NREM sleep signatures of 22q11.2DS

Title Page

Article Title

NREM sleep signatures of memory disruption and psychiatric symptoms in young people with 22q11.2 deletion syndrome

Short Title

NREM sleep signatures of 22q11.2DS

Authors

Donnelly NA1,2, *; Bartsch U3,4, *, #; Moulding HA5; Eaton C5; Marston H4, 5; Hall JE5; Hall J5; Owen MJ5; van den Bree MBM5†; Jones MW3†

*These authors contributed equally

†These authors contributed equally

Affiliations:

1 Centre for Academic Mental Health, Population Health Sciences, University of Bristol, Bristol, UK
2 Avon and Wiltshire Partnership NHS Mental Health Trust, UK
3 School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
4 Translational Neuroscience, Eli Lilly & Co Ltd UK, Erl Wood Manor, Windlesham, UK
5 Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK

current address: UK DRI Health Care & Technology at Imperial College London and the University of Surrey, Surrey Sleep Research Centre, University of Surrey, Clinical Research Building, Egerton Road, Guildford, Surrey, GU2 7XP

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
NREM sleep signatures of 22q11.2DS

$ current address: Böhringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany

Correspondence:

nick.donnelly@bristol.ac.uk

Keywords

- 22q11.2 Deletion Syndrome
- Neurodevelopmental Disorders
- Psychosis
- Sleep
- EEG
- Biomarkers
NREM sleep signatures of 22q11.2DS

Abstract

Background

Young people with 22q11.2 Deletion Syndrome (22q11.2DS) are at increased risk of schizophrenia, intellectual disability, Attention-Deficit Hyperactivity Disorder (ADHD) and autism spectrum disorder. In common with these conditions, 22q11.2DS is also associated with sleep problems. We investigated whether abnormal sleep or sleep-dependent network activity in 22q11.2DS may reflect convergent, early signatures of neural circuit disruption also evident in associated neurodevelopmental conditions.

Methods

We recorded high-density sleep EEG in young people (6-20 years) with 22q11.2DS (n=28) and their unaffected siblings (n=17), quantifying the associations between sleep architecture, EEG oscillations (spindles and slow-waves) and psychiatric symptoms. We also measured performance on a memory task before and after sleep.

Results

22q11.2DS was associated with significant alterations in sleep architecture, including a greater proportion of N3 sleep and lower proportions of N1 and REM sleep than in siblings. During NREM sleep, deletion carriers showed increased power in slow delta and sigma oscillations, increased slow-wave and spindle amplitudes, and altered coupling between spindles and slow-waves. Spindle and slow-wave amplitudes correlated positively with overnight memory in controls, but negatively in 22q11.2DS. Mediation analyses indicated that increased slow-wave amplitude in 22q11.2DS was statistically mediated via ADHD symptoms.

Conclusions

This first study of sleep EEG in 22q11.2DS highlights several alterations in EEG signatures of NREM sleep, some of which were associated with ADHD symptoms. ADHD symptoms have previously been associated with incident psychotic symptoms in 22q11.2DS; our findings may therefore reflect
NREM sleep signatures of 22q11.2DS

delayed or compromised neurodevelopmental processes which precede, and may be biomarkers for, psychotic disorders.
NREM sleep signatures of 22q11.2DS

Introduction

22q11.2 microdeletion syndrome (22q11.2DS) is caused by a deletion spanning a ~2.6 megabase region on the long arm of chromosome 22. It occurs in ~1:3,000-4,000 births and is associated with increased risk of neuropsychiatric conditions including intellectual disability, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and epileptiform activity (Niarchou et al., 2014; Cunningham et al., 2018; Eaton et al., 2019; Moulding et al., 2020). In addition, 22q11.2DS has the largest association with schizophrenia risk of any known genetic polymorphism, with up to 41% of adults with 22q11.2DS having psychotic disorders (Karayiorgou et al., 1995; Monks et al., 2014; Schneider et al., 2014). However, the neurophysiological mechanisms linking 22q11.2DS and psychiatric symptoms remain unclear.

The electroencephalogram (EEG) during non-rapid eye movement (NREM) sleep contains spindle and slow-wave (SW) oscillations: conserved, well-characterized and non-invasively measurable features generated by corticothalamic networks (Adamantidis et al., 2019). The properties and coordination of these oscillations could serve as biomarkers for dysfunction in neuropsychiatric disorders (Gardner et al., 2014; Manoach et al., 2016; Ferrarelli and Tononi, 2017). Sleep, and sleep EEG features including spindles, SWs and their co-ordination, are altered in first-episode psychosis, people with schizophrenia and their relatives, and are linked to cognitive deficits (Chouinard et al., 2004; Cohrs, 2008; Ferrarelli et al., 2007, 2010; Göder et al., 2015; Bartsch et al., 2019; Demanuele et al., 2017; Wamsley et al., 2012; Manoach and Stickgold, 2019; Castelnovo et al., 2017; Keshavan et al., 1998). However, the extent to which sleep signatures precede and predict the clinical manifestation of psychotic symptoms remains unclear. Given that 22q11.2DS markedly increases schizophrenia risk, relating 22q11.2DS EEG features to psychopathology affords a unique opportunity to clarify the relationship between sleep EEG and psychiatric risk. Further, ADHD, another disorder prevalent in 22q11.2DS, is also associated with both disrupted sleep (Lunsford-Avery et al., 2016) and sleep EEG changes (Gorgoni et al., 2020). This association is directly relevant to understanding the risk of developing schizophrenia because ADHD symptoms in 22q11.2DS are associated with later incidence of psychotic symptoms (Niarchou et al., 2018, 2019).
NREM sleep signatures of 22q11.2DS

We have recently shown that young people with 22q11.2DS have distinct sleep problems, particularly insomnia and sleep fragmentation, that associate with psychopathology (Moulding et al., 2020). However, this analysis was based on parental report; the electrophysiological properties of sleep in this condition remain unexplored. We hypothesized that 22q11.2DS would be associated with alterations in the NREM sleep like those seen in schizophrenia: reduced spindle events and aberrant spindle-SW coupling relative to controls. We investigated these hypotheses with a cross-sectional study of young people with 22q11.2DS and unaffected sibling controls, combining detailed neuropsychiatric assessments with overnight high-density EEG recording and a sleep dependent memory consolidation task.
NREM sleep signatures of 22q11.2DS

Methods and Materials

Participants and study recruitment

Participants were recruited as part of the previously described, ongoing Experiences of Children with Copy number variants (ECHO) study (Moulding et al., 2020). Where available, a sibling (n = 17) without the deletion closest in age to the participant with 22q11.2DS (n = 28) was invited to participate as a control. The presence or absence of the deletion was confirmed by a Medical Genetics laboratory and/or microarray analysis in the MRC Centre for Neuropsychiatric Genetics and Genomics laboratory at Cardiff University.

