uncombined clusters. This is repeated until all items are grouped together into a single cluster or the procedure exceeds the specified number of iterations.

LASSO Regression

A major challenge to classifying multiple objects within a singular construct is a large intra-class variation that typically exists. The LASSO approach to parameter estimation alters the model-fitting process to select only a subset of covariates which produce an optimally predictive and interpretable model (Tibshirani, 2011). This goal is achieved by utilizing a regularization process which, when applied across all predictors in a multivariate model, allows the contributions of some coefficients to be reduced to zero and, hence, completely removed from the model. This advantage, among others, distinguishes LASSO from similar techniques (e.g., ridge regression) designed to avoid model over-fitting by reducing residual “noise” (http://wavedatalab.github.io/machinelearningwithr/post4.html).

As a parallel to designating measures as dependent or independent variables, LASSO uses machine learning (ML) vernacular to reference inputs (“features”) and outputs (“labels”). More specifically, “features” are properties of the data used to “train” or develop the model-fitting algorithm, while “labels” are the resulting output returned after computing.

Based on this framework, our training sample included 65 features in the four-part feature set (including environment stressors, protective and adverse internal factors, and demographic information, see Appendix 1), while the label set was defined a
certain emotion cluster. Normalizing the feature variables to obtain a standard sample
set, each standard sample had a feature vector \(X\) and a label variable \(Y\) upon which
the LASSO regression model was built. The number of features ultimately included in
the final model is selected by a cross-validation method and the parameters obtained.
We chose 20% of the overall data as the test set used to gauge performance of the
selected model.

A linear regression that models the response variable \(y\) using a set of \(d\) features,
\[
x_i = [1, x_{i1}, ..., x_{id}]^T, \text{ for } i\text{th case can be expressed as:}
\]
\[
y_i = \beta^T x_i + \epsilon_i, i = 1, 2, ..., N \tag{3-1}
\]
where \(\beta = [\beta_0, \beta_1, ..., \beta_d]^T\) is a vector, each of its components represents a coefficient
of the linear model, and \(\epsilon_i\) is the residual term for the \(i\)th case representing remaining
unexplained variance. For a set of \(N\) cases, the model can be rewritten in the form of
the following matrix:
\[
y = X\beta \tag{3-2}
\]
where \(y = [y_1, ..., y_N]^T\), and \(X\) is an \(N \times d\) matrix with features in columns, as
follows:
\[
X = \begin{bmatrix}
x_{11} & ... & x_{1d} \\
x_{21} & ... & x_{2d} \\
\vdots & \vdots & \vdots \\
x_{N1} & ... & x_{Nd}
\end{bmatrix} \tag{3-3}
\]
where entry \(x_{ij}\) is the \(j\)th feature for the \(i\)th case.

Ordinary least squares (OLS) is often used to generate linear model coefficients \(\beta\)
as:
\[
\hat{\beta} = \arg\min_{\beta} ||y - X\beta||_2^2 \tag{3-4}
\]
With multiple potential predictors, a smaller, more parsimonious subset of “features” is
sought which exhibits the strongest effects. Toward this end, OLS estimates are suboptimal to regularization approaches which impose “penalties” on certain coefficients to avoid model overfitting. As mentioned above, LASSO regression shrinks some coefficients and sets others to 0 — obtaining the optimal solution of the following equation via a penalty term:

\[
\hat{\beta} = \arg\min_{\beta} ||y - X\beta||^2_2 + \lambda ||\beta||_1
\]

s.t. \(\sum_j |\beta_j| \leq \lambda \) (3-5)

where \(||\beta||_1 = \sum_{j=1}^d |\beta_j| \), the first part represents the goodness of the model fitting, and the second part represents the parameter penalty. Here, \(\lambda \geq 0 \) is a complexity parameter that controls the amount of shrinkage as coefficients are reduced or set to zero: the larger the value of \(\lambda \), the greater the amount of shrinkage. The smaller the regularization parameter \(\lambda \), the less punitive the model and the more features it retains. Conversely, increases in \(\lambda \) results in reduced numbers of features.

Additionally, Kruskal-Wallis ANOVA were adopted to explore the differences of each emotional cluster (i.e., positive, negative; stress relations, missing sb. relations, individual relations, social relations) among five regional prevalence levels of COVID-19 infective (1 = lowest, 5 = highest). Post hoc comparisons were also conducted.

A critical p value of < .05 was set for all inferential tests, and analyses were conducted using Python (https://www.python.org/) and R software platforms (https://www.python.org/).

