Title: Likelihood of infecting or getting infected with COVID-19 as a function of vaccination status, as investigated with a stochastic model for New Zealand (Aotearoa)

Author:
Leighton M. Watson
Postdoctoral Researcher
Department of Earth Sciences
University of Oregon
Eugene, OR, USA
lwatson2@uoregon.edu

Abstract:
Aim: The New Zealand government is transitioning from the Alert Level framework, which relies on government action and population level controls, to the COVID-19 Protection Framework, which relies on vaccination rates and allows for greater freedoms (for the vaccinated). As restrictions are eased, there is significant interest in understanding the relative risk of spreading COVID-19 posed by unvaccinated and vaccinated individuals.

Methods: A stochastic branching process model is used to simulate the spread of COVID-19 for outbreaks seeded by unvaccinated or vaccinated individuals. The likelihood of infecting or getting infected with COVID-19 is calculated based on vaccination status.

Results: A vaccinated traveler infected with COVID-19 is 9x less likely to seed an outbreak than an unvaccinated traveler infected with COVID-19. For a vaccination rate of 50%, unvaccinated individuals are responsible for 87% of all infections whereas 3% of infections are from vaccinated to vaccinated. When normalized by population, a vaccinated individual is 6.8x more likely to be infected by an unvaccinated individual than by a vaccinated individual. For a total population vaccination rate of 78.7%, which is equivalent to the 90% vaccination target for the eligible population (over 12 years old), this means that vaccinated individuals are 1.9x more likely to be infected by an unvaccinated individual than by a vaccinated, even though there are 3.7x more vaccinated individuals in the population.

Conclusions: This work demonstrates that most new infections are caused by unvaccinated individuals. These simulations illustrate the importance of vaccination in stopping individuals from becoming infected with COVID-19 and in preventing onward transmission.
Body of Text:

The 2021 Delta outbreak of COVID-19 in New Zealand caused the government to transition from an elimination strategy to suppression, which relies heavily on vaccination rates. Since the detection of the outbreak on 17 August 2021, double-dose vaccination rates have increased from approximately 19% of the total population to 70% on 21 November 2021.\(^1\)_2 As a result, the COVID-19 pandemic is turning into a pandemic of the unvaccinated; only 12% of cases and 5% of hospitalizations in the current outbreak have been fully vaccinated (defined as more than two weeks since the second dose of the two-dose Pfizer-BioNTech vaccine).\(^1\)_2 As the country begins to transition to the COVID-19 Protection Framework, which predominantly uses vaccination certificates, instead of the Alert Level system, which uses population level controls, and as the Auckland border is relaxed to allow fully vaccinated or negative-tested individuals to travel, it is important to understand the relative likelihood of vaccinated versus unvaccinated individuals spreading COVID-19.

Here, I use the stochastic model developed in [3] to estimate the likely number of infections caused by an outbreak seeded by an unvaccinated versus vaccinated individual. This information can help inform reopening decisions and restrictions on travel (e.g., requiring vaccination or a negative test prior to travel). I also calculate the likelihood of infecting others or getting infected with COVID-19 based on vaccination status. Mathematical modeling is a useful tool for understanding these probabilities because, as the number of COVID-19 cases in the community has increased, contact tracers have prioritized preventing onwards transmission compared to finding the source of infections.\(^4\) As a result, the likelihood of infecting others or getting infected as a function of vaccination status is not available for real-world cases but can be determined from model simulations.

Methods

A stochastic branching process model is used to simulate the initial spread of a COVID-19 outbreak, similar to previous work by [5-7]. The model tracks the number of infections and the vaccination status of the infecting and infected individuals. The stochastic model used here is the same as presented in [3] with the pertinent details summarized below.

Each infected individual infects a random number of other individuals, \(N\), drawn from a Poisson distribution.\(^5\) For symptomatic individuals, the Poisson distribution is defined by \(\lambda = RC\) where \(R\) is the...
reproduction number and C is the effectiveness of population level controls (e.g., Level 1, 2, 3, or 4 in the Alert Level Framework or Green, Orange, or Red in the COVID-19 Protection Framework). For an asymptomatic individual, the Poisson distribution is defined by $\lambda = RC/2$, which assumes that asymptomatic individuals infect, on average, half as many people as symptomatic individuals. In this work, I only consider $C=1$ as it is unclear how to parameterize the impact of the different levels of the COVID-19 Protection Framework.