Prior to recruitment, primary carers consented for all participants and additional consent was obtained from participants aged ≥16 years with capacity. The protocols used in this study were approved by the NHS Southeast Wales Research Ethics Committee.

Age and sex characteristics of the study sample are shown in Table 1. Of participants with 22q.11.2DS, four were prescribed melatonin, one was prescribed methylphenidate (Medikinet) for ADHD and one was prescribed sertraline for “mood”. No controls were prescribed psychiatric medication. No study participant reported a diagnosis of epilepsy or seizure disorder. All data were collected during study team visits to participants’ family home.

Psychiatric characteristics and IQ

Psychopathology and subjective sleep quality was measured by the research diagnostic Child and Adolescent Psychiatric Assessment (CAPA) interview (Angold et al., 1995) with either the participant or primary carer. Participants were also screened for Autism-Spectrum Disorder (ASD) symptoms using the Social Communication Questionnaire (SCQ, (Rutter et al., 2003)), completed by the primary carer. Full-Scale IQ (FSIQ) was measured using the Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999).
NREM sleep signatures of 22q11.2DS

Sleep-dependent memory consolidation task

The effect of sleep on participants’ memory performance was evaluated using a 2D object location task (Wilhelm et al., 2008) implemented in E-Prime. Participants completed a learning and test session the evening before the EEG recording, and a recall session the next morning. In the task, a 5 x 6 grid of covered square “cards” was presented on a laptop screen. During learning, successive pairs (n = 15) of cards were revealed for 3 seconds, showing matching images of everyday objects and animals. During recall, one of each pair was uncovered, and subjects were required to select the covered location of the matching pair.

In the evening, learning and recall sessions alternated until participants reached a performance criterion of 30% accuracy. The next morning a test session was carried out with a single recall session.

Polysomnography data acquisition

High-density EEG and video was acquired with a 60 channel Geodesic Net (Electrical Geodesics, Inc. Eugene, Oregon, USA) and a BE Plus LTM amplifier running the Galileo acquisition software suite (EBNeuro S.p.A, Florence, Italy). Additional polysomnography channels including EOG, EMG, ECG, respiratory inductance plethysmography, pulse oximetry and nasal airflow were recorded with an Embla Titanium ambulatory amplifier. EEG and other PSG signals were acquired at 512 Hz sampling rate with a 0.1 Hz high pass filter.

Sleep scoring

Sleep scoring was performed by an experienced scorer on a standard PSG montage (6 EEG + all PSG channels) according to Academy of American Sleep Medicine criteria. Artefact and Wake epochs of EEG were discarded from further analysis. Sleep architecture was quantified using standard derived variables: total sleep time, sleep efficiency, latencies to N1 and REM sleep and proportion of time spent in N1, N2, N3 and REM sleep.
NREM sleep signatures of 22q11.2DS

EEG data analysis

Pre-processing

EEG data was pre-processed in MATLAB (Mathworks, Nantick, MA, USA) using the *EEGLAB* toolbox (Delorme and Makeig, 2004) with the *EEGLAB PREP* plugin (Bigdely-Shamlo *et al.*, 2015) and independent components analysis conducted using the Multiple Artifact Rejection Algorithm (*MARA*) toolbox (Winkler *et al.*, 2011, 2014) to remove common artefacts such as EOG. We then applied an automated iterative epoch-level artefact removal process to N2 and N3 epochs using two sets of criteria (Purcell *et al.*, 2017): removing epochs where the beta (16 – 25 Hz) or delta (1 – 4 Hz) power exceeded a threshold of 2 or 2.5 SD relative to the flanking 14 epochs. The resulting set of epochs were then filtered based on whether an epoch had > 5% clipped signals and an iterative process of removing epochs based on their having a signal RMS or score on the first 3 Hjorth parameters (Hjorth, 1970) that exceeded 2 SD of the whole-signal SD (*Supplementary Methods and Materials, Supplementary Figure 1*).

Time-frequency Analysis

We calculated whole-night spectrograms using the multitaper method (Bokil *et al.*, 2010) with a 30 second window advanced in steps of 10 seconds and a bandwidth of 1 Hz. The EEG power spectral density (PSD) was calculated for frequencies between 0.25 and 20 Hz using Welch’s periodogram and converted to decibels (10*log10 (microvolts^2)). We calculated average power in slow delta (< 1.5 Hz) and sigma bands (10 – 16 Hz), and the sigma-band frequency with maximum power, for each N2 and N3 epoch.

Spindle Detection

Spindles were detected from epochs of N2 and N3 sleep EEG using an automated detector based on previously validated methods (Purcell *et al.*, 2017; Djonlagic *et al.*, 2020). Putative spindle cores were identified from the continuous wavelet transform (13 Hz center frequency, *Supplementary Methods and Materials, Supplementary Figure 2*) of the EEG signal, with a main threshold of 3x the median and a secondary threshold of 1.5x the median. We took putative spindles to be crossings of the main threshold flanked with secondary threshold crossings with a minimum event duration of...
NREM sleep signatures of 22q11.2DS

0.5 seconds and a maximum duration of 3 seconds. From each putative spindle we extracted the amplitude and frequency and calculated the average density of spindles across all N2+N3 epochs.

Slow-Wave Detection

Slow-wave (SW) events were detected using previously described methods (Djonlagic et al., 2020), from band-pass filtered EEG (0.5-4 Hz), as negative half-waves which had an amplitude 2x greater than the signal median for all negative half-waves, a minimum length of 0.5 seconds and a maximum length of 2 seconds. From each SW we extracted the amplitude and duration, and the average SW density over all N2+N3 epochs.

Spindle–SW Coupling

Spindle-SW coupling was measured using three complementary metrics previously validated for scalp EEG (Djonlagic et al., 2020): (1) the proportion of detected spindles whose peaks overlapped a detected SW; (2) the mean resultant length (MRL) of the SW phase at the time of peak spindle amplitude, for spindles which overlapped a detected SW; (3) the mean SW phase angle at the peak of spindles that overlap with SW. For the overlap and MRL measures, we converted the raw measure to a z-score using a resampling distribution calculated by randomly shuffling each spindle peak 1000 times within its local 30 second epoch (overlap measure) or shuffling only within the overlapping detected SW (MRL measure). This procedure created a null distribution from which z-scores were calculated.

