K Ras mutations predict better response to first-line monotherapy with pembrolizumab for patients with PD-L1high metastatic Non-Small Cell Lung Cancer: a retrospective study

Ella A. Eklund1,2,3, Clotilde Wiel1,2, Henrik Fagman4,5, Levent M. Akyürek4,5, Sukanya Raghavan6, Jan Nyman3,7, Andreas Hallqvist3,7, Volkan I. Sayin1,2

1Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; 2Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; 3Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden; 4Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; 5Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden; 6Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 7Department of Oncology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden

Correspondence to:
V.I.S volkan.sayin@wlab.gu.se

Keywords: lung cancer, KRAS, PD-L1, immunotherapy, biomarker

1 Abbreviations

Word count: 3048

List of abbreviations: ECOG: Eastern Cooperative Oncology Group; ICB: Immune Checkpoint Blockade; NSCLC: Non-Small Cell Lung Cancer; NGS: Next Generation Sequencing; PD: Platinum Doublet; PD-1: Programmed Cell Death 1; PD-L1: Programmed Death Ligand 1; PS: Performance Status; OS: Overall Survival; TPS: Tumor Proportion Score

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC

Abstract

Background: Pembrolizumab, a humanized antibody targeting Programmed Cell Death 1 (PD-1), is used as first-line therapy for patients with metastatic Non-Small Cell Lung Cancer (NSCLC) expressing Programmed Death Ligand 1 (PD-L1). However, not all PD-L1 expressing patients respond to pembrolizumab. Thus, there is an urgent need to identify new predictive biomarkers for response to immune checkpoint blockade (ICB) therapy. KRAS mutational status has been suggested to affect treatment outcome, but no clear consensus could be drawn for previous studies.

Methods: All consecutive patients diagnosed between 2016-2018 with metastatic NSCLC (stage IV) in the region of West Sweden with molecular characterization available were included in this multi-centers retrospective study. Primary study outcome was overall survival (OS). Baseline patients' characteristics, histology type, mutational status, PD-L1 expression and first-line treatment were collected from patient charts and the Swedish Lung Cancer registry.

Results: Out of 580 stage IV NSCLC patients, 35.5% harbored a mutation in the KRAS gene (KRASMUT). Compared to KRAS wild-type (KRASWT), KRASMUT was a negative factor for OS (\(p = 0.014\)). On multivariate analysis, KRASMUT persisted as a negative factor for OS (HR 1.288, 95% CI 1.091-1.521, \(p = 0.003\)). When treated with first-line platinum doublet, KRASMUT (\(n = 219\)) is a significant (\(p = 0.001\)) negative factor for survival with median OS 9 months vs KRASWT 14 months. Patients on KRAS mutational status and PD-L1 expression levels had a significant better OS in KRASMUT with increased PD-L1 expression (\(p = 0.036\)) but not for KRASWT. On first-line ICB, KRASMUT had a significant (\(p = 0.006\)) better outcome than KRASWT with a median OS 23 vs 6 months. On multivariable Cox analysis, KRASMUT status and Performance Status (PS) 0-1 were independent prognostic factors for better OS (HR 0.349, 95%CI 0.148-0.822, \(p = 0.016\) and HR 0.398, 95 % CI 0.165-0.963, \(p = 0.041\)).
Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC

Conclusions: KRAS mutations combined with PD-L1^{high} is a better predictive marker for response to first-line monotherapy with pembrolizumab than only PD-L1^{high} in patients with metastatic NSCLC.
Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC

Background

Non-small cell lung cancer (NSCLC) is the most commonly diagnosed cancer worldwide with 2.1 million new cases and 1.8 million deaths annually [1]. NSCLC can be treated effectively with local management of the primary tumor in early stages but the 5-year survival for patients with advanced NSCLC metastasis (stage IV) is below 10% [2, 3]. NSCLC generally tends to have a high overall mutational burden mainly due to exposure of exogenous mutagens like tobacco smoke but also air pollution, causing high genomic instability and inter-patient heterogeneity [4].

