EPIDEMIOLOGY EVALUATION OF ATHLETIC INJURY IN UNIVERSITY CENTER

Pedro Rocha Tenorio¹, Jean Kleber Oliveira da Silva¹, Mariana Emanuele Higa de Melo¹, Me. Thaoan Bruno Mariano¹.

¹Faculdade de Fisioterapia, Universidade do Oeste Paulista.

SUMMARY BOX
- College athletics appears to have a high incidence of injury.
- There is an unusually high number of serious injuries in college athletic athletes participating in the study.
- Most college athletic sports injuries do not appear to be diagnosed or properly treated.
- Most injuries are concentrated in the lower body.

ABSTRACT

Introduction: Athletics is a sport with varied modalities, which are based on patterns and activities that are natural to human beings. As a sport, it has several benefits, such as improved physical condition and interpersonal interactions, but it is not free from risks, especially injuries related to competitions or training.

Objectives: Characterize injuries presented by the university athletics group of the medical course and identify possible risk factors.

Methods: Participants, enrolled in the athletics group of the medicine course, of both sexes, had anthropometric measurements evaluated and answered an injury screening questionnaire modified from the “Injury Surveillance System”.

Results: 31 participants responded to the questionnaire where 65% of them had at least one injury. A total of 23 injuries were reported, 20 of which were serious, with no significant difference between both sexes. The total practice time was...
almost 2 times longer in injured practitioners than in non-injured ones.

Conclusion: The practice of university athletics is associated with a high occurrence of serious injuries.

Keywords: Athletics. Injury. Epidemiology, Sport, Health.

INTRODUCTION

The practice of physical activity has several recognized health benefits, such as increased physical capacity and disease prevention, as well as secondary benefits such as reduced drug use, psychosocial effects, and personal development. However, there are also negative effects related to the practice of physical activity, such as eating disorders and in particular, especially in practitioners who aim to improve performance, particularly for competition, increasing the rate of injuries.

Although college sports in Brazil are not as expressive as in other places, such as the United States, where the practice is related to professional careers or scholarships, there are still several sporting events promoted by university athletes in the country, organized by the national governing body responsible, the CBDU (Brazilian Confederation of University Sports). Several modalities of athletics are included in these competitions and are practiced by university centers throughout Brazil. This competitions are based on the execution of natural human movements, and therefore, can be considered a basic activity for the acquisition of motor skills for various purposes.

The risk of injuries in athletes is higher than in the general population, varying according to the modality practiced, training volume, specialization, among other factors. The time taken away from training and competitions due to the injury can vary greatly depending on the region and severity of the injury and the type
of treatment applied, ranging from a few days⁷ to several months in surgical cases³.

Among Brazilian research, scientific production focused on Athletics modalities is still scarce, mostly focused on speed events³ and from the few studies on injury in sport, only 1 was found where the injury in college athletes was discussed³. The University of Oeste Paulista (Unoeste) has an athletics group of students enrolled in the medical course, already with a history of competitions. However, there is no described characterization of these individuals, thus an epidemiological assessment of the lesions presented by the participants was carried out to identify injuries and possible risk correlations.

METHODS

Ethical Considerations

The study followed all ethical standards for experimentation and was approved by the CEP and registered with the CPDI-UNOESTE under number 6991.

Recruiting Subjects

Subjects enrolled during the period of January to October 2021 in the athletics group of the medical course of the Universidade do Oeste Paulista, of both sexes, were invited to participate in the study after signing the Informed Consent Form.

Anthropometric Evaluation

The height and weight of the participants were collected individually using a Mi Body Composition Scale 2 (Xiaomi, Beijing, China) and a measuring tape.

Injury Evaluation

Subsequently, a modified retrospective version of the questionnaire "Injury Surveillance System" (ISS)⁸ was applied, which contained information on the
modality practiced during the injury, injury site, date of injury, mechanism of injury, clinical and physical therapy diagnosis, and treatment adopted.

Data Analysis

The χ² test was applied in order to compare the presence or absence of injury according to gender, age, height, weight, BMI, weekly training time, and total time of practice of the sport. To assess the difference between the sample characteristics of men and women, the unpaired t-student test was used. It was assumed a significance level of 5%. The software used was SPSS Statistics (V.20, IBM, Armonk, New York, USA).