Statistical analysis

Psychiatric, Sleep Architecture and Memory Data

Psychiatric scores and sleep architecture features were analyzed using linear mixed models in R 4.1.0 (Bates, 2010; R Development Core Team, 2017), with subject family as a random intercept. For the memory task, the number of learning cycles to reach the 30% performance criterion was modeled using mixed effects Cox Proportional Hazard Regression; accuracy in the morning test session was modelled using a binomial model. In both models, genotype was the independent variable, age and sex were included as covariates.
NREM sleep signatures of 22q11.2DS

Sleep High-Density EEG Data

We used two statistical approaches to analyze sleep EEG derived features (15 measures from 60 channels). First, we used multilevel generalized additive mixed models (GAMMs (Pedersen et al., 2019)) applied to EEG data from all 60 electrodes in one model, with sex and age as a covariates and participant identity nested in family identity as a random intercept. In addition to generating main effects for all covariates (Table 2); this approach allowed us to generate topographic plots of group differences by taking samples from model fitted values across a grid of locations, highlighting spatial locations where the effect of group was significant (Supplementary Methods and Materials).

Second, we fit linear mixed models for each electrode, with the EEG measure as dependent variable, group as independent variable, age and gender as covariates, and family identity as a random intercept. Multiple comparisons were controlled for using the False Discovery Rate (FDR, set at q<0.05 (Benjamini and Hochberg, 1995)) across all electrodes and EEG measures.

Memory Task – EEG Correlation Models

For each electrode, we fit a generalized linear mixed model with number of hits in the morning recall session as dependent variable, the interaction between an EEG measure and group as independent variable, and gender and age as covariates, with family identity as a random intercept. We corrected p-values using the FDR method and electrodes with a significant interaction were displayed on topographical plots.

EEG Mediation Models

We fit mediation models (Imai et al., 2010) for each pair of a psychiatric measure or IQ (ADHD, Anxiety, ASD symptoms, Psychotic Experiences or FSIQ) and EEG measures (except phase angle). From each model we extracted the estimated direct and mediated effects and constructed topographical plots of the mediated effect values. We adjusted p-values using the FDR method.
NREM sleep signatures of 22q11.2DS

Results

Psychopathology and sleep architecture in 22q11.2 DS

We analyzed psychiatric measures derived from CAPA interviews in 22q11.2DS (n = 28), compared to control siblings (n = 17, Table 1). Participants with 22q11.2DS reported more sleep problems (Odds Ratio [95% confidence interval] = 6.27 [2.12, 18.56], p = 0.001), anxiety (OR = 3.10 [1.93, 4.99], p < 0.001), ADHD (OR = 9.46 [5.12 – 17.48], p < 0.001), and ASD symptoms (OR = 7.46 [4.76, 11.70], p < 0.001), and had a lower mean FSIQ (group difference = -28.70 [-40.48, -16.92], p < 0.001). Participants with 22q11.2DS reported more psychotic experiences, but this was not significant (OR = 4.05 [0.67, 43.67], p = 0.096).

We also analyzed variables associated with higher sleep problem count: younger age, 22q11.2DS genotype and anxiety symptoms were associated with more sleep problems; but gender, family income, psychotic experiences, ADHD or ASD symptoms were not (Supplementary Table 1).

A comparison of sleep architecture measures is shown in Figure 1 and Table 1. Although Total Sleep Time and Sleep Efficiency were similar in both groups, the percentage of N1 (group difference = -2.71 [-5.05, -0.36], p = 0.044) and REM sleep (group difference = -4.20 [-7.10, -1.30], p = 0.012) was reduced in 22q11.2DS, while percentage of N3 sleep was increased (group difference = 5.47 [1.98, 8.96], p = 0.009). There were no significant relationships between sleep architecture and psychiatric measures or FSIQ in 22q11.2DS (Supplementary Table 2).

Increased NREM slow delta and sigma power in 22q11.2DS

Given the above evidence for altered proportions of NREM sleep in 22q11.2DS and consistent reports of abnormal NREM neurophysiology in schizophrenia and ADHD patients (Keshavan et al., 1998; Ferrarelli et al., 2007, 2010; Cohrs, 2008; Wamsley et al., 2012; Göder et al., 2015; Manoach et al., 2016; Castelnovo et al., 2017; Bartsch et al., 2019; Gorgoni et al., 2020), we next used spectral analyses to quantify NREM sleep EEG oscillations in our sample. Figure 2A and B show example spectrograms from electrode F3 for a pair of siblings; one control (Figure 2A), one with 22q11.2DS (Figure 2B). During NREM sleep, PSD at representative frontal (F3), central (C3), and occipital (O1)
NREM sleep signatures of 22q11.2DS electrodes demonstrated characteristic sigma (10 – 16 Hz) power, and slow delta (< 1.5 Hz) power peaks in both groups (Figure 2C-D and F-G). A detailed topographical analysis revealed that 22q11.2DS showed higher global slow delta power during N2 and N3 sleep and higher sigma power in fronto-lateral regions during N2 and N3 sleep (Figure 2E and H).

Fitting GAMMs to our full 60 channel dataset confirmed that mean sigma and mean slow delta power was significantly increased in N2 and N3 sleep in 22q11.2DS (Table 2).

We next analyzed how age relates to spectral properties of NREM sleep. There was a negative correlation between slow delta power and age, and sigma frequency increased with age in both N2 and N3 sleep. In per electrode analyses (Supplementary Figure 3A-B), age effects on sigma frequency were limited to central and lateral electrodes, whereas decreased slow delta power occurred across the scalp. The spectral fingerprints of NREM EEG in young 22q11.2DS carriers are therefore age-dependent but differ from those of adult schizophrenia patients.

Increased Spindle Amplitude in 22q11.2DS

To further interrogate the thalamocortical oscillations underlying altered spectral power, we detected individual spindle events using automated detection algorithms. Examples of the average waveforms of spindle oscillations detected on electrodes F3, C3 and O1 in a sibling pair are shown in Figure 3A.

Figure 3B demonstrates the distribution of average spindle properties (density, amplitude and frequency) for all individuals. Participants with 22q11.2DS showed increased spindle amplitude across fronto-lateral regions, but no change in spindle density or frequency (Figure 3C).

GAMM analysis confirmed that spindle amplitude was greater in 22q11.2DS and showed that age was positively associated with spindle density and spindle frequency (Table 2). Age was positively correlated with spindle density and frequency across frontal electrodes, and negatively correlated with spindle amplitude on some frontal and central electrodes (Supplementary Figure 3C).
NREM sleep signatures of 22q11.2DS

Increased Slow-Wave Amplitude in 22q11.2DS

We detected individual slow-wave (SW) events using automated detection algorithms. Example average SW waveforms for a sibling pair are shown in Figure 4A, and the distribution of average SW properties (density, amplitude and duration) across all participants are shown in Figure 4B.

Compared to controls, 22q11.2DS was associated with increased SW amplitude across the scalp, increased SW density in a restricted central and temporal region, and reduced SW duration in a central and posterior temporal region (Figure 4C).

In GAMM analysis (Table 2), 22q11.2DS was associated with larger SW amplitude and shorter SW duration; age was negatively associated with SW amplitude. In per-electrode analysis, age correlated positively with SW density on posterior electrodes, negatively with SW amplitude across the scalp, and there was a negative correlation between age and SW duration limited to central electrodes (Supplementary Figure 3D).