The treatment options for stage IV patients have become dependent on molecular profiling because of the introduction of small molecular kinase inhibitors (SMKIs) targeting activating mutations in EGFR, ALK, BRAF, RET and ROS1 oncogenes [5]. Unfortunately, the majority of stage IV patients do not harbor a targetable driving mutation, for which platinum-based chemotherapy doublets (PD) has been the only available treatment option until recently. The introduction of immune checkpoint blockade (ICB) targeting programmed death ligand 1 (PD-L1) or programmed cell death 1 (PD-1) proteins led to impressive clinical results [6-8]. Consequently, all stage IV patients without any clinically actionable mutations are assessed for ICB, single or in combination with chemotherapy, as a first-line treatment option [9-12]. PD-L1 expression is the only validated predictive marker for response to immunotherapy. Yet, its accuracy as an individual prediction tool is not as good as initially assumed since on one hand PD-L1 negative patients have been reported as ICB responders while on the other, many patients with tumors expressing high levels of PD-L1 are being reported as non-responders to ICB therapy [9, 13]. Along these lines, a meta-analysis of six randomized controlled trials with ICB showed that PD-L1 expression levels was neither prognostic nor predictive for OS [14].

The most frequent oncogenic driver in NSCLC is the Kirsten rat sarcoma viral oncogene (*KRAS*) present in up to 40% of all cases and the most common mutations are G12C, G12V and G12D [15, 16]. *KRAS* mutations have been considered to negatively influence the prognosis of
Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC

NSCLC, as attempts to target mutant KRAS and its downstream mediators in cancer therapy remain largely unsuccessful [4, 17]. However, two inhibitors targeting mutant KRAS-G12C have been developed but the clinical efficacy is yet to be determined in ongoing trials [18-22]. Concurrently, it has been suggested that NSCLC harboring KRAS mutations might benefit from ICB therapy compared to KRAS wild type tumors [23]. Nevertheless, retrospective real-world data have so far shown inconclusive results [23-28].

With the gradual introduction of ICB treatment in recent years, a new era for stage IV NSCLC patients began, leading to high expectations. Clinical trials have shown ICB as being superior to chemotherapy in patients harboring tumors with high tumor proportion score (TPS) ≥50% for PD-L1. These results were confirmed in a recent network meta-analysis [7, 8, 10, 29]. However, the impact of mutant KRAS was not addressed in these analyses. In addition, multiple real-world studies have reported conflicting results regarding the impact of mutant KRAS on ICB response. In early days of immunotherapy, only PD-L1 ≥ 50% patients were included in first-line ICB-treatment. We know now that PD-L1 negative patients may also respond to ICB [9, 13]. Data on PD-L1 expression is being accumulated en masse and some studies even suggest that PD-L1 expression per se might have a prognostic impact on NSCLC [30, 31].

In the present retrospective cohort study, we determined the impact of KRAS mutations and PD-L1 expression on survival outcome in stage IV NSCLC patients following first-line treatment in the region of West Sweden between 2016 and 2018.

In the Swedish national public healthcare system, all patients have access to the same cancer treatments. Thus, by including all consecutive patients diagnosed with stage IV metastatic NSCLC with molecular assessment available, this retrospective cohort study covers real-world data from West Sweden. Indeed, each NSCLC patient diagnosed in the region with available tissue sample where an adenocarcinoma component could not be excluded, gets their lung
Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC cancer systematically assessed for known driver mutations, including mutations in KRAS, using Next Generation Sequencing (NGS) technology. Hence the current retrospective cohort study offers a unique opportunity for assessing the impact of KRAS mutations on OS in patients with stage IV metastatic NSCLC receiving first-line standard of care, including patients receiving platinum doublet chemotherapy and immune checkpoint blockade.

Materials and Methods

Patient population

We conducted a multi-centers retrospective study including all consecutive NSCLC patients diagnosed with stage IV NSCLC and having molecular assessment performed between 2016-2018 in the Region Västra Götaland (region of West Sweden), Sweden (n = 580). Approval from the Swedish Ethical Review Authority (Dnr 2019-04771) was obtained prior to study commencement. All patients with available tissue sample where an adenocarcinoma component could not be excluded were systematically assessed with NGS for known genetic drivers (see below) within clinical praxis. Patient demographics (including age, gender, Eastern Cooperative Oncology Group (ECOG) performance status and smoking history), cancer stage, number of metastasis locations, pathological details (histology, mutation status including KRAS mutational status and subtype), treatment and outcome data were retrospectively collected from patient charts and the Swedish Lung Cancer Registry.

Mutational status

Patients were assessed with NGS for mutational status on DNA from FFPE blocks or cytological smears using the Ion AmpliSeq™ Colon and Lung Cancer Panel v2 from Thermo Fisher Scientific as a part of the diagnostic workup process at the Department of Clinical Pathology at Sahlgrenska University Hospital, assessing hotspot mutations in EGFR, BRAF, KRAS and NRAS. Until June 2017, ALK-fusions were assessed with immunohistochemistry (IHC), and with
Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC.

fluorescence in situ hybridization (FISH) if positive or inconclusive IHC; ROS1 was analyzed upon request with FISH. Thereafter, ALK, ROS1 and RET fusions were assessed on RNA using the Oncomine Solid Tumor Fusion Panel from Thermo Fisher Scientific.

