Title: Nationwide surveillance of methicillin-resistant *Staphylococcus aureus* isolated from bloodstream infections in Japan

Short title: Surveillance of MRSA isolated from BSI in Japan

Authors: Norihito Kaku\(^1\,^3\,*\), Daisuke Sasaki\(^2\), Kenji Ota\(^1,^2\), Taiga Miyazaki\(^4\), Katsunori Yanagihara\(^1,^2\)

Affiliations:

\(^1\)Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City, Nagasaki, Japan

\(^2\)Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki City, Nagasaki, Japan

\(^3\)Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, United States

\(^4\)Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki City, Miyazaki, Japan

Corresponding Author: Norihito Kaku

1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan 852-8501

Email: norihitk@gmail.com

Tel: +81-95-819-7574 Fax: +81-95-819-7422

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objectives: Some single-center studies have reported that methicillin-resistant *Staphylococcus aureus* (MRSA) carrying the staphylococcal cassette chromosome *mec* (SCCmec) type IV has been increasing in bloodstream infections (BSIs) in Japan. Therefore, we conducted nationwide surveillance for MRSA BSI in Japan to verify that there is a change all over Japan.

Methods: We recruited 51 Japanese hospitals from the Japanese Association for Infectious Diseases. MRSA strains, which were detected in two or more sets of blood, were collected between January and September 2019. They were analyzed by antimicrobial susceptibility testing at Nagasaki University Hospital. Whole-genome sequencing was also performed to determine SCCmec typing and multilocus typing and detect drug-resistance and virulence genes.

Results: 270 MRSA strains were collected from 44 hospitals. The major clones were ST8 with SCCmec type IV (ST8-IV) (30.7%), ST1-IV (29.6%), ST2725-IV (9.5%), ST764-II (8.1%), and ST5-II (7.8%). However, there were regional differences among the most major clones. The most common clones in western, eastern, and northern Japan were ST1-IV, ST8-IV, and ST5-II, respectively. ST8-IV, ST1-IV, and ST2725-IV exhibited lower drug resistance against clindamycin and minocycline than ST764-II and ST5-II, but *erm(A)* was detected in 93.8% and 100% of ST1-IV and ST2725-IV, respectively. Based on drug-resistance and virulence genes, characteristics were different between ST8-IV and clonal complex 1-IV comprising ST1-IV and ST2725. In addition, the two major types were expected to be ST8-IV.

Conclusions: This study revealed that SCCmec type IV clones replaced SCCmec type II in MRSA BSI.
Introduction

Methicillin-resistant *Staphylococcus aureus* (MRSA) is an important drug-resistant pathogen in bloodstream infections (BSIs) because *S. aureus*, including MRSA, is the second-most frequently encountered pathogen in both community- and hospital-onset BSI [1]. The percentage of patients with BSIs involving MRSA increased from 22% in 1995 to 57% in 2001 [2]. However, the incidence of MRSA BSIs has been decreasing since the middle of the 2000s through various infection control efforts [3]. However, a new threat involves the spread of community-associated MRSA (CA-MRSA), represented by USA300 strains. CA-MRSA strains carrying staphylococcal cassette chromosome *mec* (SCC**mec**) types IV or V have different characteristics than I, II, or III. CA-MRSA strains are more susceptible to antimicrobial agents such as fluoroquinolones, macrolides, lincosamides, and aminoglycosides; moreover, they sometimes carry Panton-Valentine leucocidin (PVL), which causes skin and soft-tissue infections and necrotizing pneumonia [4]. In Japan, sequence type (ST) 5 carrying SCC**mec** type II, represented by the New York/Japan clone, has been the most common clone in MRSA BSIs [5]. However, the proportion of SCC**mec** type II has been decreasing, while that of SCC**mec** type IV has been increasing in MRSA BSIs [6,7]. On the other hand, most SCC**mec** type IV strains in Japan lack PVL [6–8]. However, since these data were obtained from a single institution, the molecular epidemiology and characteristics of MRSA isolated from BSIs in Japan are unclear. In this study, we collected MRSA isolates from patients with BSIs throughout Japan in 2019 and performed antimicrobial susceptibility testing and whole-genome sequencing to reveal the strain characteristics of these MRSA isolates.
Methods