Altered Spindle-SW Coupling in 22q11.2DS

Spindle and SW events can occur in precise temporal relationships during NREM sleep (Demanuele et al., 2017; Latchoumane et al., 2017; Helfrich et al., 2018; Bartsch et al., 2019; Djonlagic et al., 2020). An example of an overlapping spindle and SW detection is shown in Figure 5A. We calculated the proportion of detected spindles overlapping a detected SW (Figure 5B), and the mean resultant length (MRL) of the SW phase angle at the peak of each spindle (Figure 5C).

Fewer spindles overlapped with SWs in 22q11.2DS compared to siblings across frontal regions (Figure 5D), but the MRL of spindles overlapping SWs was greater in 22q11.2DS centrally.

GAMM analysis demonstrated that spindle-SW MRL was greater in 22q11.2DS (Table 2); in per-electrode analysis there was reduced spindle-SW overlap and increased spindle-SW MRL limited to a small number of frontal and central electrodes (Supplementary Figure 3E).

The mean angle of spindle-SW coupling showed a non-uniform distribution (Figure 5E). The preferred coupling angle in 22q11.2DS was earlier in the SW cycle than in controls across a posterior-central region (Figure 5F), and in GAMM models, the overall coupling angle decreased with age.
NREM sleep signatures of 22q11.2DS

NREM Signatures of Sleep Dependent Memory Consolidation

Of 42 participants who engaged in a 2D object location task (Figure 6A), participants with 22q11.2DS showed delayed learning (Hazard Ratio [95%CI] = 0.328 [0.151, 0.714], p = 0.005, Figure 6B, Table 3) and made fewer correct responses in the morning test session (OR = 0.631 [0.45, 0.885], p = 0.008, Figure 6C, Table 4). There were no significant relationships between any psychiatric measure, or FSIQ, and learning or accuracy in the morning test session.

Focusing on NREM features which demonstrated group differences (spindle amplitude, SW amplitude, spindle-SW overlap and spindle-SW MRL), we tested whether NREM features interacted with group effects on accuracy in the morning test session, i.e., correlated with overnight memory consolidation. There were significant negative interactions between group and spindle and SW amplitude across multiple central and posterior electrodes: higher spindle and SW amplitudes were associated with higher accuracy in controls; in 22q11.2DS, higher amplitudes were associated with lower performance (Figure 6D-E) and, for three central electrodes, we observed a positive interaction between group and spindle-SW MRL.

Mediation of Genotype Effects on NREM Features by Psychiatric Symptoms

Finally, we investigated whether the effects of 22q11.2DS genotype on NREM features were best interpreted as direct or were rather mediated via psychiatric symptoms using mediation models (Figure 7A). There was a significant mediation of genotype effects on SW amplitude by ADHD symptoms across the scalp (Figure 7B), but no evidence to suggest consistent mediation by anxiety or ASD symptoms, psychotic experiences, or sleep problems.
Discussion

We performed the first analysis of psychiatric symptoms, sleep architecture, NREM sleep EEG characteristics and sleep dependent memory consolidation in 22q11.2DS. Compared with unaffected control siblings, 22q11.2DS was associated with decreased N1 and REM sleep, increased N3 sleep, increased spindle and SW amplitudes, reduced spindle-SW overlap, and increased spindle-SW phase coupling. The relationship between spindle and SW features and performance of a spatial memory task differed by group, with a positive correlation between spindle and SW amplitude and performance in controls, but a negative relationship in 22q11.2DS. Finally, group differences in SW amplitude were mediated by ADHD symptoms.

Our previous questionnaire-based results showed that sleep disruption, particularly insomnia and restless sleep, is associated with psychopathology in 22q11.2DS (Moulding et al., 2020). We extend these findings using objective polysomnography, demonstrating 22q11.2DS-associated decreased N1 and REM sleep, increased N3 sleep, but no changes in sleep efficiency or total sleep time. Although the bases of these changes in sleep architecture remain unknown, genes in the deleted region of chromosome 22 have been implicated in sleep regulation (Maurer et al., 2020). In relation to neurodevelopmental disorders, sleep architecture is heterogenous in young people with ADHD and ASD, as it is in adult schizophrenia patients (Chouinard et al., 2004; Cohrs, 2008); it therefore appears unlikely that sleep macrostructure will prove a useful biomarker or prognostic indicator of later neurodevelopmental diagnoses in 22q11.2DS.

Whilst measures of sleep architecture are variable, adult schizophrenia is consistently associated with reduced spindle activity (Ferrarelli et al., 2007, 2010). We therefore hypothesized that we would observe reductions in spindle density in at least a subset of our 22q11.2DS sample. In contrast, we observed increased spindle amplitude and found no evidence of mediation of genotype effects on any EEG measure by psychotic experiences (present in 36% of young people with 22q11.2DS and 12% of controls). The most parsimonious explanation for these unexpected results is the neurodevelopmental stage of the young people in our study. Spindle properties change across the lifespan (Purcell et al., 2017; Djonlagic et al., 2020; Hahn et al., 2020; Zhang et al., 2021); therefore...
NREM sleep signatures of 22q11.2DS

spindle abnormalities in adults with schizophrenia could reflect the consequence of developmental and/or maturational processes which have not yet occurred in our young sample. Supporting this hypothesis, increased spindle amplitudes and densities have been observed in healthy adolescents with raised polygenic risk scores for schizophrenia (Merikanto et al., 2019); thus increased spindle activity in young, at-risk populations may precede reduced spindle activity in adult patients.

Previous studies have reported complex interrelationships between schizophrenia, spindles, SWs and spindle-SW coupling (Wamsley et al., 2012; Demanuele et al., 2017; Bartsch et al., 2019), with differences likely to reflect changes in the thalamo-cortical and cortico-thalamic mechanisms producing and modulating these oscillations. Furthermore, these oscillations, and their coupling, are known to change over the lifespan (Purcell et al., 2017; Hahn et al., 2020; Zhang et al., 2021). We speculate that changes in cortical excitability in 22q11.2DS may underlie higher-amplitude SWs, producing alterations in the persistence of cortical UP-states and consequent cortico-thalamic drive; this may in turn lead to more consistent timing of spindles relative to slow-waves. Such mechanisms could be tested non-invasively using transcranial or auditory stimulation during NREM to probe thalamocortical excitability in 22q11.2DS (Massimini et al., 2007; Ngo et al., 2013; Henin et al., 2019).