PD-L1 expression

Programmed death ligand 1 (PD-L1) expression was determined based on percentage of tumor cells with positive membranous staining and was reported as the tumor proportion score (TPS). PD-L1; negative TPS <1%, low TPS 1%-49%, high TPS ≥50%. PD-L1 expression was detected using the PD-L1 IHC 28-8 pharmDx system during routine diagnostic workup and staining was assessed by lung pathologists.

ICB treatment

During the time period of this study, the only ICB treatment approved for first-line treatment was Pembrolizumab, a humanized antibody targeting PD-1. The criteria was PD-L1low TPS ≥1% for first-line and PD-L1low TPS ≥1% for second line of treatment.

PD treatment

Platinum doublet treatment consists of carboplatin or cisplatin in combination with one more non-platinum chemotherapy agent such as pemetrexed, vinorelbine, gemcitabine, paclitaxel, etoposide or vincristine.

Study objectives

The primary outcome of this study was OS, defined as the interval between the date of diagnostic sample collection and the date of death from any cause. Patients alive or lost to follow-up at data were censored at last contact. Median follow up time was 7 months.

We compared OS stratified on KRASWT and KRASMUT for the entire cohort, for all patients receiving life extending treatment (excluding patients receiving best supportive care or palliative...
Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC radiotherapy (e.g., single tumor radiation for pain relief), and for all patients receiving PD or ICB as first-line treatment. We also investigated the impact of TPS score (negative, low and high) on OS, stratified on KRAS mutational status.

Statistical analysis

Clinical characteristics were summarized using descriptive statistics and evaluated with univariate analysis. Kaplan Meier survival curves were generated to assess OS. Log-Rank cox-regression was used to assess significant differences in OS between groups. Multivariable Cox analysis was conducted to compensate for potential confounders. Statistical significance was set at $p<0.05$ and no adjustments were made for multiple comparisons. Data analysis was conducted using IBM SPSS Statistics version 27 and GraphPad Prism version 9.

Results

Patients and tumor characteristics

A total of 580 consecutive patients were diagnosed with stage IV NSCLC during 2016-2018 in West Sweden and for which genetic data were available were all included in this retrospective cohort study. Among these 580 patients, more than a third harbored a KRAS mutation (206, 35.5%), the majority were female (326, 56.2%), the median age was 71 years and 80% were current or former smokers (Table 1). The majority of patients (322, 55.5%) had a good Performance Status (PS) with low ECOG 0-1 at diagnosis (Table 1). Histologically, the vast majority of NSCLCs were adenocarcinoma of the lung (498, 85.9%) while squamous cell carcinoma cases were relatively low which was expected due to the selection of histological type for NGS assessment (32, 5.5%) (Table 1). In line with earlier studies, patients diagnosed with a good PS and low ECOG had a significantly better overall survival (OS), compared to patients diagnosed with a higher ECOG score ($p = 0.0001$) (Supplemental Figure. 1A) [3, 32]. In addition, higher number of metastasis locations at diagnosis correlated with poor OS ($p = 0.0002$).
Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC (Supplemental Figure. 1B), which was expected [3, 32]. Furthermore, there was a trend towards better OS for females compared to males ($p = 0.064$) (Supplemental Figure. 1C) [32, 33]. When comparing the baseline characteristics of KRAS$^\text{WT}$ with KRAS$^\text{MUT}$ patients, there were more females and a higher proportion of current and former smokers in the KRAS$^\text{MUT}$ population (Table 1).

KRAS mutations is a negative factor for overall survival in stage IV NSCLC

Survival estimates for the whole study cohort displayed that KRAS mutations was a significant negative factor for overall survival ($p = 0.014$) (Figure. 1A). On multivariate Cox analysis, KRAS$^\text{MUT}$ status and male sex were independent prognostic factors for worse OS (HR 1.288, 95%CI 1.091-1.521, $p = 0.003$ and HR 1.179, 95%CI 1.009-1.378, $p = 0.038$). The population that received any type of life extending treatment ($n = 388$), excluding patients only receiving best supportive care or palliative radiotherapy (e.g., single tumor radiation for pain relief) did not show a significant difference in OS between KRAS$^\text{MUT}$ and KRAS$^\text{WT}$ ($p = 0.095$) (Figure. 1B).