Study design

We recruited participating medical institutions through a mailing list obtained from the Japanese Association for Infectious Diseases in December 2018; 51 Japanese hospitals were recruited. MRSA strains detected in two or more sets of blood cultures at the same time were collected at each hospital between January 22 and September 30, 2019. No MRSA strains met the criteria in the six hospitals. Eventually, 274 strains collected from 45 hospitals were analyzed at Nagasaki University Hospital. Four strains were excluded from the analysis because they were identified as methicillin-sensitive Staphylococcus aureus at Nagasaki University Hospital (Supplementary Fig 1A). Finally, the remaining 270 strains were analyzed (Supplementary Fig 1B). They were stored in Microbank (Iwaki & Co., Ltd., Tokyo, Japan) at -80°C and transferred to Nagasaki University Hospital. The following data regarding MRSA strains were collected from the participating medical institutions: blood culture collection location (outpatient or inpatient) and day following hospitalization on which blood cultures were collected.

Antimicrobial susceptibility testing

The minimum inhibitory concentrations (MICs) were determined by broth microdilution testing using Dry Plate Eiken (Eiken, Tokyo, Japan) according to the manufacturer’s instructions. MIC50 and MIC90 values were calculated as previously reported [9]. Antimicrobial susceptibility was measured according to Clinical and Laboratory Standards Institute guidelines (CLSI M100-Ed31) [10] and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) v.11.0 [11].
Whole-genome sequencing (WGS)

All procedures were performed according to the manufacturers’ instructions. DNA was extracted from MRSA strains using a Quick-DNA Fungal/Bacterial Kit (Zymo Research, Irvine, CA, USA). DNA libraries for sequencing were generated using the Invitrogen Collibri ES DNA Library Prep Kit for Illumina (A38607096, ThermoFisher Scientific, Waltham, MA, USA), and sequencing was performed on a MiSeq system (Illumina, San Diego, CA, USA) using MiSeq Reagent kit v. 3 (600 cycles) (Illumina).

Sequence analysis

Multilocus sequence typing (MLST) and detection of antimicrobial resistance genes in ResFinder were performed using the CLC Genomics Workbench and Microbial Genomics Modules (QIAGEN N. V., Venlo, Netherlands). SCCmec types were determined using SCCmecFinder v.1.2 (https://cge.cbs.dtu.dk/services/SCCmecFinder/) [12]. Virulence genes were detected using VirulenceFinder v.2.0.3 (https://cge.cbs.dtu.dk/services/VirulenceFinder/, software v.2.0.3, database v.2020-05-29) [13,14].

Statistical analysis

All statistical analyses were performed using R software (v. 4.0.3; R Foundation for Statistical Computing, Vienna, Austria). Fisher’s exact test with Bonferroni correction was used to compare categorical variables. The statistical significance level was set at P < 0.05. P values are listed in Table S2.

Ethics
The Ethics Committee approved this study of Nagasaki University Hospital (19012123). MRSA strains were anonymized and individually numbered when they were isolated from blood cultures. All data and samples were fully anonymized before being sent to Nagasaki University Hospital. The Ethics Committee of Nagasaki University Hospital waived requirements for informed consent.

Data availability

Raw data were generated at Nagasaki University Hospital. The derived data supporting the findings of this study are presented in this paper.

Results

Sequence and SCCmec typing

Among 270 MRSA strains isolated from BSIs, the percentages of SCCmec types I, II, IV, V, and IX were 1.9%, 18.5%, 77.4%, 1.9%, and 0.4%, respectively (Table S1). The major clone was ST8 with SCCmec type IV (ST8-IV) (30.7%), ST1 with SCCmec type IV (ST1-IV) (29.6%), ST2725 with SCCmec type IV (ST2725-IV) (9.5%), ST764 with SCCmec type II (ST764-II) (8.1%), and ST5 with SCCmec type II (ST5-II) (7.8%) in Japan as a whole (Fig. 1A). However, there were regional differences among major clones. The most common clones in western Japan, eastern Japan, and northern Japan were ST1-IV, ST8-IV, ST5-II, and ST764-II, respectively (Fig. 1B). The characteristics of the major clones are listed in Table 1. The percentages of hospital-acquired BSIs detected from samples obtained 48 hours after hospitalization, involving ST1-IV,
ST2725-IV, ST8-IV, ST5-II, and ST764 were 62.5%, 61.5%, 60.2%, 71.4%, 72.7%, respectively.

There were no significant differences in patient backgrounds among the clones (Table S2).