Adult patients diagnosed with schizophrenia show complex, altered relationships between NREM features and procedural and declarative memories (Wamsley et al., 2012; Bartsch et al., 2019). Our finding of opposite relationships between task performance and NREM measures between 22q11.2DS and control participants could represent an inverse U-shaped relationship, where spindle and SW amplitude is elevated in 22q11.2DS, indicating excessive neuronal synchronization and reduced efficiency of information processing. This would explain why better memory task performance occurred in those participants with 22q11.2DS with relatively lower amplitude oscillations, whereas, in controls, higher amplitudes were associated with improved accuracy.

We used mediation analyses to infer associations between genotype, NREM sleep EEG measures and psychiatric symptoms, using a wide selection of NREM measures, correlated with multiple covariates including psychiatric and cognitive measures. Although we corrected for multiple
NREM sleep signatures of 22q11.2DS comparisons, we interpret our findings as preliminary, and useful for generating hypotheses for future studies. Nevertheless, we did observe mediation of group differences in SW amplitude by ADHD symptoms. A previous study found delta frequency (<4 Hz) EEG activity to be reduced in ADHD patients not using psychostimulant medication (Furrer et al., 2019); the authors related their finding to reduced cortical grey matter, and delays in its maturation in ADHD (Shaw et al., 2006, 2010; Nakao et al., 2011). In contrast, imaging studies have suggested increased cortical grey matter thickness in 22q11.2DS, alongside changes in corticothalamic networks (Lin et al., 2017; Sun et al., 2020; Sønderby et al., 2021), which may reduce across adolescence (Schaer et al., 2009). This could also explain our finding of increased SW amplitude, as synchronization neuronal firing across thicker layers of cortical neurons might generate larger scalp EEG potentials.

ADHD symptoms in 22q11.2DS are associated with later psychotic symptoms (Niarchou et al., 2019). Providing a link between ADHD symptoms, cortical thickness and later psychosis, a previous brain imaging study (Ramanathan et al., 2017) demonstrated that individuals with 22q11.2DS who developed psychotic symptoms had a trajectory of thicker frontal cortex in childhood and early adolescence, which then more rapidly thinned during adolescence than individuals who did not develop psychotic symptoms. Therefore, sleep EEG differences in 22q11.2DS may reflect aberrant neurodevelopmental cortical maturation processes which clinically manifest as ADHD symptoms in childhood and adolescence, associated with increased spindle and SW amplitude, and could develop into psychotic disorders and decreased spindle/SW density in adulthood.

As expected, age had a large influence on EEG properties in our between-subject, cross-sectional study (Purcell et al., 2017; Hahn et al., 2020; Markovic et al., 2020). Given the age-dependence and heterogeneity of the behavioral and psychiatric phenotype in 22q11.2DS, including the finding that ADHD symptoms decline with age (Chawner et al., 2019), a longitudinal cohort study of the sleep EEG, psychopathology and cognition in 22q11.2DS and controls would be well placed to provide additional data on individual developmental trajectories, as has been achieved with brain imaging (Ramanathan et al., 2017). Further, retrospective analysis of EEGs for those who go on to develop...
NREM sleep signatures of 22q11.2DS schizophrenia-spectrum disorders could dissociate which EEG features relate to the development of psychosis.

In conclusion, this is the first study to quantify sleep neurophysiology in 22q11.2DS, highlighting differences that assay altered thalamo-cortical development and could serve as potential biomarkers for 22q11.2DS-associated neurodevelopmental syndromes. Future longitudinal studies should clarify the relationship between psychiatric symptoms, sleep EEG measures, and development in 22q11.2DS, with a view to establishing mechanistic biomarkers of circuit dysfunction and informing patient stratification and treatment.
NREM sleep signatures of 22q11.2DS

Acknowledgements

We are extremely grateful to all the families that participated in this study as well as to support charities Max Appeal, The 22Crew and Unique for their help and support. We thank the core laboratory team of the Division of Psychological Medicine and Clinical Neurosciences laboratory at Cardiff University for DNA sample management and genotyping, and the National Centre for Mental Health, a collaboration between Cardiff, Swansea and Bangor Universities, for their support. The authors would also like to thank Dr Ines Wilhelm for kindly donating the 2D object location task implementation.
NREM sleep signatures of 22q11.2DS

Disclosures

MO and MvdB report a research grant from Takeda pharmaceuticals outside the scope of the current study. UB and HM were full-time employees of Lilly UK during this study. The other authors report no financial interests or potential conflicts of interest.

This research was funded in part by the Wellcome Trust (grants listed below). For the purpose of Open Access, the authors have applied a CC BY public copyright license to any Author Accepted Manuscript version arising from this submission.
NREM sleep signatures of 22q11.2DS

Funding Sources

This research was funded by the National Institute of Mental Health (NIMH 5U01MH101724; MvdB), a Wellcome Trust Institutional Strategic Support Fund (ISSF) award (MvdB), the Waterloo Foundation (918-1234; MvdB), the Baily Thomas Charitable Fund (2315/1; MvdB), MRC grant Intellectual Disability and Mental Health: Assessing Genomic Impact on Neurodevelopment (IMAGINE) (MR/L011166/1; JH, MvdB and MO), Wellcome Trust Strategic Award ‘Defining Endophenotypes From Integrated Neurosciences’ Wellcome Trust (100202/Z/12/Z MO, JH and 503147; MvdB) and a Lilly Innovation Fellowship Award (UB). NAD was supported by a National Institute for Health Research Academic Clinical Fellowship in Mental Health and MWJ by a Wellcome Trust Senior Research Fellowship in Basic Biomedical Science (202810/Z/16/Z). The views and opinions expressed are those of the author(s), and not necessarily those of the NHS, the NIHR or the Department of Health funders.
NREM sleep signatures of 22q11.2DS

References

Bates DM (2010) lme4: Mixed-effects modeling with R.

23
NREM sleep signatures of 22q11.2DS

Ferrarelli F, Tononi G (2017) Reduced sleep spindle activity point to a TRN-MD thalamus-PFC circuit dysfunction in schizophrenia. *Schizophrenia Research* 180, 36–43.

NREM sleep signatures of 22q11.2DS

NREM sleep signatures of 22q11.2DS

NREM sleep signatures of 22q11.2DS

NREM sleep signatures of 22q11.2DS

Figure 1: Characteristics of the hypnogram in 22q11.2DS

Figure 1 Caption: Box and whisker plots showing sleep architecture features: Total sleep time (TST) in minutes, Sleep efficiency (SE) as a percentage, Latency to N1 sleep (minutes), Latency to first REM sleep (minutes), Number of awakenings after sleep onset (n), Percentage of hypnogram in N1 sleep, Percentage of hypnogram in N2 sleep, Percentage of hypnogram in N3 sleep, and Percentage of hypnogram in REM sleep. Asterixes indicate the group difference is statistically significant, linear mixed model, p < 0.05. Boxes represent the median and IQR, with the whiskers representing 1.5 x the IQR. Values falling outside the whiskers are presented as dots.
NREM sleep signatures of 22q11.2DS

Figure 2: Increased sigma and slow delta power in 22q11.2DS

Figure 2 Caption:

A. Illustrative example spectrogram on electrode F3 for a control sibling, with superimposed graphs of spindle and SW density (white lines), and associated hypnogram below in black. The association between epochs of N2 and N3 sleep with increased SW and spindle density, with associated sigma band power can be clearly discerned. Note that for the purpose of
NREM sleep signatures of 22q11.2DS

illustration spindles and SWs were detected on the whole continuous EEG, but for further analysis, spectral properties, spindles and SWs were detected only for epochs identified as artefact free and in N2 or N3 sleep.