Results

Sample characteristics

Nineteen (19) of 1,681 the questionnaires were excluded due to incomplete responses or participants not living in China — yielding a final, analyzable sample of 1,662. The “typical” respondent was female (60.5%, n = 1,006) and 30.7 years of age (SD = 10.3).
Married (49.0%, n = 815) and single (49.2%, n = 817) respondents, respectively, each accounted for virtually one-half of the sample. Most respondents (63.2%) had bachelor’s degrees or above, and the prevalence rate of COVID-19 infection across the five regions ranged from ~13.4 to 28.0%. Sample demographics are summarized in Table 1 – along with reported emotional reactions and influential factors (e.g., situational stressors, protective/adverse internal factors). Descriptive statistics of the latter are presented below.

Emotional Clusters

Seventeen (17) emotional responses to COVID-19 were divided into two categories reflecting positive and negative emotions and, subsequently, four nested subclassifications: For negative emotions, the emotion “missing someone who is close to you” was distanced from those related to stress (e.g., sadness, fear/fright, anger toward oneself or others, worry, annoyance and distracted thinking due to anger). Positive emotions, in contrast, were classified as individual- (e.g., happiness, relaxation, comfort, safety and accomplishment) or social-relations (e.g., emotionally inspired, empathy, moved by sb. or sth.). The associated correlation matrix and cluster dendrogram are shown below in Figures 1A and 1B, respectively.

LASSO Feature Selection: Emotions

LASSO regression was adopted to select predictors for emotional clusters. Based on performance parameters, the models of feature selection were acceptable for emotions classified as negative ($\lambda_0 = 0.0228$, $r^2 = 0.5524$, MSE (Mean Squared Error) = 0.1910, numbers of predictors = 34) and positive ($\lambda_0 = 0.0173$, $r^2 = 0.1712$, MSE = 0.2841, numbers of predictors = 32).

A cross-validation process intended to find the optimal λ value (λ_0) - designating the most parsimonious model with a minimum average MSE (see Figure 2A). As λ
increases, more coefficients are set to zero - leading to a sparser model (see Figure 2B).

Corresponding coefficients for the emotional models with all relevant predictors are reported in Figure 3. Results showed that the predictors of negative emotions included a tendency to suppress emotions, emotional instability, self-denial, vulnerability to impact, economic problems, fatigue/sleepiness, work-related problems, unequal treatment, feeling limited/constrained, lacking confidence etc. In contrast, positive emotions were driven by creativity, sympathy, social responsibility, high education etc., while factors, such as tendency to suppress emotions, age, intimate partner relationship, social isolation and facing death from COVID-19, had the opposite effect.

Emotional Response by Regional Level of Infection

Significant differences in emotional clusters among residents from regions with varying levels of COVID-19 infective prevalence were found (see Table 2), with pairwise, post hoc comparisons (see Table 3) showing positive emotions in the highest prevalence region were lower than the medium or lowest prevalence regions. Significant differences in negative emotions were found among all pairs of regions except higher vs. medium. For nested subclassifications, individual relations of positive emotions tended to be lowest among respondents located in the highest prevalence region. Social relations found to be lowest in the higher prevalence region, in where were significantly lower than medium and lowest regions. Regarding negative emotions, stress relations varied significantly among respondents from the various regions – with the exception of lower vs. higher and higher vs. medium. Lastly, those from lower prevalence regions reported significantly lower emotional responses related to missing sb. relations.

Discussion

Our study investigated public emotions and related influence factors associated with
the COVID-19 pandemic in China. Negative emotions were consistently confirmed during this time (see also (Du et al., 2018), with previous studies revealing variation in emotional strength and category across phases of the pandemic (CITE). For instance, an analysis of Twitter posts during a recent Ebola outbreak found different basic emotional responses prior to and after key incidents (Ofoghi et al., 2016). A recent study also showed that Chinese residents' emotional expression via Weibo (a Chinese version of Twitter) was strongest before the actual peak of COVID-19 outbreak and declined thereafter (Y. Li et al., 2020). Additionally, our study revealed strength of negative emotional response was sensitive to gradient regional prevalence levels by investigated data. Consistently, significant correlations were found between regional cumulative COVID-19 cases and Web searches by Italian netizens including the generic terms "fear" and "anxiety" (Rovetta & Castaldo, 2020). However, missing sb. relations didn’t have such sensitivity, showing significantly lower intensity in lower prevalence regions than other prevalence regions. Additionally, lowest social relations showed in the higher prevalence region (areas surrounding Wuhan and coastal areas), which may be due to the typhoon eye’ effect. In line with recent works, working adults' distance to the epicenter of Wuhan had an inverted U-shaped relationship with their burnout (Zhang, Huang, & Wei, 2020).