RESULTS

A total of 31 subjects completed the questionnaire.

Subjects Characterization

The sample characterization can be seen in Table 1. The most practiced modality was the 100 meters dash (61.3%). The distribution of the modalities practiced can be seen in Table 2.

<table>
<thead>
<tr>
<th>Table 1. Sample Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

N=number of participants; T=Time of semanal training
Injuries Characterization

A total of 23 injuries were found. 52.6% of women and 83.3% of men had at least 1 injury, but there was no statistically significant difference between the incidence of injury between the two sexes. The anatomical location of injury incidence can be seen in Table 3. Of the 31 athletes, 20 had at least one and 3 had two injuries.

All injuries recorded occurred during training, with 2 occurring during warm-up, 9 during the first half of training, 7 during the second half of training, and 5 during the cool-down period. Of the 23 injuries recorded, 20 were new injuries, 2 were recurrence of a previous injury occurring in the practice of the same modality and 1 was due to a complication of a previous injury resulting from another athletics modality. 2 of the injuries led to the participants’ permanent removal from the sport, 3 injuries did not lead to any time off, and the meantime time off for the other injuries was 52.83 days, with a minimum of 7 days and a maximum of 6 months. The types of injuries can be seen in Table 4.

<table>
<thead>
<tr>
<th>Table 2. Number of participants by modality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modality</td>
</tr>
<tr>
<td>100 m</td>
</tr>
<tr>
<td>400 m</td>
</tr>
<tr>
<td>1500 m</td>
</tr>
<tr>
<td>5000 m</td>
</tr>
<tr>
<td>4x100 m relay</td>
</tr>
<tr>
<td>4x400 m relay</td>
</tr>
<tr>
<td>Shot put</td>
</tr>
<tr>
<td>Discus throw</td>
</tr>
<tr>
<td>Javelin</td>
</tr>
<tr>
<td>Long Jump</td>
</tr>
<tr>
<td>High Jump</td>
</tr>
<tr>
<td>Triple Jump</td>
</tr>
</tbody>
</table>

n= number of participants

<table>
<thead>
<tr>
<th>Table 3. Incidence of injury by anatomical location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury Site</td>
</tr>
<tr>
<td>Shin</td>
</tr>
<tr>
<td>Quadriceps</td>
</tr>
<tr>
<td>Hamstrings</td>
</tr>
</tbody>
</table>
13 (56.3%) lesions received clinical diagnosis and imaging exams were performed in 8 of them. 2 lesions were treated with non-steroidal anti-inflammatory drugs for 5 and 7 days and another 2 were treated with prescribed dietary supplementation for 3 and 5 months. None of the lesions underwent surgical intervention. 11 (47.8%) injuries were treated with physical therapy, 9 injuries had an average time of physical therapy treatment of 1.25±0.47 months, the other 2 injuries had a discrepant treatment time of 6 and 16 months.

<table>
<thead>
<tr>
<th>Type of Injuries</th>
<th>Incidence (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incomplete Muscle Tear</td>
<td>7 (30.4%)</td>
</tr>
<tr>
<td>Inflammation</td>
<td>7 (30.4%)</td>
</tr>
<tr>
<td>Cartilage Damage</td>
<td>3 (13%)</td>
</tr>
<tr>
<td>Incomplete Ligament Tear</td>
<td>1 (4.3%)</td>
</tr>
<tr>
<td>Nerve Injury</td>
<td>1 (4.3%)</td>
</tr>
<tr>
<td>Stress Fracture</td>
<td>1 (4.3%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>3 (13%)</td>
</tr>
</tbody>
</table>

n=Number of events

Risk Factors

The characteristics of injured and uninjured individuals can be seen in Table 5.