Antimicrobial susceptibility

Drug resistance rates calculated using the CLSI/EUCAST criteria are shown in Table 1. The drug resistance rates for anti-MRSA agents were very low in all clones. However, for some antimicrobial agents, there were significant differences among the clones. The drug resistance rate for levofloxacin in both CLSI and EUCAST criteria in ST8-IV was significantly lower than that of other clones (p <0.001). The drug resistance rates for clindamycin for ST8-IV, ST1-IV, and ST2725-IV were significantly lower than ST5-II and ST764-II (p <0.05). In addition, the drug resistance rate for clindamycin in ST1-IV and ST2725-IV was significantly lower than that for ST8-IV (p <0.001). The drug resistance rates for minocycline in EUCAST criteria in ST8-IV, ST1-IV, and ST2725-IV were significantly lower than those of ST5-II and ST764-II (p <0.05).

There were differences among the major clones in the MICs for beta-lactams (Table 2). Both MIC$_{50}$ and MIC$_{90}$ for cefazoline, imipenem, and meropenem were lower in ST8-IV, ST1-IV, and ST2725-IV than in ST5-II and ST764-II. These differences were particularly pronounced for imipenem. The MIC$_{90}$ for imipenem was ≤ 0.25, ≤ 0.25, and 0.5, respectively, in ST8-IV, ST1-IV, and ST2725-IV, respectively, whereas it was ≥ 32 in both ST5-II and ST764-II.

Drug-resistance genes
Table 3 shows the positive rate for drug-resistance genes in each clone. Almost all major clones carried aminoglycoside-resistance genes. However, specific aminoglycoside-resistance genes differed among the major clones; for example, the positive rate for \textit{ant(9)-Ia} for ST8-IV was significantly lower than for other clones (p <0.001). The positive rate for the macrolide-resistant gene \textit{erm(A)} for ST8-IV was also significantly lower than for other clones (p <0.001). In ST764-II, the positive rate for \textit{blaZ} was significantly lower than for other clones (p <0.001), whereas that for the fosfomycin-resistance gene was significantly higher than for other clones (p <0.05). The positive rate for the tetracycline-resistance gene was significantly higher for ST5-II and ST764-II than for ST8-IV, ST1-IV, and ST2725-IV (p < 0.05).

\textit{Virulence genes}

Table 4 shows the positive rate for virulence genes in each clone. Almost all strains carried exoenzyme genes, such as \textit{aur}, \textit{splA}, and \textit{splB}. Although > 90\% of the strains in ST1-IV and ST2725-IV also carried \textit{splE}, no strain in ST5-II and ST764-II carried it. In terms of toxins, almost all strains carried \textit{hlgA}, \textit{hlgB}, \textit{hlgC}, \textit{LukD}, and \textit{LukE}. Only five (6.0\%) strains in ST8-IV carried \textit{LukF-PV}. CC1-IV, composed of ST1-IV and ST2725-IV, whereas CC5-II, composed of ST5-II and ST764-II, had unique virulence genes. CC1-IV carried \textit{sea}, \textit{seh}, \textit{sek}, and \textit{seq}, whereas CC5-II carried \textit{sec}, \textit{sei}, \textit{sem}, \textit{sen}, \textit{seo}, and \textit{seu}. However, there were some differences between ST5-II and ST764-II; ST5-II carried \textit{sec}, \textit{sel}, and \textit{tst} more frequently than ST764-II. For other virulence genes, the arginine catabolic mobile element (ACME) was detected in 1.3\%, 6.0\%, and 31.8\% for ST1-IV, ST8-IV, and ST765-II, respectively.

\textit{Discussion}
The most common MRSA BSI clone in Japan was ST8-IV, closely followed by ST1-IV. In contrast, ST5-II, which had been the most prevalent in Japan [5], ranked fifth, representing only 7.8%. A previous Japanese study, which analyzed 151 MRSA strains isolated from blood cultures from 53 medical institutions in 2011, reported that the percentage of SCCmec type IV was only 19.9%, whereas that of SCCmec type II was 75.6% [15]. However, a previous study from Tokyo, in the Kanto region, reported that the relative abundances of SCCmec types II and IV had reversed between 2015 and 2017, with SCCmec type IV the most prevalent, comprising 73.5% of MRSA BSI cases [7]. Therefore, although participating medical institutions and analytic methods differed between earlier surveillance programs and this study [15], our data indicated that ST8-IV and ST1-IV have replaced ST5-II in MRSA BSIs in Japan. However, there were regional differences among the major clones. The most common clones in Western, Eastern, and Northern Japan were ST8-IV, ST1-IV, ST5-II, and ST764-II, respectively. The most common clone in northern Japan, in the Hokkaido region, was very different from other regions, and the percentage of SCCmec type II was 71.4%. This is similar to the surveillance results conducted in the Hokkaido region between 2017 and 2019 [16], although the number of medical institutions that participated in the Hokkaido region in this study was only two. Thus, there may be regional differences in the spread of ST8-IV and ST1-IV.