The differences of situational stressors and self-perception associated with emotional reactions were further analyzed. Specifically, negative emotions were triggered largely by the economic and work-related problems and negative self-images, while positive emotions connected with relationship- and epidemic-related stressors, personal characteristics and demographic variables). Indeed, besides the prevalence of viral infection, COVID-19 exacted a global economic toll and social problems of unprecedented scope, magnitude, and duration (Nicola et al., 2020; Ramos Perkis et al., 2020). Strict control measures have been instituted and changed public normal routines with shutting down of businesses, industries, and schools. Uncertainty about
opportunities of employment and academic has been increased worldwide, even
though pandemic has been controlled in China (Wilson et al., 2020). Thus, public
emotions fluctuated largely as a consequence of unfulfilled needs of survival- and self-
development, when facing dilemma of income decline, unemployment and business
closes.

Self-perception played a key role for emotions revealed in our study. The frequent
tendency to suppress certain affective responses all emotions, which showed the more
emotions are suppressed, the easier it is to cause negative emotions and harder to
form positive emotions in our study. Literatures illustrated emotional expression
potentially impacted mental well-being, psychophysiological responses and interaction
behaviors (Nagulendran, Norton, & Jobson, 2020; Waters, Kamilowicz, West, &
Mendes, 2020). A recent study showed that critical work, health and family
engagement was worse with increased suppression of fear and apprehension about
COVID-19 infection (Trougakos, Chawla, & McCarthy, 2020). Additionally, self-
perception, as a core process of coping with stress, had a practical utility in explaining
the public's emotion and behavior (J. B. Li et al., 2020). For instance, negative self-
images (e.g., self-denial, emotionally unstable, lacking confidence) frequently
manifested by mood disorders, hindering the function of emotional regulation, resulted
in and deepen the degree of negative emotions (Kawashima et al., 2016; Laghi,
Bianchi, Pompili, Lonigro, & Baiocco, 2018; Masuda et al., 2017). Such adverse
internal factors (i.e., easy to be affected, feeling constrained) as well as stressors
(media coverage and a long-time spent indoors) together contributed to negative
affection, which was consistently found in recent works (Basch et al., 2020).

The oldest conjectures was confirmed that happiness depends not just on absolute
things but inherently on comparisons with other people (Clark & Oswald, 2002).
Evidence of comparison effects was also revealed in our results, that was high intensity
of positive emotions related with experiencing fewer and not serious negative incidents,
such as intimate partner relationship, social isolation, and facing death from COVID-
19 infection. In line with previous studies, issues of health and interpersonal
relationships were especially concerned by residents, when encountering with disaster
situations (Pieh, T, Budimir, & Probst, 2020). For instance, a survey found survivors’
mental and physical health and neighborhood connectedness were significantly
correlated with happiness in the fifth years after the Tohoku Earthquake Tsunami in
Japan (Sun & Yan, 2019). Social isolation significantly predicted poor mental health
associated with COVID-19 policy, particularly for elders, or individuals in low-paid or
precarious employment (Kim & Jung, 2020; Williams et al., 2020).

Positive emotional state and self-perceptions played protective roles for residents in
encounter of difficulties. As previous studies confirmed, positive emotions serving as
the ultimate target or a moderator, helped people to cope with negative events (Waugh,
2020). Similarity, positive self-perceptions associated with high self-esteem could
minimize influence of negative information (Showers, 1992). It was worth to notice that
creativity made a great contribution to positive emotional response to the COVID-19.

To tackle the unanticipated difficulties and intricate problems during pandemic,
interaction between creativity and positive feelings may play an important role to
promote task completion (Bang & Reio, 2017), as well as to change attitudes and
expected directions (Walsh, Chen, Hacker, & Broschard, 2008). Additionally, protective
factors also highlighted some self-assessed characteristics which were related with
social members (e.g., sympathy and socially responsible). Consistently,
conscientiousness and openness were found as a protective factor for sadness,
depression, stress and tension caused by stress (Schlee et al., 2020). Higher
sympathy associated with higher prosocial behavior, which was also found to be the
positive link between sadness regulation and prosocial behavior and to mediate by
higher sympathy and trust (Song, Colasante, & Malti, 2018). Lastly, high education,
young age and male contributed to positive emotional state, which was proved to
potentially mitigate and regulate the psycho-emotional toll (Banati, Jones, & Youssef, 2020; Greiner, Muller, Norris, Ng, & Sangha, 2019).