When treated with first-line PD, one of standard treatments at the time, ($n = 219$), KRAS$^\text{MUT}$ is a significant negative factor for survival ($p = 0.001$) with median OS 9 months vs KRAS$^\text{WT}$ 14 months (Figure. 2A). Baseline characteristics of the PD treated group show that the KRAS$^\text{WT}$ population is composed of a slightly larger fraction of squamous cell carcinoma than the KRAS$^\text{MUT}$ population (Supplemental Table 1). Moreover, around 20% of KRAS$^\text{WT}$ patients presented an ALK or EGFR mutation (Supplemental Table 1). To eliminate the risk of these patients driving the difference due to receiving SMKIs in the second line of treatment, we excluded all patients with EGFR mutations and ALK fusions from the KRAS$^\text{WT}$ group. In first-line PD treated patients without ALK and EGFR mutations ($n = 195$), KRAS$^\text{MUT}$ is a significant ($p = 0.018$) negative factor for survival (Figure. 2B), with median OS 9 months for KRAS$^\text{MUT}$ vs 11 months for KRAS$^\text{WT}$.
Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC

Overall survival for stage IV NSCLC treated with first-line PD or ICB stratifies based on KRAS mutational status

When comparing OS for all stage IV patients receiving PD (n = 219) or ICB (n = 37) in a first-line setting, there was no difference between the two treatment groups (p = 0.723), median OS 11 months for PD vs 13 months for ICB (Figure. 3A). KRASMUT patients treated with ICB (n = 20) had a significantly (p = 0.003) better outcome compared to patients treated with PD (n = 104), median OS 23 vs 9 months (Figure. 3B). KRASWT patients treated with ICB (n = 17) had significantly (p = 0.005) worse survival than patients treated with PD (n = 115), median OS 6 vs 14 months (Figure. 3C).

PD-L1 expression in tumors from stage IV patients is a positive factor for overall survival of KRASMUT but not KRASWT patients

Currently, tumoral PD-L1 expression is the only biomarker for ICB treatment widely used in the clinic for NSCLC [34, 35]. When analyzing all treated stage IV NSCLC patients with known PD-L1 status (n = 261) stratified on KRAS mutational status and PD-L1 expression levels (negative, low or high) (Figure. 4A), we observed that increased PD-L1 expression correlated with significant better OS in KRASMUT patients (p = 0.036, Figure 4B). KRASMUT patients clearly separate on OS between PD-L1 negative, low and high groups with median OS 6, 11 and 17 months respectively (Figure. 4B). No correlation between PD-L1 expression and OS in KRASWT patients was observed (Figure. 4C). There was a larger proportion of PD-L1high in the KRASMUT population compared to KRASWT (43.0% vs 32.7%).

The combination of KRAS mutations and ICB treatment is a positive factor for overall survival

Furthermore, we analyzed the specific impact of PD-L1high expression on OS comparing all PD-treated vs ICB-treated patients: outcome was significantly improved for KRASMUT patients on ICB treatment (p = 0.028) with median OS being 9 vs 23 months (Figure. 5A). KRASWT PD-L1high
Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC

patients displayed a significant worse outcome for patients on ICB treatment compared to PD treatment ($p = 0.010$) with median OS 6 months vs 28 months for each respective treatment (Figure. 5B).

Impact of KRAS mutational status on the outcome of first-line ICB treatment in stage IV NSCLC patients with PD-L1$^{\text{high}}$ tumors

The KRAS$^{\text{MUT}}$ group had a significantly ($p = 0.006$) better outcome on ICB treatment compared to the KRAS$^{\text{WT}}$ group with a median OS 23 vs 6 months (Figure. 5C, Supplemental Table 2). On multivariate Cox analysis, KRAS$^{\text{MUT}}$ status and ECOG PS 0-1 were independent prognostic factors for better OS following first-line ICB (HR 0.349, 95%CI 0.148-0.822, $p = 0.016$ and HR 0.398, 95%CI 0.165-0.963, $p = 0.041$).