B. As (A), Illustrative example spectrogram, from electrode F3 for a 22q11.2 participant, the sibling of the participant in (A).

C. Plots of average power spectral density (in decibels, 10 * log10 of the Welch PSD) in N2 sleep across 3 electrodes (from anterior to posterior: F3, C3 and O1), to illustrate spectral properties across the head. The PSD was calculated for each epoch and channel, averaged within individuals, and then the average PSD for each electrode was averaged to create these plots. Shaded areas around lines represent +/- 1 standard deviation. Grey patches highlight the slow delta (SD, 0.25 – 1.5 Hz) and Sigma (10-16 Hz) bands used for further analysis. Inset schematic head plots illustrate the location of the electrode as a black dot.

D. Box plots showing the distribution of SD Power (average power in the 0.25 – 1.5 Hz band), Sigma Power (average power in the 10 – 16 Hz band), and the frequency of maximum power in the Sigma band in N2 sleep, across three electrodes, to illustrate the distribution of measurements between individuals, as measures of variability are lost in averaged topoplots.

E. Topoplots calculated from the full 60 channel dataset for the three measures recorded in N2 sleep, as in (D); mean SD power, mean Sigma power and peak Sigma frequency. These values have then been converted into Z scores for analysis. The left two columns present average topoplots for all participants with 22q11.2DS or Siblings, the third column plots regions where a multilevel generalized additive model fit to each dataset predicts a difference between groups (22q11.2 DS – Siblings) where the probability of direction statistic was > 0.995). The color represents the z score difference between groups.

F. Plots of PSD in N3 sleep, conventions as in (C).

G. As (D), for epochs recorded during N3 sleep.

H. Topoplots as in (E), for epochs recorded during N3 sleep.
NREM sleep signatures of 22q11.2DS

Figure 3: Increased Spindle Amplitude in 22q11.2DS

A. Illustrative plots of the average spindle waveform, for spindles detected across three electrodes F3, C3, O1), for a single sibling pair. Spindles were detected on all artefact-free epochs of N2 and N3 sleep.

B. Box plots of average spindle density, amplitude and frequency, for all participants, across F3, C3 and O1, illustrating the within and between group distribution of values.
C. Topoplots of average spindle density, amplitude and frequency, as in B, Z-transformed, across all 60 electrodes. As in Figure 2, the left two columns present average topoplots for all 22q11.2DS or Siblings, the third column plots regions where a multilevel generalized additive model fit to each dataset predicts a difference between groups. The colour represents the z score difference between groups.
NREM sleep signatures of 22q11.2DS

Figure 4: Increased Slow Wave Amplitude in 22q11.2DS

A. Illustrative plots of the average SW waveform, for SWs detected across three electrodes F3, C3, O1, for a single sibling pair. SWs were detected on all artefact-free epochs of N2 and N3 sleep.

B. Box plots of the average SW density, amplitude and duration, for all participants, across F3, C3 and O1, illustrating the within and between group distribution of values.

Figure 4 Caption:
A. Illustrative plots of the average SW waveform, for SWs detected across three electrodes F3, C3, O1, for a single sibling pair. SWs were detected on all artefact-free epochs of N2 and N3 sleep.

B. Box plots of the average SW density, amplitude and duration, for all participants, across F3, C3 and O1, illustrating the within and between group distribution of values.
NREM sleep signatures of 22q11.2DS

C. Topoplots of average SW density, amplitude and duration, as in B, Z-transformed, across all 60 electrodes. As in Figure 2, the left two columns present average topoplots for all 22q11.2DS or Siblings, the third column plots regions where a multilevel generalized additive model fit to each dataset predicts a difference between groups. The color represents the z score difference between groups.
NREM sleep signatures of 22q11.2DS

Figure 5: Altered Spindle-SW Coupling in 22q11.2DS
NREM sleep signatures of 22q11.2DS
Figure 5 Caption:

A. Illustrative plot of a single spindle and SW recorded on C3 in a control sibling. From top to bottom, panels show the raw EEG, with the detected boundaries of the spindle and SW highlighted with a red and blue horizontal bar, respectively, the vertical red line illustrates detected spindle amplitude peak; the sigma-filtered raw signal (10 – 16 Hz); the magnitude of the continuous wavelet transform of the signal (centre frequency 13 Hz); and the Slow-Wave frequency (0 – 4 Hz) filtered data, with SW phase indicated.

B. Boxplots of the average proportion of spindles overlapping a detected SW overlap across three electrodes as previously, for all participants. Note that values Z-transformed by a shuffling distribution (see methods for details).

C. Boxplots of the average mean resultant length (MRL) of the SW phase angle for all spindles whose peak overlapped an SW detected on three electrodes, Z-transformed by a shuffling distribution.

D. Topoplots of spindle-SW coupling properties: z-transformed spindle-SW overlap, and z-transformed mean resultant length. The left two columns present average topoplots for all 22q11.2DS or Siblings, the third column plots regions where a multilevel generalized additive model fit to each dataset predicts a difference between groups. The colour represents the difference in z-score between groups.

E. Histograms of the mean SW phase angle of spindles detected overlapping an SW for all participants across three electrodes (F3, C3 and O1). The SO phase angles are as defined in (A).

F. Topoplots of mean Spindle-SW coupling phase angle (left two columns) and (right column) regions where a multilevel generalized additive model fit to each dataset predicts a difference in coupling phase angle between groups.
Figure 6: EEG Signatures of Sleep Dependent Memory Consolidation

A. Schematic of the 2D object location task. The evening before sleep EEG recordings, participants first were sequentially presented with pairs of images on a 5 x 6 grid. In a subsequent test cycle, they were presented with one image of the pair, and were required to select the grid location of the other half of the pair. If the participant did not achieve > 30% accuracy, they would have another learning cycle. In the morning a single test cycle was undertaken.

B. Plot of performance in acquiring the 2D object location task, showing the proportion of participants in each group reaching the 30% performance criterion after each learning cycle. Shaded areas represent the 95% confidence interval. Black dots show when participants were right-censored due to stopping the task prior to reaching the 30% criterion.