The limitation of the study is that most responders in our sample haven’t experience traumatic events, such as confirmed COVID-19 infection. Thus, they reported lots of maladjustment for changes of routine life. Those who and whose family members have fallen illness due to virus infections, may show more intensity of negative emotions and different stressors and influence factors. In addition, we did not ask participants to report their quality of life, thus the potential influence of emotion on subjective well-being has not been fully understood.

Conclusion

Negative emotional response was sensitive to regional prevalence levels of COVID-19. Economic and work-related problems largely contributed to negative emotions and relationship- and epidemic-related stressors largely affected positive emotions. Negative self-images (i.e., emotional expression, self-denial, emotionally unstable, lacking confidence) were adverse factors for emotions. Protective factors for emotions included creativity, social-orient traits, as well as high education, young age and male.

Future study should investigate emotional supports/measures based on interactions among particular stressors and cognitive burden, as well as protective factors.

Funding

This study was funded by the Chinese Medical Scientific Development Foundation of Beijing City (JJ2018-101) and Project of Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences (Z0652).
Authors' contribution

RX, TS, and YJ designed the study. RX, TS, SY and YJ wrote the study protocol. QL, YW, RJ, XG, XH, TX, JY, and KS collected the data. XZ, DL and RX carried out the analysis with support from SY, TS, VK and YJ. RX and TS wrote the draft of the manuscript. TS, DL, SY, XZ, RG, VK and YJ revised the draft. All authors contributed to the final version of the manuscript.

Acknowledgements

Not applicable

Reference

James, G., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. Springer, 393,399.

1. doi:10.1097/JOM.0000000000001962

Figure illustration

Figure 1 The Emotional Correlation Matrix and Cluster Dendrogram. A) Emotional correlation matrix was calculated by Pearson correlation coefficients among the seventeen emotions. B) Agglomerative hierarchical clustering was adopted the
maximum coefficient method.

Figure 2 The Performance Parameters of LASSO Feature Selection. (A) Average MSE of the LASSO models as a function of the regularization parameter λ. The optimal penalty, determined by 3-fold cross-validation, is the value of λ that minimizes the MSE (shown as a vertical dashed line). (B) Trace plot showing non-zero model coefficients as a function of the regularization parameter λ. As λ increases to the left, coefficients are set to zero and removed from the model.

Figure 3 Beta coefficients for predictors of LASSO Feature Selection for Negative and Positive Emotions. X-axis exhibited the coefficients of LASSO regression. Y-axis showed stressors whose coefficients weren't zero.
Table 1. Descriptive statistics of study variables (n=1,662)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Frequency (%)</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td>30.66 (10.3)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>656 (39.5%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1006 (60.5%)</td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>817 (49.2%)</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>815 (49.0%)</td>
<td></td>
</tr>
<tr>
<td>Divorced</td>
<td>25 (1.6%)</td>
<td></td>
</tr>
<tr>
<td>Widowed</td>
<td>5 (0.3%)</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior high school/technical</td>
<td>171 (10.3%)</td>
<td></td>
</tr>
<tr>
<td>secondary school and below</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associate degree in college</td>
<td>440 (26.5%)</td>
<td></td>
</tr>
<tr>
<td>Bachelor's degree</td>
<td>835 (50.2%)</td>
<td></td>
</tr>
<tr>
<td>Master's degree or greater</td>
<td>216 (13.0%)</td>
<td></td>
</tr>
<tr>
<td>Respondents by Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 (Highest Prevalence) (1 province)</td>
<td>291 (17.5)</td>
<td></td>
</tr>
<tr>
<td>4 (5 provinces)</td>
<td>223 (13.4)</td>
<td></td>
</tr>
<tr>
<td>3 (9 provinces)</td>
<td>465 (28.0)</td>
<td></td>
</tr>
<tr>
<td>2 (10 provinces)</td>
<td>344 (20.7)</td>
<td></td>
</tr>
<tr>
<td>1 (Lowest Prevalence) (7 provinces)</td>
<td>339 (20.4)</td>
<td></td>
</tr>
<tr>
<td>Emotions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For two classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative emotions (V1 ~ V9)</td>
<td>1.91 (0.6)</td>
<td></td>
</tr>
<tr>
<td>Positive emotions (V10 ~ V17)</td>
<td>2.33 (0.6)</td>
<td></td>
</tr>
<tr>
<td>For four classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress-related NE (V1 ~ V8)</td>
<td>1.87 (0.7)</td>
<td></td>
</tr>
<tr>
<td>Missing (V9)</td>
<td>2.18 (0.7)</td>
<td></td>
</tr>
<tr>
<td>Individual-related PE (V10 ~ V14)</td>
<td>2.57 (0.8)</td>
<td></td>
</tr>
<tr>
<td>Social-related PE (V15 ~ V17)</td>
<td>2.20 (1.0)</td>
<td></td>
</tr>
<tr>
<td>Influence factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Situational stressors</td>
<td>5.20 (4.0)</td>
<td></td>
</tr>
<tr>
<td>Protective internal factors</td>
<td>5.27 (3.3)</td>
<td></td>
</tr>
<tr>
<td>Adverse internal factors</td>
<td>3.54 (3.5)</td>
<td></td>
</tr>
</tbody>
</table>

