Transmission of Acute Respiratory Infections during Aerosol Generating Medical Procedures (AGMPs): An updated review

Jenine Leal1,2,3,4, Mark Hofmeister1,3, Liza Mastikhina1,3, John Taplin1,3, Joyce Li1,3, Brenlea Farkas1,3, Laura Dowsett1,3, Tom Noseworthy1,3 and Fiona Clement1,3.

1. Department of Community Health Sciences, University of Calgary, Calgary, Alberta Canada
2. Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta Canada
3. O’Brien Institute for Public Health, University of Calgary, Calgary, Alberta Canada
4. Infection Prevention and Control, Alberta Health Services, Alberta Canada

Mark Hofmeister
3D10, 3280 Hospital Drive NW
Calgary, AB T2N 4Z6
mrhofmei@ucalgary.ca

Joyce Li
3D10, 3280 Hospital Drive NW
Calgary, AB T2N 4Z6
joycli@ucalgary.ca

Liza Mastikhina
3D10, 3280 Hospital Drive NW
Calgary, AB T2N 4Z6
lmastikh@ucalgary.ca

Brenlea Farkas
3D10, 3280 Hospital Drive NW
Calgary, AB T2N 4Z6
brenlea.farkas@ucalgary.ca

John Taplin
3D10, 3280 Hospital Drive NW
Calgary, AB T2N 4Z6
jgtaplin@ucalgary.ca

Laura Dowsett
3D10, 3280 Hospital Drive NW
Calgary, AB T2N 4Z6
lelegget@ucalgary.ca

Tom Noseworthy
3D10, 3280 Hospital Drive NW
Calgary, AB T2N 4Z6
tnosewor@ucalgary.ca

Fiona Clement
3D10, 3280 Hospital Drive NW
Calgary, AB T2N 4Z6
fclement@ucalgary.ca

Acknowledgment: We would like to Dr. John Conly, the senior author of the original systematic review for reviewing and commenting on this update.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Funding Statement: The SPOR Evidence Alliance (SPOR EA) is supported by the Canadian Institutes of Health Research (CIHR) under the Strategy for Patient-Oriented Research (SPOR) initiative.

COVID-19 Evidence Network to support Decision-making (COVID-END) is supported by the Canadian Institutes of Health Research (CIHR) through the Canadian 2019 Novel Coronavirus (COVID-19) Rapid Research Funding opportunity.

Corresponding Author:
Jenine Leal, PhD
Foothills Medical Centre
801 - South Tower
3031 Hospital Drive NW
Calgary, AB T2N 2T8
Cell: (403) 973-6918
Fax: (403) 944-3886
Email: jenine.leal@albertahealthservices.ca

Keywords: aerosol-generating procedures, acute respiratory infection, healthcare worker
1 ABSTRACT

Objectives: To review the literature from 2011 until March 31st, 2020 to identify the risk of transmission of ARIs to healthcare workers caring for patients undergoing AGMPs compared with the risk of transmission when caring for patients not undergoing AGMPs.

Results: Only two prospective cohort studies were identified meeting inclusion criteria. One found that performance or assistance with AGMP during the previous week was significantly associated with symptomatic influenza (adjusted OR: 2.29, 95% CI: 1.3 to 4.2). The second study found that performance of AGMP was significantly associated with clinical respiratory infections (RR 2.9, 95% CI 1.42-5.87, p<0.01), laboratory-confirmed virus or bacteria (RR 2.9, 95% CI 1.37-6.22, p=0.01), and laboratory-confirmed virus (RR 3.3, 95% CI 1.01-11.02, p=0.05). Further evidence is needed regarding what constitutes an AGMP and the risk of ARI transmission during presumed AGMPs. Organizations need to interpret these findings with caution when establishing AGMP lists requiring airborne precautions.
2 INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia (COVID-19) was first identified in December 2019 in Wuhan, China and has since spread globally. Available evidence suggests the primary route of human-to-human transmission of the SARS-CoV-2 virus is through large respiratory droplets and contact routes.\cite{1, 2} This is supported by studies demonstrating transmission being highest within households,\cite{2, 3} the absence of identified transmission on aircraft,\cite{4} limited reports of significant outbreaks in staff of COVID-19 treatment centres not using airborne precautions and N95 respirators.\cite{5-7} Some studies have measured viral RNA in the air and air vents at enough distance from patients suggesting that aerosol transmission may be possible; however, whether the viral RNA in air represents living virus remains unknown.\cite{8-13}

