Analysis of Mechanistic Pathways in the Treatment of Non-Alcoholic Steatohepatitis. Evidence from a Bayesian Network Meta-Analysis

Mark D. Muthiah1,2,3*, Cheng Han Ng1*, Jieling Xiao1*, Yip Han Chin1, Grace Lim4, Wen Hui Lim1, Phoebe Tay1, Darren Jun Hao Tan1, Jie Ning Yong1, Xin-Hui Pan1, Jeffery Wei Heng Koh1, Nicholas Chew1, Nicholas Syn1, Eunice Tan1,2,3, Daniel Q. Huang1,2,3, Mohammad Shadab Siddiqui6, Rohit Loomba7, Arun J. Sanyal8, Mazen Noureddin6

1Yong Loo Lin School of Medicine, National University of Singapore, Singapore
2Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
3National University Centre for Organ Transplantation, National University Health System, Singapore
4Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
5Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, United States of America
6Cedars-Sinai Fatty Liver Program, Division of Digestive and Liver Diseases, Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Centre, Los Angeles, CA, USA.
7NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, San Diego, California, USA
8Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia

*These two authors contributed equally to this work and share first authorship.

Corresponding Authors:
Ng Cheng Han
Yong Loo Lin School of Medicine, National University of Singapore
Singapore 10 Medical Dr, Singapore 117597
Tel: +65 6772 3737
Email: chenhanng@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ORCID: 0000-0002-8297-1569

Dr. Mark Muthiah, MBBS (S’pore), MRCP (UK), MMED (S’pore)
Consultant Gastroenterologist and Hepatologist
Division of Gastroenterology and Hepatology, Tower Block Level 10
1E Kent Ridge Road
Singapore 119228
Tel: +65 6772 4354
Fax: +65 6775 1518
ORCID ID: 0000-0002-9724-4743
Email: mdcmdm@nus.edu.sg

Word count: 5538

Keywords: Non-alcoholic Fatty Liver Disease, Steatosis, Fibrosis, Drug Therapy, Treatment Outcome

List of abbreviations: ALT – Alanine transaminase; AMPK – AMP-activated kinase; AST – Aspartate aminotransferase; Crl – Credible intervals; DIC – Deviance Information Criterion; FASN – Fatty Acid Synthase; FDA – Food and Drug Administration; LDL – Low-density Lipoprotein; MCMC – Markov Chain Monte Carlo; MD – Mean Difference; NAFLD – Non-alcoholic Fatty Liver Disease; NAS – Non-alcoholic fatty liver disease (NAFLD) Activity Score; NASH – Non-alcoholic steatohepatitis; RCTs – Randomized Controlled Trials; RR – Risk Ratio; SUCRA – Surface Under the Curve Cumulative Ranking Probabilities; UME – Unrelated Mean Effects
DECLARATIONS

Financial Support

No grants or external funding was received for this study

Conflicts of Interests

Arun J. Sanyal: Dr Sanyal is President of Sanyal Biotechnology and has stock options in Genfit, Akarna, Tiziana, Indalo, Durect and Galmed. He has served as a consultant to AstraZeneca, Nitto Denko, Enyo, Ardelyx, Conatus, Nimbus, Amarin, Salix, Tobira, Takeda, Jannsen, Gilead, Terns, Birdrock, Merck, Valeant, Boehringer-Ingelheim, Lilly, Hemoshear, Zafgen, Novartis, Novo Nordisk, Pfizer, Exhalenz and Genfit. He has been an unpaid consultant to Intercept, Echosens, Immuron, Galectin, Fractyl, Syntlogic, Affimune, Chemomab, Zy dus, Nordic Bioscience, Albireo, Prosciento, Surrozen and Bristol Myers Squibb. His institution has received grant support from Gilead, Salix, Tobira, Bristol Myers, Shire, Intercept, Merck, Astra Zeneca, Malinckrodt, Cumberland and Norvatis. He receives royalties from Elsevier and UptoDate.

Rohit Loomba: Dr Loomba serves as a consultant or advisory board member for Anylam/Regeneron, Arrowhead Pharmaceuticals, AstraZeneca, Bristol-Myer Squibb, CohBar, Eli Lilly, Galmed, Gilead, Glympse bio, Inipharm, Intercept, Ionis, Janssen Inc., Merck, Metacrine, Inc., NGM Biopharmaceuticals, Novartis, Novo Nordisk, Pfizer, Promethera, Sagimet, 89 bio, and Viking Therapeutics. In addition, his institution has received grant support from Allergan, Boehringer-Ingelheim, Bristol-Myers Squibb, Cirius, Eli Lilly and Company, Galectin Therapeutics, Galmed Pharmaceuticals, GE, Genfit, Gilead, Intercept, Inventiva, Janssen, Madrigal Pharmaceuticals, Merck, NGM Biopharmaceuticals, Pfizer, pH Pharma, and Siemens. He is also co-founder of Liponexus, Inc.

Data Availability

All articles in this manuscript are publicly available from Medline and Embase.

Acknowledgements

All authors have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising
it critically for important intellectual content, (3) final approval of the version to be submitted. No writing assistance was obtained in the preparation of the manuscript. The manuscript, including related data, figures and tables has not been previously published and that the manuscript is not under consideration elsewhere.