Discussion

Whether KRAS mutations is a predictive negative factor for survival is still undetermined in the literature because of conflicting results. While some studies have previously reported KRAS mutations to be a negative factor for survival estimates [3, 17, 36], others have shown this not to be the case [37]. This retrospective study shows a clear overall survival disadvantage for KRAS$^{\text{MUT}}$ stage IV NSCLC patients, also when receiving platinum doublet treatment compared to patients that are KRAS$^{\text{WT}}$ independently of patients harboring EGFR and ALK mutations. However, when comparing overall survival for patients receiving first-line treatment with pembrolizumab monotherapy, the outcome was dramatically reversed with a clear disadvantage for KRAS$^{\text{WT}}$ patients as compared to KRAS$^{\text{MUT}}$.

Translational studies have suggested that KRAS$^{\text{MUT}}$ patients might respond well to ICB due to a larger proportion of smokers and a higher immunologically active tumor environment as a consequence of constitutive activation of KRAS signaling pathways [23-27, 32, 38, 39]. We show that KRAS$^{\text{MUT}}$ patients respond better to pembrolizumab monotherapy than platinum doublet.
Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC treatment. Surprisingly, KRASWT patients showed a worse response to pembrolizumab monotherapy than platinum doublet treatment. This could partly be explained by KRASWT being a heterogeneous group with the majority of patients not having an identified driving mutation. It is clear that additional levels of molecular profiling will be needed to stratify the responders from the non-responders. Recently, mutations in \textit{KEAP1}/\textit{NFE2L2} and \textit{STK11} have both been shown to be negative factors on NSCLC prognosis as well as implicated in treatment outcome for ICB, chemotherapy and radiation therapy [40-48].

Nevertheless, our data shows that the combination of KRASMUT and PD-L1high is a better predictive marker for response to pembrolizumab monotherapy than PD-L1high alone. This is further supported by the finding that PD-L1 status has a clear and significant impact on stratifying OS in the KRASMUT group receiving treatment (Figure. 4B) whereas there was no difference for the KRASWT group (Figure. 4C) in line with a previous study reporting a similar trend for KRAS-mutant NSCLC receiving ICB [28].

There are several retrospective studies showing different outcomes when comparing KRASMUT and KRASWT response to pembrolizumab. These discrepancies could be explained by major study design differences such as inclusion of several and different stages at diagnosis, multiple treatment lines considered and inclusion of patients with no known PD-L1 status [23-28, 32]. A recent registry study from the Netherlands reported no difference in OS for PD-L1high patients receiving first-line pembrolizumab monotherapy but the fraction of patients where \textit{KRAS} mutations status had been assessed and reported to the registry was uncertain and could only be approximated (at around 75%) [32]. However, a meta-analysis of randomized controlled trials showed a significant OS benefit for KRASMUT patients in first-line immunotherapy with or without chemotherapy vs. chemotherapy alone [39], which is in line with the current study. Among these, the retrospective analysis of the phase 3 study KEYNOTE042 indicated a clear trend towards better OS in the KRASMUT group when comparing first-line pembrolizumab versus platinum-containing chemotherapy (28 vs 11 months) than for the patients with KRASWT (15 vs 12...
Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC. In our cohort, 580 patients were assessed and 206 KRASMUT patients were identified. To the best of our knowledge, our retrospective cohort study is the largest to date comparing response to first-line ICB and PD therapy in stage IV NSCLC patients where the KRAS mutational status is known for all patients.

New predictive markers are emerging for NSCLC and our findings suggest that KRAS mutations in combination with PD-L\textsubscript{1}high is a better predictive compound biomarker than PD-L\textsubscript{1}high alone for monotherapy with pembrolizumab. We also show that patients with KRAS mutations respond poorly to platinum doublet treatment and therefore we suggest that they would benefit from a first-line treatment including ICB.

Limitations

Although this study provides real-world evidence of ICB efficacy in NSCLC patients, it is limited by its retrospective nature. All stage IV NSCLC patients that were molecularly assessed by NGS in the region of West Sweden 2016-2018 were included in this cohort study. In this time period, a relatively small number of patients were treated with first-line ICB, hence pooled analyses from multi-cohort studies will be important to expand and validate our findings. Furthermore, given that multiple KRAS-G12C-targeted therapies are showing promises in clinical trials, future studies comparing these agents and ICB in NSCLC patients with KRAS mutations will be important. Finally, our study did not take into account any potential impact of co-mutations such as \textit{STK11, TP53, SMARCA4, KEAP1 and NFE2L2} on ICB efficacy, which is something future studies will address.

Conclusion

Here we report that metastatic NSCLC patients harboring KRAS mutations respond better to monotherapy with pembrolizumab than platinum doublet chemotherapy. We also report that
Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC

KRAS mutations combined with PD-L1^{high} is a better predictive marker for response to first-line monotherapy with pembrolizumab than only PD-L1^{high} in patients with metastatic NSCLC.