C. Box plots of performance in the morning test session, where participants had one cycle of the memory task. Number of correct responses is out of a possible 15. Asterix indicate the group difference is statistically significant, generalised linear mixed model, p < 0.05.
NREM sleep signatures of 22q11.2DS

D. Topoplots of the value of the group*EEG feature interaction term, for models fit to hits in the morning test session. Electrodes highlighted in white indicate a significant interaction for an EEG measure detected on that channel, after correction for multiple comparisons. Note all topoplots are on the same color scale.

E. Scatter plot of the relationship between EEG measures (recorded on electrode C3) and hits in the memory task test session, by group. Lines represent predicted mean values, with 95% confidence interval, from linear mixed model).
Figure 7: Mediation of NREM EEG Features by ADHD Symptoms

A. Directed acyclic graph describing the mediation model fit to EEG data. The effect of Group (G) on EEG measures (E) was hypothesized to be mediated by (P) – a measure of psychiatric symptoms, or FSIQ.

B. Topoplots of the mediated effect of group by psychiatric measures and FSIQ on four NREM sleep EEG features (spindle amplitude, SW amplitude, spindle-SW overlap and spindle-SW MRL). Electrodes are highlighted in white where a mediation model fit on data from that electrode had a significant mediated effect and a significant total effect of group on that EEG measure.
Table 1: Psychiatric Characteristics and Sleep Architecture

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group</th>
<th>Type</th>
<th>Statistic (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age @ EEG</td>
<td>14.6 (3.4)</td>
<td>Group Difference (22q - Sib)</td>
<td>0.897 [-1.219, 3.013]</td>
<td>0.397</td>
</tr>
<tr>
<td>Sex</td>
<td>14 (50%)</td>
<td>Chi-Squared c</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Female</td>
<td>14 (50%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep Problem</td>
<td>1.32 (1.70)</td>
<td>Odds Ratio d</td>
<td>6.269 [2.118, 18.556]</td>
<td>0.001</td>
</tr>
<tr>
<td>FSIQ</td>
<td>76 (13)</td>
<td>Group Difference (22q - Sib)</td>
<td>-28.696 [-40.478, -16.915]</td>
<td><0.001</td>
</tr>
<tr>
<td>Anxiety Symptoms</td>
<td>5.0 (7.8)</td>
<td>Odds Ratio d</td>
<td>3.101 [1.929, 4.986]</td>
<td><0.001</td>
</tr>
<tr>
<td>ADHD Symptoms</td>
<td>6.0 (6.0)</td>
<td>Odds Ratio d</td>
<td>9.456 [5.117, 17.475]</td>
<td><0.001</td>
</tr>
<tr>
<td>ASD Symptoms</td>
<td>11 (6)</td>
<td>Odds Ratio d</td>
<td>7.463 [4.762, 11.697]</td>
<td><0.001</td>
</tr>
<tr>
<td>Psychotic Experiences</td>
<td></td>
<td>Odds Ratio f</td>
<td>4.047 [0.698, 43.668]</td>
<td>0.096</td>
</tr>
<tr>
<td>No PE</td>
<td>18 (64%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>10 (36%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1 (%)</td>
<td>10.4 (4.7)</td>
<td>Group Difference (22q - Sib)</td>
<td>-2.707 [-5.05, -0.363]</td>
<td>0.044</td>
</tr>
<tr>
<td>N2 (%)</td>
<td>26.2 (8.2)</td>
<td>Group Difference (22q - Sib)</td>
<td>-1.089 [-5.146, 2.967]</td>
<td>0.620</td>
</tr>
<tr>
<td>N3 (%)</td>
<td>30 (7)</td>
<td>Group Difference (22q - Sib)</td>
<td>5.473 [1.984, 8.962]</td>
<td>0.009</td>
</tr>
<tr>
<td>REM (%)</td>
<td>14.4 (4.6)</td>
<td>Group Difference (22q - Sib)</td>
<td>-4.198 [-7.1, -1.296]</td>
<td>0.012</td>
</tr>
<tr>
<td>N1 Latency (Minutes)</td>
<td>23 (18)</td>
<td>Group Difference (22q - Sib)</td>
<td>3.486 [-5.538, 12.509]</td>
<td>0.470</td>
</tr>
<tr>
<td>REM Latency (Minutes)</td>
<td>143 (69)</td>
<td>Group Difference (22q - Sib)</td>
<td>9.368 [-19.312, 38.048]</td>
<td>0.549</td>
</tr>
<tr>
<td>Sleep Efficiency (%)</td>
<td>88 (8)</td>
<td>Group Difference (22q - Sib)</td>
<td>-1.845 [-5.826, 2.136]</td>
<td>0.398</td>
</tr>
<tr>
<td>Total Sleep Time (Minutes)</td>
<td>456 (122)</td>
<td>Group Difference (22q - Sib)</td>
<td>-27.206 [-88.489, 34.077]</td>
<td>0.413</td>
</tr>
<tr>
<td>Awakenings (n)</td>
<td>42 (52)</td>
<td>Group Difference (22q - Sib)</td>
<td>3.097 [-19.732, 25.925]</td>
<td>0.802</td>
</tr>
</tbody>
</table>

* Mean (SD); n (%)

b Linear Model

c Pearson's Chi Squared Test

d Generalised Linear Mixed Model

e Linear Mixed Model

f Fisher's Exact Test
Table 1 Caption: Demographic, psychiatric and sleep architecture of study participants, comparing participants with 22q11.2DS (22q) and unaffected control siblings (Sib).
Table 2: Sleep EEG GAMM Main Analysis