The generation times between an individual becoming infected and infecting N other individuals are independently sampled from a Weibull distribution with $a=5.57$ and $b=4.08$ where a is the scale parameter and b is the shape parameter (mean=5.05 days and variance=1.94 days). The model assumes that 33% of new infections are asymptomatic (subclinical) with the remainder symptomatic (clinical). The Pfizer-BioNTech vaccine, which is the only COVID-19 vaccine currently being widely administered in New Zealand, is assumed to be 70% effective against infection and 50% effective against transmission for breakthrough infections.

As detailed in [3], the model does not include any testing, contact tracing, or isolation of cases. It is unclear how testing rates will change in a highly vaccinated public or how effective self-isolation will prove to be. Therefore, I focus purely on the impact of vaccination rates, particularly on the early stages of an outbreak when cases may be circulating undetected.

Age is not accounted for in this model, either in the vaccination rollout where older individuals are more likely to be vaccinated, or in the susceptibility where older individuals are more likely to experience severe disease or death. Age also plays a role in transmission with young children are less likely to transmit the virus as well as through different ages groups having different levels of mobility and hence different numbers of contacts. See [7, 13] for a New Zealand focused model that accounts for age. Other limitations include not accounting for ethnicity, either in vaccination rates or differential risk factors for different ethnic groups, or socio-economic status; COVID-19 spreads rapidly through overcrowded households as well as posing a greater risk to those who do not have the economic resources to safely isolate or the ability to work-from-home. Vaccinated and unvaccinated individuals are modelled as equally likely to interact (based on the vaccination rate).
The simulations are seeded with either one vaccinated or one unvaccinated individual at \(t=0 \), where \(t \) is the time in days, and are run for 31 days (~1 month) with time steps of 1 day. The simulations are run 100,000 times for each scenario to get a representative sampling of the possible outcomes from the stochastic model.

Vaccination Status of Seed Infection

The regional boundary around Auckland will be relaxed on 15 December 2021 and people will be able to travel in and out of Auckland if they are fully vaccinated or have proof of a negative test within 72 hours of traveling.\(^\text{17}\) Despite these protective measures, it is likely that the movement of people out of Auckland will result in COVID-19 being seeded in other locations around the country (as has already been observed with outbreaks in Waikato and Northland and other cases scattered around the country). Here, I consider the possible numbers of infections in an outbreak based on the vaccination status of the seed infection (Figure 1). The simulations are performed for a vaccination rate of 78.7% of the total population; this is approximately 90% of the eligible population (over 12 years old), which is the government’s vaccination target for all District Health Boards. Note that this work assumes that an infected individual can travel and seed a new outbreak. I do not model the impact of vaccination or testing requirements on preventing infected people from travelling and catching cases before they travel and seed new outbreaks.

Figure 1a shows the probability of a given number of infections 31 days into an outbreak seeded by a vaccinated individual or unvaccinated individual, with the cumulative probabilities in Figure 1b. For both vaccinated and unvaccinated seed infections, there is a small possibility of large outbreaks developing within the first 31 days of an infection being seeded (5% chance of >506 cases and >657 cases for the vaccinated and unvaccinated seed, respectively). However, for a vaccinated seed infection it is much more likely that COVID-19 does not spread beyond the initial case; for a vaccinated seed infection there is a 54% chance that COVID-19 does not spread to anyone else while for an unvaccinated seed infection there is only a 6% chance. This is because the vaccine is assumed to be 50% effective at preventing onward transmission.\(^\text{7,13}\) For an unvaccinated seed infection, there is a 54% chance that the outbreak has up to 151 infections after 31 days.

Figure 1 shows the importance of vaccination in stopping outbreaks from being seeded. A vaccinated traveler is 9x less likely to seed an outbreak in a community than an unvaccinated traveler (note that this
model does not account for the protection provided by testing requirements prior to traveling, which would reduce the risk factor posed by unvaccinated travelers). This illustrates the importance that travelers are vaccinated (or tested prior to travelling, or both), especially if travelling from regions with significant COVID-19 community transmission (e.g., Auckland) to regions with low vaccination rates (e.g., Northland). Continued community testing (not modeled here) is required to rapidly identify any outbreaks that are seeded before they grow.