Acknowledgements

We thank the Swedish Lung Cancer Registry, and the continuous reporting by Swedish healthcare employees, that made the project possible.

Funding

This work was supported by the Swedish Society for Medical Research (2018; S18-034), the Swedish Cancer Society, the Medical Research Council (2018; 2018-02318), AG Fond (2020), the Knut and Alice Wallenberg Foundation and the Wallenberg Centre for Molecular and Translational Medicine (to V.I.S.); the Gothenburg Society of Medicine (2019; 19/889991) and Department of Oncology, Sahlgrenska University Hospital (to E.A.E.); the Swedish Cancer Society and The Healthcare Board for the Region of West Sweden (to S.R); Sahlgrenska Academy, Gothenburg University (2019; GU2019-3467) (to C.W.); the Swedish government under the LUA/ALF agreement (to H.F.); the Swedish Cancer Society (2017; 17-0171) and the Swedish government under the LUA/ALF agreement (ALFGBG-495961) (to L.M.A.)

Declaration of potential conflict of interest

The authors have declared no conflicts of interest.
Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC

References

Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC.

Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC

Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC

Table 1 Characteristics of the total cohort as well as stratified on KRASWT and KRASMUT. Data are presented as n (%).

ECOG PS, Eastern Cooperative Oncology Group Performance Status.

Figure 1. KRAS mutations is a negative factor for overall survival

A. Kaplan-Meier estimates comparing overall survival and median survival stratified on KRASWT vs KRASMUT for the full cohort (n = 580). Pie chart showing patient distribution between KRASWT and KRASMUT.

B. Kaplan-Meier estimates comparing overall survival for all receiving life extending treatment (no treatment and only palliative radiotherapy excluded) stratified on KRASWT vs KRASMUT. Pie chart showing patient distribution between KRASWT and KRASMUT.

Figure 2. KRASMUT is a negative factor for overall survival when treated with platinum doublet independently of EGFR and ALK mutations.

A. Kaplan-Meier estimates comparing overall survival for all receiving treatment with platinum doublet stratified on KRASWT vs KRASMUT. Pie chart showing patient distribution between KRASWT and KRASMUT.

B. Kaplan-Meier estimates comparing overall survival for all receiving treatment with platinum doublet stratified on KRASWT vs KRASMUT. EGFR and ALK mutated patients are excluded from KRASWT group. Pie chart showing patient distribution between KRASWT and KRASMUT.

Figure 3. KRASMUT, but not KRASWT, has a better outcome on ICB than platinum doublet treatment.

A. Kaplan-Meier estimates comparing overall survival for all receiving treatment with platinum doublet vs ICB. Pie chart showing patient distribution between PD and ICB.
Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC

B. Kaplan-Meier estimates comparing overall survival for all KRASMUT receiving treatment with PD vs ICB. Pie chart showing patient distribution between platinum doublet and ICB.

C. Kaplan-Meier estimates comparing overall survival for all KRASWT receiving treatment with platinum doublet vs ICB. Pie chart showing patient distribution between PD and ICB.

ICB: Immune Checkpoint Blockade; PD: Platinum Doublet

Figure 4. PD-L1 status has an impact on overall survival for treated patients with KRASMUT

A. IHC depicting examples of PD-L1 staining used to assess PD-L1 status in both KRASWT and KRASMUT NSCLC patients. PD-L1 expression is classified as negative, <50% or ≥50% based on tumor proportion score.

B. Kaplan-Meier estimates comparing overall survival for KRASMUT treated patients stratified on PD-L1 status. Pie chart showing patient distribution between PD-L1 negative, <50% and ≥50%.

C. Kaplan-Meier estimates comparing overall survival for KRASWT treated patients stratified on PD-L1 status. Pie chart showing patient distribution between PD-L1 negative, <50% and ≥50%.

IHC: Immunohistochemistry; PD-L1: Programmed Death Ligand 1

Figure 5. KRASMUT patients have a better outcome on ICB treatment than KRASWT patients

A. Kaplan-Meier estimates comparing overall survival for KRASMUT PD-L1 ≥50% treated patients receiving PD or ICB. Pie chart showing patient distribution receiving PD or ICB treatment.

B. Kaplan-Meier estimates comparing overall survival for KRASWT PD-L1≥50% treated patients receiving PD or ICB. Pie chart showing patient distribution receiving PD or ICB treatment.