Certain medical procedures used in the treatment of acute respiratory infection (ARI) may increase the risk of aerosol generation from a patient above that of natural processes (coughing etc.),\cite{14} The World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC) have identified several potentially aerosol generating procedures, which necessitate the use of airborne precautions such as N95 or higher respirators, in addition to gowns, gloves and eye protection along with airborne infection isolation room.\cite{15, 16} However, there has been very limited research on which medical procedures should be considered aerosol-generating and the evidence defining relative risk of presumed AGMPs is insubstantial.\cite{14, 17}

A systematic review on AGMPs and the associated risk of transmission of ARIs by Tran et al. (2012) identified that some procedures potentially capable of generating aerosols were associated
with increased risk of SARS transmission or were a risk factor for transmission.[18] Considering the COVID-19 pandemic, updated evidence is required on transmission of ARIs to HCWs due to aerosolized particles.

3 MAIN TEXT

3.1 Literature Search
The search strategy by Tran et al. was updated by a research librarian to capture studies in MEDLINE, Embase, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, and CINAHL published from 2011 to March 31st, 2020.[18] Terms related to AGMPs were combined with relevant disease terms and searched as text words in titles and abstracts and as MeSH subject headings, when applicable. The search excluded case reports, animal studies, conference abstracts, editorials, and letters. The full search strategy is reported in Additional File 1.

3.2 Literature Selection
PRISMA guidelines were followed (Additional File 2).[19] Abstracts identified were screened in duplicate and all included abstracts proceeded to full-text review. Full-text publications were screened in duplicate with discrepancies between reviewers resolved through consensus. Eligibility criteria included: 1) study population of HCWs caring for patients with ARIs, including but not limited to COVID-19, SARS, MERS, influenza, 2) the intervention was the provision of care to patients undergoing AGMPs, 3) comparator was the provision of care to patients not undergoing AGMPs, 4) the outcome was the risk of transmission of ARIs from
patients to HCWs and 5) the study design was a randomized controlled trial or non-randomized comparative study. Publications were excluded if they were not published in English or French.

3.3 Data Extraction & Analysis

For all included studies, year of publication, country, study design, population, aerosolizing procedure, period of evaluation, assessment of training and protective equipment, and number of exposed and non-exposed cases were extracted in duplicate using standardized data extraction forms. Discrepancies between reviewers during data extraction were resolved through consensus.

Results of these studies were narratively synthesized.

3.4 Results

Searches of electronic databases yielded 7,299 records. The full texts of 59 records were screened, of which two records met inclusion/exclusion criteria (Error! Reference source not found.) (Table of excluded studies, in Additional File 3).

Fig 1. Flow Chart of Included Studies

Two prospective cohort studies were identified meeting inclusion criteria (Table 1).
Table 1. Characteristics of studies included

<table>
<thead>
<tr>
<th>Study; Country</th>
<th>Design and Setting</th>
<th>Period of Evaluation</th>
<th>Population</th>
<th>Assessment of Training and Protection Equipment?</th>
<th>Laboratory Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuster et al.[20] 2013</td>
<td>Prospective Cohort Acute Care Hospitals</td>
<td>2009 H1N1 pandemic in Toronto, Canada</td>
<td>563 HCW 169 non-HCW</td>
<td>Adherence to hand hygiene and facial protection based on recommendations</td>
<td>Hemagglutination-inhibition assay to determine antibody titers against the influenza virus A(H1N1)pdm09 strain (A/California/07/2009-like) and the 2008-09 seasonal influenza virus A(H1N1) strain (A/Brisbane/59/07)</td>
</tr>
<tr>
<td>MacIntyre et al.,[21] 2014</td>
<td>Prospective Cohort Emergency and respiratory wards from nine hospitals</td>
<td>1 December 2008 to 15 January 2009 in Beijing, China</td>
<td>481 HCW</td>
<td>Hand washing, use of surgical masks or cloth masks (RR not reported), influenza vaccination</td>
<td>Viruses: adenoviruses, human metapneumovirus, coronavirus 229E/NL63 and OC43/HKU1, parainfluenza virus 1,2, and 3, influenza virus A and B, respiratory syncytial virus A and B, and rhinovirus A/B Bacteria: Streptococcus pneumoniae, Mycoplasma pneumoniae, B. pertussis, Legionella spp, Chlamydia and Haemophilus influenzae type B</td>
</tr>
</tbody>
</table>