<table>
<thead>
<tr>
<th>Measure</th>
<th>Group (22q11.2DS > Sibling)</th>
<th>Age @ EEG</th>
<th>Sex (Male > Female)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2 Sigma Power</td>
<td>0.46 [0.08, 0.83], pd = 0.02</td>
<td>-0.07 [-0.28, 0.14], pd = 0.496</td>
<td>-0.54 [-0.93, -0.12], pd = 0.010</td>
</tr>
<tr>
<td>N2 Sigma Frequency</td>
<td>0.29 [-0.13, 0.7], pd = 0.178</td>
<td>0.23 [0, 0.48], pd = 0.047</td>
<td>-0.04 [-0.49, 0.41], pd = 0.870</td>
</tr>
<tr>
<td>N2 SO Power</td>
<td>0.52 [0.26, 0.77], pd < 0.001</td>
<td>-0.33 [-0.46, -0.19], pd < 0.001</td>
<td>-0.06 [-0.33, 0.2], pd = 0.666</td>
</tr>
<tr>
<td>N3 Sigma Power</td>
<td>0.5 [0.06, 0.93], pd = 0.020</td>
<td>-0.13 [-0.36, 0.13], pd = 0.291</td>
<td>-0.45 [-0.89, 0.01], pd = 0.055</td>
</tr>
<tr>
<td>N3 Sigma Frequency</td>
<td>0.17 [-0.24, 0.6], pd = 0.405</td>
<td>0.2 [-0.05, 0.45], pd = 0.108</td>
<td>-0.29 [-0.76, 0.16], pd = 0.212</td>
</tr>
<tr>
<td>N3 SO Power</td>
<td>0.47 [0.2, 0.73], pd = 0.001</td>
<td>-0.39 [-0.55, -0.24], pd < 0.001</td>
<td>0 [-0.29, 0.3], pd = 0.978</td>
</tr>
<tr>
<td>Spindle Density</td>
<td>0.11 [-0.26, 0.48], pd = 0.536</td>
<td>0.32 [0.07, 0.56], pd = 0.010</td>
<td>-0.34 [-0.79, 0.13], pd = 0.156</td>
</tr>
<tr>
<td>Spindle Amplitude</td>
<td>0.47 [0.12, 0.83], pd = 0.009</td>
<td>-0.18 [-0.38, 0.03], pd = 0.076</td>
<td>-0.42 [-0.8, -0.03], pd = 0.035</td>
</tr>
<tr>
<td>Spindle Frequency</td>
<td>0.16 [-0.26, 0.62], pd = 0.468</td>
<td>0.44 [0.16, 0.76], pd = 0.003</td>
<td>-0.24 [-0.71, 0.24], pd = 0.323</td>
</tr>
<tr>
<td>SW Density</td>
<td>0.2 [-0.15, 0.59], pd = 0.262</td>
<td>0.22 [0, 0.45], pd = 0.058</td>
<td>0.27 [-0.17, 0.69], pd = 0.227</td>
</tr>
<tr>
<td>SW Amplitude</td>
<td>0.63 [0.27, 0.99], pd = 0.001</td>
<td>-0.42 [-0.63, -0.22], pd < 0.001</td>
<td>-0.03 [-0.4, 0.36], pd = 0.892</td>
</tr>
<tr>
<td>SW Duration</td>
<td>-0.44 [-0.86, -0.05], pd = 0.036</td>
<td>-0.24 [-0.5, 0.02], pd = 0.07</td>
<td>-0.23 [-0.75, 0.28], pd = 0.368</td>
</tr>
<tr>
<td>Spindle-SW Overlap</td>
<td>-0.28 [-0.61, 0.06], pd = 0.099</td>
<td>-0.15 [-0.33, 0.05], pd = 0.127</td>
<td>0 [-0.36, 0.34], pd = 0.992</td>
</tr>
<tr>
<td>Spindle-SW MRL</td>
<td>0.36 [0.12, 0.59], pd = 0.006</td>
<td>-0.07 [-0.19, 0.07], pd = 0.285</td>
<td>-0.02 [-0.27, 0.21], pd = 0.838</td>
</tr>
<tr>
<td>Spindle-SW Angle</td>
<td>1.96 [-7.14, 11.81], pd = 0.667</td>
<td>-0.11 [-0.23, 0.0], pd = 0.046</td>
<td>-0.02 [-0.21, 0.17], pd = 0.86</td>
</tr>
</tbody>
</table>

Table 2 Caption: Associations between sleep EEG features and group, age and sex, measured using generalized additive mixed models. Values presented are the model main effects with the 95% credible interval and the probability of direction statistic, pd (see Supplementary Methods and Materials).
Table 3: Memory Task Learning Rate

Cycles to Criterion Cox Model - Unadjusted

<table>
<thead>
<tr>
<th>Term</th>
<th>Hazard Ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>22q11.2DS</td>
<td>0.328 [0.151, 0.714]</td>
<td>0.005</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.389 [0.642, 3.005]</td>
<td>0.400</td>
</tr>
<tr>
<td>Age @ EEG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.029 [0.91, 1.164]</td>
<td>0.650</td>
</tr>
</tbody>
</table>

Cycles to Criterion Cox Model - Adjusted - 22q11.2DS Only

<table>
<thead>
<tr>
<th>Term</th>
<th>Hazard Ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>2.314 [0.542, 9.882]</td>
<td>0.257</td>
</tr>
<tr>
<td>Psychotic Experiences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No PEs</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>PEs</td>
<td>0.203 [0.041, 1.012]</td>
<td>0.052</td>
</tr>
<tr>
<td>Age @ EEG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.139 [0.933, 1.390]</td>
<td>0.200</td>
</tr>
<tr>
<td>FSIQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.026 [0.972, 1.082]</td>
<td>0.355</td>
</tr>
<tr>
<td>Anxiety Symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.992 [0.879, 1.120]</td>
<td>0.900</td>
</tr>
<tr>
<td>ADHD Symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.915 [0.760, 1.102]</td>
<td>0.349</td>
</tr>
<tr>
<td>ASD Symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.027 [0.926, 1.139]</td>
<td>0.616</td>
</tr>
</tbody>
</table>

Table 3 Caption

Associations between group, sex, age and psychiatric symptoms and number of learning cycles to 30% performance in the 2D object location task, modeled using a mixed effects Cox proportional hazard regression model.
NREM sleep signatures of 22q11.2DS

Table 4: Morning Memory Task Test Session Performance

<table>
<thead>
<tr>
<th>Term</th>
<th>OR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning Accuracy Binomial Model – Unadjusted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>Control</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>22q11.2DS</td>
<td>0.631 [0.45, 0.885]</td>
</tr>
<tr>
<td>Gender</td>
<td>Female</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>1.083 [0.762, 1.538]</td>
</tr>
<tr>
<td>Age @ EEG</td>
<td></td>
<td>0.997 [0.945, 1.051]</td>
</tr>
<tr>
<td>Morning Accuracy Binomial Model - Adjusted - 22q11.2DS Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>Female</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>1.623 [0.807, 3.268]</td>
</tr>
<tr>
<td>Psychotic Experiences</td>
<td>No PEs</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>PEs</td>
<td>0.556 [0.296, 1.032]</td>
</tr>
<tr>
<td>Age @ EEG</td>
<td></td>
<td>1.012 [0.924, 1.108]</td>
</tr>
<tr>
<td>FSIQ</td>
<td></td>
<td>1.004 [0.982, 1.027]</td>
</tr>
<tr>
<td>Anxiety Symptoms</td>
<td></td>
<td>1.028 [0.969, 1.091]</td>
</tr>
<tr>
<td>ADHD Symptoms</td>
<td></td>
<td>0.973 [0.924, 1.023]</td>
</tr>
<tr>
<td>ASD Symptoms</td>
<td></td>
<td>1.018 [0.973, 1.066]</td>
</tr>
</tbody>
</table>

Table 4 Caption: associations between group, sex, age and psychiatric symptoms and accuracy in the morning test session of the 2D object location task, modeled using a mixed effects aggregated binomial regression model.