C. Kaplan-Meier estimates comparing overall survival for all patients receiving ICB treatment in a first-line setting. Pie chart showing patient distribution between KRASWT and KRASMUT.

ICB: Immune Checkpoint Blockade; PD: Platinum Doublet
Mutant KRAS is a biomarker for response to pembrolizumab for patients with metastatic NSCLC

Supplemental Figure 1

A. Kaplan-Meier estimates comparing overall survival for the full cohort stratified on ECOG PS. Pie chart showing patient distribution between ECOG stages.

B. Kaplan-Meier estimates comparing overall survival for the full cohort stratified on number of metastasis locations. Pie chart showing patient distribution between number of metastasis locations.

C. Kaplan-Meier estimates comparing overall survival for the full cohort stratified on gender. Pie chart showing patient distribution between male and female.

ECOG: Eastern Cooperative Oncology Group; PS: Performance Status

Supplemental Table 1 (Related to Figure 2A)
Characteristics of all PD treated patients.

Supplemental Table 2 (Related to Figure 5A)
Characteristics all patients treated with first-line ICB
A. All stage IV patients

- KRAS WT
- KRAS MUT

Cumulative Survival

- Median survival: 206 months (KRAS WT), 374 months (KRAS MUT)
- \(p = 0.014 \)

B. Treated patients

- KRAS WT
- KRAS MUT

Cumulative Survival

- Median survival: 130 months (KRAS WT), 258 months (KRAS MUT)
- \(p = 0.095 \)
Figure 2

Panel A: Patients treated with PLATINUM DOUBLET

- KRAS WT (14 months, median survival: 11 months, n = 115)
- KRAS MUT (9 months, median survival: 9 months, n = 104)

Panel B: PLATINUM DOUBLET treated patients with EGFR and ALK mutated excluded

- KRAS WT (11 months, median survival: 11 months, n = 104)
- KRAS MUT (9 months, median survival: 9 months, n = 91)

p = 0.001 (Panel A) and p = 0.018 (Panel B)
Eklund et al. Figure 3

A

All treated

0.6
0.8
0.0
1.0
0.2
0.4
Cumulative Survival

0 20 40 60

KRAS MUT

PD
(11 months)

ICB
(13 months)

\(p = 0.723 \)

B

KRAS MUT

median survival

n = 124

0.6
0.8
0.0
1.0
0.2
0.4
Cumulative Survival

0 20 40 60

PD
(9 months)

ICB
(23 months)

\(p = 0.003 \)

C

KRAS WT

median survival

n = 132

0.6
0.8
0.0
1.0
0.2
0.4
Cumulative Survival

0 20 40 60

PD
(14 months)

ICB
(6 months)

\(p = 0.005 \)
Eklund et al. Figure 4

A

PD-L1: Negative
KRAS MUT

PD-L1:
Negative
Low
High

KRAS WT

B

KRAS MUT
Treated patients

Cumulative Survival
0.0
0.2
0.4
0.6
0.8
1.0
0
20
40
60
Months

median survival

n = 93

p = 0.036

PD-L1:
Negative
<50 %
≥50 %

C

KRAS WT
Treated patients

Cumulative Survival
0.0
0.2
0.4
0.6
0.8
1.0
0
20
40
60
Months

median survival

n = 168

p = 0.157
Eklund et al. Figure 5

A. ICB treated patients

- KRAS MUT
 - PD-L1 ≥ 50%
 - Cumulative Survival
 - Median survival: 20 months (9 months), 20 months (23 months)

- KRAS WT
 - PD-L1 ≥ 50%
 - Cumulative Survival
 - Median survival: 20 months (9 months), 20 months (23 months)

- KRAS WT
 - PD-L1 < 50%
 - Cumulative Survival
 - Median survival: 20 months (6 months)

B. KRAS WT

- PD-L1 ≥ 50%
 - Cumulative Survival
 - Median survival: 20 months (9 months), 13 months (28 months)

- PD-L1 < 50%
 - Cumulative Survival
 - Median survival: 20 months (6 months)

C. ICB treated patients

- KRAS WT
 - Cumulative Survival
 - Median survival: 17 months (6 months)

- KRAS MUT
 - Cumulative Survival
 - Median survival: 17 months (23 months)
Characteristics all patients stage IV