We observed differences among the major clones in terms of drug resistance. In antimicrobial susceptibility testing, SCCmec type IV (ST8-IV, ST1-IV, and ST2725-IV) exhibited a significantly lower resistance rate for clindamycin and minocycline than SCCmec type II of ST5-II and ST764-II. The resistance rate for clindamycin was almost the same as the erm(A) gene retention rate in ST8-IV, whereas the resistance rate for clindamycin was much lower than the erm(A) gene retention rate in ST1-IV and ST2725. Since the erm(A) gene is related to inducible
clindamycin resistance [17], these results indicated that clindamycin should not be used to treat
ST1-IV and ST2725-IV infections even if a strain is sensitive to clindamycin in antimicrobial
susceptibility testing. In contrast, the drug-resistance rate for minocycline in the EUCAST
criteria was almost the same as the positive rate for the tetracycline resistance gene. SCCmec
type IV also showed lower MIC\textsubscript{50} and MIC\textsubscript{90} values for cefazolin, imipenem, and meropenem
than did SCCmec type II. This result was similar to a previous study [15]. Since beta-lactams
exhibit a synergic effect in combination with anti-MRSA agents in several studies [18,19], beta-
lactams might be considered to treat MRSA BSI caused by SCCmec type IV in combination with
anti-MRSA agents.

Almost all strains involving all the major clones carried \textit{aur}, \textit{splA}, \textit{splB}, \textit{hlgA}, \textit{hlgB}, \textit{hlgC},
\textit{LukD}, \textit{LukE}, \textit{sak}, and \textit{scn}. ST1-IV and ST2725-IV, both of which are CC1-IV, had a similar
pattern of virulence genes. CC1-IV carried \textit{splE}, \textit{sea}, \textit{seh}, \textit{sek}, and \textit{seq} more frequently than the
other clones. Since they also had a similar complement of drug resistance genes, there might be
no need to distinguish between ST1-IV and ST2725-IV in Japan. At the clonal complex level,
CC1-IV was the most abundant clone (39.3\%). However, since no strain carried \textit{Luk/PV} and
only one strain carried ACME in CC1-IV, they differed from USA-400. Several Japanese studies
have reported the same characteristics for CC1-IV [20,21]. In addition, \textit{Luk/PV}-negative CC1-IV
has been reported in Europe and Australia [22,23]. The characteristics of CC1-IV in this study
and previous Japanese studies differ from those of European \textit{Luk/PV}-negative CC1-IV regarding
virulence genes [23], whereas Japanese CC1-IV have a similar pattern to \textit{Luk/PV}-negative CC1-
IV in Australia [22]. However, there exists a difference in macrolide-resistant genes between
Japan and Australia. These results indicate that CC1-IV has evolved and spread independently in
Japan. ST5-II and ST764-II, both of which are CC5-II, also had a similar pattern of virulence
genes, but there were significant differences between them. ST5-II carried sec, sel, and tst more frequently than ST764-II. They also had different drug resistance genes, such as Aad, fosD, and tet(S/M). Since the spread of ST764-II among elderly Japanese in long-term care facilities in Japan [24], the change in the ratio of CC5-II should be carefully monitored. ST8-IV was the most frequently detected clone in this study, but it carried diverse virulence genes. The positive rate for sec and tst was 44.6%, with one clone carrying both LukF/PV and ACME. The LukF/PV-negative ST8 clone CA-MRSA/J, characterized by carrying sec and tst, has emerged and spread in Japan since 2003 [25]; therefore, it is noteworthy that 43.4% of ST8-IV in this study were estimated as CA-MRSA/J. In addition, there were four strains that carried both LukF/SV and ACME in sec and tst-negative ST8-IV, with 4.8% of ST8-IV estimated as USA300. The characteristics of ST8-IV, other than CA-MRSA/J and USA300, are presented in Table S3. Of ST8-IV other than CA-MRSA/J and USA300, 83.7% carried sep and ant(9)-Ia; 88.4%/88.4% in CLSI/EUCAST criteria showed levofloxacin-resistance; 83.7%/86.0% showed erythromycin-resistance and 86.0% had macrolide resistance genes; 76.9% were detected in Western Japan. Therefore, there is a possibility that a novel ST8-IV clone has emerged and spread in Western Japan.