Figure 1: (a) Histograms showing probability of number of infections 31 days into an outbreak seeded by (blue) one vaccinated individual or by (red) one unvaccinated individual. (b) Cumulative probability of each number of infections for an outbreak seeded by (blue) one vaccinated individual or by (red) one unvaccinated individual.
Likelihood of Infection/Infecting Based on Vaccination Status

The model tracks the number of vaccinated and unvaccinated cases as well as the vaccination status of the individuals that cause the infections. This enables me to calculate the probability of infection based on the vaccination status of the infecting individual and the infected individual. The results are calculated from the mean of the 100,000 realizations.

Figure 2: Likelihood that a new infection is caused by a (U) unvaccinated or (V) vaccinated individual and that the new infection is in an unvaccinated or vaccinated individual. (a) shows a total vaccination rate of 50%, where there are an equal number of vaccinated and unvaccinated individuals in the population, while (b) shows a total vaccination rate of 78.7%, which is approximately the 90% eligible population target. (a) also shows the expected result when normalizing by population.
Figure 2a shows the results for a vaccination rate of 50% of the total population, which means that there are an equal number of unvaccinated individuals and vaccinated individuals in the population. 87% of all infections are caused by unvaccinated individuals, with 67% of all infections being from unvaccinated individuals to unvaccinated individuals. By contrast, only 13% of infections are caused by vaccinated individuals, and only 3% of these are from vaccinated to vaccinated. This illustrates the importance of vaccination in preventing individuals from (a) getting infected and (b) passing COVID-19 on to others. Figure 2a also illustrates that while the vaccine provides significant protection from getting infected, vaccinated individuals can still get infected, predominantly from unvaccinated individuals. Vaccinated individuals are 6.8x more likely to be infected by an unvaccinated individual than by a vaccinated individual. Although Figure 2a is calculated for a vaccination rate of 50%, it also gives the values that would be observed at different vaccination rates after normalizing for population. This illustrates that the majority of infections are caused by unvaccinated individuals.

Figure 2b shows the results for a total vaccination rate of 78.7%. Unvaccinated individuals are responsible for 65% of infections despite only making up 21.3% of the population. By contrast, vaccinated individuals are only responsible for 35% of infections while making up 78.7% of the population. Even at these high levels of vaccination where there are 3.7x as many vaccinated individuals as unvaccinated individuals, a new infection is almost twice as likely to be caused by an unvaccinated individual. A vaccinated individual has a 65% chance of being infected by an unvaccinated individual compared to a 35% chance of being infected by a vaccinated individual (1.9x more likely to be infected by unvaccinated individual even though there are far fewer unvaccinated individuals in the population). Figure 2b illustrates that, even at high levels of vaccination, unvaccinated individuals are the main cause for continued spread of COVID-19 with only 18% of infections from vaccinated to vaccinated. This suggests that restricting unvaccinated individuals from high-risk locations (i.e., potential super-spreader events) will help to minimize the spread of COVID-19.

Conclusions

As vaccination rates increase and the government transitions to the COVID-19 Protection Framework that replaces population level controls with vaccination certificates, there is a need to better understand the risk posed by unvaccinated versus vaccinated individuals. Here, I use a stochastic model to simulate the potential numbers of infections in an outbreak seeded by a vaccinated individual versus by an unvaccinated individual. Unvaccinated individuals are much more likely to seed an outbreak with 54% chance of causing an outbreak with over 107 cases after 31 days. By contrast, for a vaccinated seed infection, there is a 54% chance that the outbreak does not spread beyond the initial seed. Vaccinated
travelers are 9x less likely to seed an infection than unvaccinated travelers. This model does not account for testing requirements on travel and future work should combine this work with a testing model.

I also calculate the likelihood of getting infected and of infecting others based on vaccination status. Unvaccinated individuals are much more likely to spread the virus and are responsible for 87% of all infections for a vaccination rate of 50% and 65% of all infections for a vaccination rate of 78.7%. Transmission between vaccinated individuals is rare and responsible for only 3% of all infections for a vaccination rate of 50% and 18% for a vaccination rate of 78.7% (the high likelihood at higher vaccination rates reflects the increased amount of vaccination individuals in the population). This illustrates that COVID-19 is becoming a pandemic of the unvaccinated and is predominantly spread by the unvaccinated. Vaccination is essential for individual protection as well as for preventing continued spread of COVID-19.
References