The primary purpose of the study conducted in Toronto was to examine the epidemiology of infection caused by influenza virus A(H1N1)pdm 09 among HCWs and other working adults in Canada.[20] The authors secondarily determined risk factors for laboratory-confirmed symptomatic influenza among HCWs. An AGMP was defined as any one of the following: administration of nebulized therapy or humidified oxygen at >40%, use of bag-valve mask, manual ventilation, non-invasive ventilation, open airway suctioning, bronchoscopy or other upper airway endoscopy, tracheostomy, endotracheal intubation, cardiopulmonary resuscitation, oscillatory ventilation, or any procedure that involved manipulation of open ventilatory tubing in a mechanically ventilated patient, or sputum induction or other deliberate induction of coughing.[20] In multivariate analysis adjusted for receipt of vaccine and dynamics of pandemic...
waves, Kuster et al. (2013)[20] found that performance or assistance with AGMP during the
previous week was significantly associated with symptomatic influenza (adjusted OR: 2.29, 95%
CI: 1.3 to 4.2).[20]

In the second study, MacIntyre et al. (2014) prospectively studied 481 HCWs from emergency
and respiratory wards from nine hospitals in Beijing China. Healthcare workers were subjects of
a control group in a larger cluster randomized control trial (RCT) comparing fit-tested and non-
fit tested N95 respirators to medical masks to prevent respiratory viral infection in HCWs. High
risk procedures were defined as: provision of nebulizer medications, suctioning, intubation,
AGMPs, and chest physiotherapy.[21] MacIntyre et al. (2014)[21] measured transmission of
clinical respiratory infections defined as: presence of two or more respiratory symptoms; or, one
respiratory symptom and one or more systemic symptoms. Laboratory-confirmation of viruses
and bacteria included are listed in Table 1. Fifty-six (11.6%) HCWs performed at least one high
risk procedure during the study, with the most common activity being airway suctioning (66%,
37/56). Using Poisson regression, MacIntyre et al. (2014)[21] found that performance of AGMP
was significantly associated with clinical respiratory infections (RR 2.9, 95% CI 1.42-5.87,
p<0.01), laboratory-confirmed virus or bacteria (RR 2.9, 95% CI 1.37-6.22, p=0.01), and
laboratory-confirmed virus (RR 3.3, 95% CI 1.01-11.02, p=0.05).

3.5 Discussion

Two studies were identified in this update of the systematic review conducted by Tran et al.[18]
Both additional studies concluded that the performance of AGMPs significantly increased risk of
ARI transmission to HCWs.
In both studies, there was a lack of power related to small number of cases of ARIs in the HCW groups and AGMPs were combined. Hence, risk could not be attributed to individual procedures as it was in the study by Tran et al. The study by Kuster et al (2013) was further limited by the potential of: enrollment bias with increased participation by individuals who perceive having a higher risk for influenza infection; recall bias with ill participants potentially reporting risk factors more accurately than people who did not develop the illness; and a Hawthorne effect whereby participants may have altered their behaviour (e.g. increased adherence to protective measures) as a result of participating in the study.[20] Although the participants in the MacIntyre et al. study were part of a control group of a cluster RCT, similar limitations such as recall bias may persist.[21]

Interpretation of these findings is complicated by variation across jurisdictions in clinical care; quantity and type of AGMPs performed, infection prevention and control (IPC) practices, availability of personal protective equipment (PPE); type of PPE; and individual use and fit of PPE for each procedure. In addition to these sources of variation, validity of estimates from meta-analysis in the Tran et al. study was threatened by the very low quality of evidence available. Given this, the interpretation and practical application of the study findings is difficult.

Despite the limited and insubstantial evidence on the types of procedures that constitute an AGMP and the risk associated with presumed AGMPs, many organizations and medical societies have taken a precautionary approach and adopted the full or partial list of procedures identified by Tran et al. (2012).[1, 16, 22, 23] The Infectious Disease Society of America
identified that there was no direct evidence of AGMPs and rates of COVID-19 infection among healthcare workers and that despite the very low quality and indirect evidence, they placed a high value on avoiding serious harms to exposed health care personnel.[23] They present the CDC and WHO’s variable lists and rank the procedures from Tran et al. from highest odds ratio to lowest, despite many of the 95% confidence intervals crossing one and not being statistically significant.[23] A more transparent approach would be to present the results highlighting the procedures that have consistently demonstrated higher risk (e.g. Tracheal intubation). With the uncertainty and caution surrounding risk of transmission of SARS-CoV-2 among HCWs, other procedures have been proposed as potential AGMPs despite limited to no studies pertaining to their risk.[24-26] In our jurisdiction, a similar list of procedures was proposed by various clinical groups and societies. This list was reviewed by an expert working group made up of IPC physicians and professionals, workplace health and safety physicians, epidemiologists and respiratory therapists. Where decisions to exclude procedures as AGMPs differed from national/international clinical societies, engagement with these local groups occurred to establish consensus.[27] Other jurisdictions have employed similar processes to develop lists of AGMPs.[28] The result of including or excluding procedures as AGMPs using this approach will differ across jurisdictions depending on IPC guidelines and procedures, perceived risk of transmission and infection, and availability of PPE.