This study had several limitations. First, the impact of changes in SCCmec type on the clinical course is unknown because we did not collect the information on patient backgrounds, such as age, underlying diseases, as well as severity and prognosis of BSI. Second, we evaluated the diversity of each MRSA clone based on patterns of drug-resistance and virulence genes. Identification of diversity in the same clone was not the purpose of this study; pulsed-field gel electrophoresis and spa typing are needed for detailed analysis. Third, our analyses differed from those used in previous Japanese surveillance programs, as this is the first WGS. In addition, the
backgrounds of participating medical institutions in this surveillance are different from those of previous Japanese programs. The participating medical institutions in this study have in-house microbiology laboratories, whereas those in the previous study outsourced microbiological testing [15]. Therefore, it is necessary to continue this surveillance to validate changes in MRSA.

Conclusion

This study revealed that SCC\textit{mec} type IV clones replaced SCC\textit{mec} type II in MRSA BSI. However, the characteristics of the major clones in Japanese SCC\textit{mec} type IV were different from those in other countries, with a low prevalence of \textit{LukF/PV} and ACME. This study also indicated that the three main types of SCC\textit{mec} type IV clones, CC1-IV, CA-MRSA/J, and ST8-IV other than CA-MRSA/J and USA300, have spread throughout Japan, although there were regional differences.

Conflicts of interest

The authors have no conflicts of interest directly relevant to the content of this article.

Funding

This work was supported by the Japanese Association for Infectious Diseases, Grant for Clinical Research Promotion [the 1st (2018)]. Taiga Miyazaki, a member of the Committee for Clinical Research Promotion of the Japanese Association for Infectious Diseases, advised on study design, sample collection, and manuscript preparation. The funders had no role in the analysis or the decision to publish.
Acknowledgments

We thank Professor Kazuyoshi Kawakami (Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine) for advice on study design and sample collection as chair of the Committee for Clinical Research Promotion of the Japanese Association for Infectious Diseases. We also thank all staff members cooperated in this study at the Japanese Association for Infectious Diseases, Furano Hospital, Sapporo Medical University Hospital, Aomori Prefectural Central Hospital, Odate Municipal General Hospital, Fukushima Medical University, Saitama Medical University International Medical Center, Jikei University Katsusika Medical Center, Yokohama City University Hospital, Yokohama Municipal Citizen’s Hospital, Yokohama City University Medical Center, Tokyo Bay Urayasu Ichikawa Medical Center, SHOWA University Hospital, Tokyo Saiseikai Central Hospital, Hamamatsu University Hospital, Ishikawa Prefectural Central Hospital, Chuno Kosei Hospital, Asanogawa General Hospital, Nagaoka Red Cross Hospital, University of Fukui Hospital, Toyama University Hospital, Nagoya University Hospital, Nagoya City University West Medical Center, Niigata University Medical & Dental Hospital, Japanese Red Cross Society Suwa Hospital, Daiyukai General Hospital, Osaka Medical and Pharmaceutical University Hospital, Osaka City General Hospital, Kobe City Nishi-Kobe Medical Center, Osaka University Hospital, Kindai University Hospital, University Hospital Kyoto Prefectural University of Medicine, Nara Prefectural General Medical Center, Shimane University Hospital, Tottori University Hospital, Ehime University Hospital, Chikamori Hospital, Uwajima City Hospital, Oita Prefectural Hospital, Saga-Ken Medical Centre Koseikan, University of The Ryukyus Hospital, Fukuoka University Hospital, National Hospital Organization Nagasaki Medical Center, Fukuoka Children’s Hospital, Nagasaki Goto Chuoh Hospital, and Nagasaki University Hospital for collection of MRSA.
strains, Shuji Miyazaki (Department of Laboratory Medicine, Nagasaki University of Hospital) for support of the analysis of bacteria, and Editage (www.editage.com) for English language editing.

Access to Data

The derived data supporting the findings of this study are presented in this paper.

Contributions

All authors were involved in the study design, acquisition, and interpretation of the data. NK, DS, KO, and KY were involved in data analysis. NK wrote the original manuscript. All authors revised the manuscript and have approved the manuscript for publication.

References

Figure Legends

Figure 1. The major clones in Japan

The major clones in Japan (A) and each region (B) were determined by a combination of sequence type (ST) and SCCmec type. MRSA, methicillin-resistant Staphylococcus aureus; ST, sequence type; CC, clonal complex