<table>
<thead>
<tr>
<th>Metric</th>
<th>Total</th>
<th>KRAS WT</th>
<th>KRAS MUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>580 (100)</td>
<td>374 (64.5)</td>
<td>206 (35.5)</td>
</tr>
<tr>
<td>Age in years, median (range)</td>
<td>71 (24-94)</td>
<td>70.5 (24-94)</td>
<td>71 (46-90)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>254 (43.8)</td>
<td>173 (46.3)</td>
<td>81 (39.3)</td>
</tr>
<tr>
<td>Female</td>
<td>326 (56.2)</td>
<td>201 (53.7)</td>
<td>125 (60.7)</td>
</tr>
<tr>
<td>Smoking history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td>192 (33.1)</td>
<td>117 (31.4)</td>
<td>75 (36.4)</td>
</tr>
<tr>
<td>Former smoker</td>
<td>270 (46.6)</td>
<td>152 (40.6)</td>
<td>118 (57.3)</td>
</tr>
<tr>
<td>Never smoker</td>
<td>116 (20)</td>
<td>103 (27.5)</td>
<td>13 (6.3)</td>
</tr>
<tr>
<td>Missing</td>
<td>2 (0.3)</td>
<td>2 (0.5)</td>
<td>0</td>
</tr>
<tr>
<td>Performance status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECOG 0</td>
<td>79 (13.6)</td>
<td>48 (12.8)</td>
<td>31 (15.0)</td>
</tr>
<tr>
<td>ECOG 1</td>
<td>243 (41.9)</td>
<td>142 (38.0)</td>
<td>101 (49.0)</td>
</tr>
<tr>
<td>ECOG 2</td>
<td>154 (26.6)</td>
<td>99 (26.5)</td>
<td>55 (26.7)</td>
</tr>
<tr>
<td>ECOG 3</td>
<td>74 (12.8)</td>
<td>57 (15.2)</td>
<td>17 (8.3)</td>
</tr>
<tr>
<td>ECOG 4</td>
<td>19 (3.3)</td>
<td>17 (4.5)</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>Missing</td>
<td>11 (1.9)</td>
<td>11 (2.9)</td>
<td>0</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>498 (85.9)</td>
<td>316 (84.5)</td>
<td>128 (85.9)</td>
</tr>
<tr>
<td>NSCLC NOS</td>
<td>50 (8.6)</td>
<td>28 (7.5)</td>
<td>19 (12.8)</td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>32 (5.5)</td>
<td>30 (8.0)</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>Mutation status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None known</td>
<td>231 (39.8)</td>
<td>231 (71.8)</td>
<td></td>
</tr>
<tr>
<td>ALK</td>
<td>19 (3.3)</td>
<td>19 (5.1)</td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td>85 (14.7)</td>
<td>85 (22.7)</td>
<td></td>
</tr>
<tr>
<td>BRAF</td>
<td>20 (3.4)</td>
<td>20 (5.3)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>15 (2.6)</td>
<td>15 (4)</td>
<td></td>
</tr>
<tr>
<td>ROS1</td>
<td>2 (0.3)</td>
<td>2 (0.5)</td>
<td></td>
</tr>
<tr>
<td>RET</td>
<td>2 (0.3)</td>
<td>2 (0.5)</td>
<td></td>
</tr>
<tr>
<td>KRAS</td>
<td>206 (35.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRAS submutation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G12A</td>
<td>14 (6.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G12C</td>
<td>83 (40.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G12D</td>
<td>23 (11.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G12V</td>
<td>43 (20.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q61H</td>
<td>10 (4.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>33 (16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At last follow up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alive</td>
<td>97 (16.7)</td>
<td>69 (18.4)</td>
<td>28 (13.6)</td>
</tr>
<tr>
<td>Deceased</td>
<td>483 (83.3)</td>
<td>305 (81.6)</td>
<td>178 (86.4)</td>
</tr>
<tr>
<td>Survival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median survival (months)</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>No. of metastatic locations at diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>361 (62.2)</td>
<td>234 (62.6)</td>
<td>127 (61.7)</td>
</tr>
<tr>
<td>2</td>
<td>153 (26.4)</td>
<td>101 (27.0)</td>
<td>52 (25.2)</td>
</tr>
<tr>
<td>3</td>
<td>47 (8.1)</td>
<td>30 (8.0)</td>
<td>17 (8.3)</td>
</tr>
<tr>
<td>>3</td>
<td>11 (1.9)</td>
<td>3 (0.8)</td>
<td>8 (3.9)</td>
</tr>
<tr>
<td>Missing</td>
<td>8 (1.4)</td>
<td>6 (1.6)</td>
<td>2 (1.0)</td>
</tr>
</tbody>
</table>