In the context of COVID-19, the evidence for HCW exposure through AGMPs is also limited and the generalizability of these findings to the current COVID-19 outbreak is unclear.[29] In a case control study among HCWs with acute respiratory symptoms working in the designated hospital of Wuhan University, HCW risk of developing COVID-19 was higher in areas where
AGMPs were performed (ICUs, respiratory wards, infection department and surgical department).[30] However, this risk was nullified when exposure was stratified by specific AGMPs (e.g. tracheal tube removal, sputum suction, fiber bronchoscopy). Additionally, HCW risk increased substantially on these units by self reported inadequate hand hygiene practices.[30] An epidemiological investigation was conducted of a patient diagnosed with COVID-19 after being nursed in an open ward with 10 other patients for 35 hours and being on high flow oxygen for 18.5 hours before being transferred to an airborne isolation room. Thirty-two of 71 staff developed respiratory symptoms but were all negative for SARS-CoV-2.[6] In another study, 41 HCWs were exposed to AGMPs for at least 10 minutes at a distance less than 2 metres during the care of a retrospectively diagnosed COVID-19 patient in an ICU setting.[7] The AGMPs included endotracheal intubation, extubation, noninvasive ventilation and exposure to aerosols in an open circuit. A majority (85%) of exposed HCWs wore surgical masks, rather than N95 respirators, and followed standard contact and droplet precautions. None of the exposed HCWs developed symptoms and all tests for SARS-CoV-2 were negative. [7]

3.6 Conclusion

Like the Tran et al. review, this update finds the presence of a significant research gap which is further compounded by the lack of precision in the literature regarding the definition for AGMPs.[22] Further evidence is needed regarding the probability and types of infections following exposure, by type of procedure and PPE. Multidisciplinary teams should strive to use robust epidemiologic, engineering and aerodynamics or aerobiology study designs to identify associations between viral particles expelled and collected from aerosols generated by these procedures with viable virus capable of infecting susceptible hosts. This would enhance the
transferability of lessons learnt from AGMPs, whether from SARS, H1N1 or COVID-19 and
prepare us for the next wave of COVID-19 or future pandemics of a respiratory nature.

4 LIMITATIONS

This review has limitations given the expected rapid turnaround for completion. We were not
able to search the grey literature for additional publications and we did not apply the GRADE
assessment to the two studies. Individual AGMPs could not be delineated from the grouped
analysis in the studies and therefore risk could not be assigned to individual procedures. The
search strategy included terms and key words originally identified in the Tran et al. study;
however, since the search, clinical societies have proposed the inclusion of other procedures,
which were not included in the original search. However, many of these recommendations have
not been substantiated by existing evidence so we do not think we have missed a significant
portion of the literature.
LIST OF ABBREVIATIONS

AGMPs aerosol-generating medical procedures
ARIs acute respiratory infections
CDC Center for Disease Control and Prevention
HCWs healthcare workers
ICUs intensive care units
IPC infection prevention and control
OR odds ratio
PPE personal protective equipment
RCT randomized control trial
RR relative risk
SARS severe acute respiratory syndrome
WHO World Health Organization
5 DECLARATIONS

Ethics approval and consent to participate: Not applicable

Availability of data and material: Not applicable. All data and material available in the manuscript.

Funding: Not applicable

Acknowledgements: We would like to Dr. John Conly, the senior author of the original systematic review for reviewing and commenting on this update.

Consent for publication: Not applicable

Competing Interests: The Authors declare that they have no competing interests.

6 REFERENCES

28. Ontario Agency for Health Protection and Promotion (Public Health Ontario). Focus on: Aerosol generation from coughs and sneezes Toronto, Canada: Queens Printer for Ontario; 2020

SUPPORTING INFORMATION CAPTIONS

A1 Appendix.docx: Additional File 1. Complete Search Strategy
A2 Appendix.doc: Additional File 2. PRISMA 2009 Checklist
A3 Appendix.docx: Additional File 3. Table of Excluded Articles