Note: SD, Standard Deviation.
Table 2. Emotional Differences Among Regions with Levels of COVID-19 Infective Prevalence (Mean ± SE, \bar{R})

<table>
<thead>
<tr>
<th>Risk Regions</th>
<th>For two classification</th>
<th>For four classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative Emotions</td>
<td>Positive Emotions</td>
</tr>
<tr>
<td>5 (Highest)</td>
<td>2.26±0.03 (1108.50)</td>
<td>2.22±0.03 (744.37)</td>
</tr>
<tr>
<td>4</td>
<td>1.94±0.04 (865.69)</td>
<td>2.29±0.04 (805.33)</td>
</tr>
<tr>
<td>3</td>
<td>1.97±0.03 (869.16)</td>
<td>2.34±0.03 (855.96)</td>
</tr>
<tr>
<td>2</td>
<td>1.78±0.03 (730.64)</td>
<td>2.32±0.03 (816.75)</td>
</tr>
<tr>
<td>1 (Lowest)</td>
<td>1.65±0.03 (621.91)</td>
<td>2.43±0.03 (904.92)</td>
</tr>
<tr>
<td>Kruskal-Wallis H</td>
<td>181.35</td>
<td>19.83</td>
</tr>
<tr>
<td>Adj. Sig.</td>
<td>< 0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Note: SD, Standard Error; \bar{R}, Average Rank.
Table 3. Post Hoc for Emotional Differences Among Regions with Infective Prevalence Levels

<table>
<thead>
<tr>
<th></th>
<th>Negative Emotions</th>
<th>Positive Emotions</th>
<th>Stress Relations</th>
<th>Missing sb. Relations</th>
<th>Individual Relations</th>
<th>Social Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample1-Sample2</td>
<td>Adj_p</td>
<td>Adj_p</td>
<td>Adj_p</td>
<td>Adj_p</td>
<td>Adj_p</td>
<td>Adj_p</td>
</tr>
<tr>
<td>1-2</td>
<td>0.030</td>
<td>0.161</td>
<td>0.016</td>
<td>1.000</td>
<td>1.000</td>
<td>0.190</td>
</tr>
<tr>
<td>1-3</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.527</td>
</tr>
<tr>
<td>1-4</td>
<td>0.000</td>
<td>0.158</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1-5</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.232</td>
</tr>
<tr>
<td>2-3</td>
<td>0.000</td>
<td>1.000</td>
<td>0.002</td>
<td>0.005</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>2-4</td>
<td>0.000</td>
<td>1.000</td>
<td>0.055</td>
<td>0.000</td>
<td>1.000</td>
<td>0.286</td>
</tr>
<tr>
<td>2-5</td>
<td>0.000</td>
<td>0.576</td>
<td>0.000</td>
<td>0.000</td>
<td>0.006</td>
<td>1.000</td>
</tr>
<tr>
<td>3-4</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.049</td>
</tr>
<tr>
<td>3-5</td>
<td>0.000</td>
<td>0.018</td>
<td>0.000</td>
<td>0.053</td>
<td>0.002</td>
<td>1.000</td>
</tr>
<tr>
<td>4-5</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.002</td>
<td>0.364</td>
</tr>
</tbody>
</table>

Note: Prevalence level according to numbers of COVID-19 infections (1 = lowest, 5 = highest)
Figure 1 The Emotional Correlation Matrix and Cluster Dendrogram. A) Emotional correlation matrix was calculated by Pearson correlation coefficients among the seventeen emotions. B) Agglomerative hierarchical clustering was adopted the maximum coefficient method.

Figure 2 The Performance Parameters of LASSO Feature Selection. (A) Average MSE of the LASSO models as a function of the regularization parameter λ. The optimal penalty, determined by 3-fold cross-validation, is the value of λ that minimizes the MSE (shown as a vertical dashed line). (B) Trace plot showing non-zero model coefficients as a function of the regularization parameter λ. As λ increases to the left, coefficients are set to zero and removed from the model.

Figure 3 Beta coefficients for predictors of LASSO Feature Selection for Negative and Positive Emotions.