Statistical differences were observed between BMI (p=0.037), where injured individuals presented a lower BMI, and the length of total time in practice of the sport (p=0.048), with a practice time almost twice as long in individuals who presented injuries.
BMI (Kg/m²)	22.65±2.76*	25.74±5.15*
Training (h)	7.32±3.34	7.91±3.75
Practice (months)	15.1±10.66*	8±5.19*

*=p<0.05

DISCUSSION

Injuries Incidence and Severity

This study found a high incidence of injuries, if significant levels of injuries classified as severe, defined as more than 10 days away⁸, with 20 of the 23 injuries reported reaching this criterion, a higher rate than reported by Rosa *et al.* in a similar study⁹. This data may be a reflection of the type of injuries reported by the participants, such as ruptures, fractures, and cartilage damage. This length of time away can have a deleterious effect on the participants’ lives as a whole, preventing the athletes to participate not just in sport, but in social and academic events too, compromising the physical and mental health. This findings demonstrate the strong need to implement injury prevention programs in college centers.

There was a higher incidence of injury than that found by Rosa *et al.*, but the incidence was similar to the injury rate in runners found in a recent systematic review conducted by Francis *et al.*.¹⁰ Since running was the main sport practiced by the analyzed group, this may explain the higher incidence of injury compared if other studies in athletics if greater variety in modalities.

The recurrence of injuries was small, different from what was reported in a cross-section analysis of college-level athletes, conducted by Lemoyne *et al.*, in which he found an incidence of more than 2 injuries per athlete¹¹, probably due to the long time off took by the athletes after an injury, favoring their complete recovery, preventing recurrence or complication of the injury.
Injury Site

The incidence of injury by anatomical location was similar to that found by Francis et al.10, indicating that the lower body of the participants was the region with greater effort demand and susceptibility to injuries, thus showing the critical area of concern in formulation of a injury prevention program.

Risk Factors

The lowest BMI presented by the participants who reported an injury contrasts with what is reported in the literature, which shows a greater risk of injury if greater BMI12. This finding may be explained by the greater amount of lean mass in participants without injuries, which would help to prevent them13. The practice time of the sport was also significantly longer in those who present some injury, as expected since longer practice time corresponds to a greater number of events for the occurrence of injuries14, and greater accumulated training volume, a risk factor for injuries2,8.

Limitations

The methodological limitations present in the study were its retrospective nature, which could lead to underreporting of minor injuries that were forgotten, or the accuracy of the reported data. Another present limitation due to the retrospective nature was the inaccuracy in the report of a second sports. Many individuals reported weight training for various intermittent periods but were not able to pinpoint the duration or date of the training periods, this may be a confounding factor in the risk of injury. The low number of participants can also be a limiting factor for identifying risk factors for injuries.

CONCLUSION

College athletics seems to be a practice with a high prevalence of injuries, especially serious injuries, and its main risk factor appears to be the total time
spent in sports training. More studies are necessary, especially with a prospective
class character, in order to develop a better understanding of risk factors and allow a
better formulation and implementation of preventive measures in university
sports.

REFERENCES

1. Malm C, Jakobsson J, Isaksson A. Physical Activity and Sports—Real
Health Benefits: A Review with Insight into the Public Health of Sweden.

2. Confederação Brasileira do Desporto Universitário. Institucional. 2021
[Internet]. Availible from: "https://www.cbdu.org.br/institucional/". [Cited:
16 of Out of 2021].

atletismo no Brasil: uma revisão sistemática. Rev bras ciênc mov.

comparison of ankle injuries presenting to US emergency departments
versus high school and collegiate athletic training settings. Inj Epidemiol.
2018;5(1).

Association of Competition Volume, Club Sports, and Sport Specialization
With Sex and Lower Extremity Injury History in High School Athletes.

6. Bell DR, Post EG, Biese K, Bay C, McLeod TV. Sport specialization and
risk of overuse injuries: A systematic review with meta-Analysis.

DATA AVAILABILITY STATEMENT
Data are available upon reasonable request. Request to access the data will be considered by the authors, within the constraints of privacy and consent.

Data can be requested from Pedro Rocha Tenorio, https://orcid.org/0000-0003-1812-4792, rocha.pedro.t@gmail.com.

PATIENT AND PUBLIC INVOLVEMENT
Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

CONTRIBUTORS
PRT contributed to the conception and design, analysis and interpretation of data, drafting of the manuscript, and final approval of the version to be publish. TBM contributed to the conception and design, revision, and final approval of the version to be publish. JKOS contributed to the acquisition of data, and revision. MEHM contributed to the acquisition of data, and revision. All gave final approval and agree to be accountable for all aspects of work ensuring integrity and accuracy.