Authors’ Contributions

All authors approve the final version of the manuscript, including the authorship list and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Conceptualization and Design: Mark D. Muthiah, Cheng Han Ng, Jieling Xiao

Acquisition of Data: Mark D. Muthiah, Cheng Han Ng, Jieling Xiao, Yip Han Chin

Analysis and Interpretation of Data: Mark D. Muthiah, Cheng Han Ng, Jieling Xiao, Grace Lim

Writing – original draft: Mark D. Muthiah, Cheng Han Ng, Jieling Xiao, Grace Lim, Wen Hui Lim, Phoebe Tay

Writing – review & editing: Jeffery Wei Heng Koh, Nicholas Chew, Nicholas Syn, Eunice Tan, Daniel Q. Huang, Mohammad Shadab Siddiqui, Rohit Loomba, Arun J. Sanyal, Mazen Noureddin
ABSTRACT

Background and Aims: Non-alcoholic steatohepatitis (NASH) is the most common cause of liver disease contributing to significant disease burden worldwide. However, there is lack of comparison of efficacy between different NASH drug classes. We conducted a network meta-analysis evaluating drug classes through comparing histological outcomes and targets of drugs.

Approach & Results: Medline, EMBASE and CENTRAL were searched for articles evaluating NASH drugs in biopsy-proven NASH patients. Primary outcomes included NASH resolution without worsening of fibrosis, 2-point reduction in Non-alcoholic fatty liver disease Activity Score (NAS) without worsening of fibrosis and 1-point reduction in fibrosis. Treatments were classified into inflammation, energy, bile acid, and fibrosis modulators. The analysis was conducted with Bayesian network model and surface under the cumulative ranking curve (SUCRA) analysis.

From the 48 trials included, treatments modulating energy (Risk ratio (RR): 1.84, Credible intervals (Crl): 1.29 - 2.65) were the most likely to achieve NASH resolution followed by treatments modulating fibrosis (RR 1.68, Crl: 0.55 - 5.28), bile acids (RR: 1.34, Crl: 0.78 - 2.26) and inflammation (RR: 0.94, Crl: 0.59 - 1.46). Energy and bile acids modulation were effective in 2-point NAS reduction without worsening of fibrosis (RR: 1.60, Crl 1.13 - 2.30 and RR: 1.79, Crl 1.14 - 2.86) and 1-point fibrosis (RR: 1.27, Crl:1.05 - 1.52 and RR: 1.54, Crl: 1.20 - 1.97).

Conclusions: This network analysis demonstrates the relative superiority of drugs modulating energy pathways and bile acids in NASH treatment. This guides the development and selection of drugs for combination therapies.

Abstract Word Count: 249
INTRODUCTION

Non-alcoholic steatohepatitis (NASH) remains the commonest cause of liver disease contributing to a significant burden on the economy in developed countries\(^1\). NASH is an inflammatory subtype of non-alcoholic fatty liver disease (NAFLD) with the presence of steatosis, hepatocyte injury (ballooning), inflammation, with or without fibrosis. In the United States alone, the prevalence of NASH is estimated to be between 3% - 5% and projected to increase rapidly, mirroring the rise in obesity\(^2\). Despite its major implications, the Food and Drug Administration (FDA) has yet to approve any pharmacological treatments for NASH.

While multiple drugs have entered phase III trials, limited efficacy at best have been demonstrated\(^3\). The basis of NASH treatment targets various steps in the aetiological pathway of NASH (Figure 1). Broadly, this can be classified into (1) surplus energy provision to the hepatocytes, (2) hepatocyte death and inflammation, and (3) development of fibrosis and (4) extrahepatic factors that can also modulate the progression of the disease. NASH occurs when there is excess adiposity and energy delivery to the liver. When hepatocytes are unable to cope with the excess energy, they form lipotoxic metabolites\(^4\). These lipotoxic metabolites give rise to apoptosis, cell death, and inflammation, primarily mediated by mononuclear cells\(^5\). Chronic ongoing inflammation then leads to fibrosis, with activation of hepatic stellate cells to myofibroblasts and accumulation of the extracellular matrix\(^6\). While fibrosis is the main feature associated with mortality and liver related events\(^7\), attempts at reversing this critical aspect of the disease have been dismal\(^8\). Extrahepatic factors that modify delivery of energy into the liver and systemic insulin resistance can also modulate the progression of the disease.

In turn, it is imperative to target key pathways to optimize improvements in outcomes in NASH to serve as the backbone in combination therapies. A previous meta-analysis done by Majzoub et al conducted a surface under the curve cumulative ranking probabilities analysis\(^11\) and building on this, we sought to examine the comparative efficacy of specific drug classes and targets that can achieve improvements in histological endpoints. To address this knowledge gap, we performed a network meta-analysis comparing the histological outcomes of various classes and targets of drugs used in the treatment of NASH.
METHODS

Search Strategy
The present study has been registered with PROSPERO (CRD: CRD42021272676). The network meta-analysis was conducted with reference to the Preferred Reporting Items for Systematic Reviews and Meta-analyses extended statement for network analysis12, 13. A search was conducted with assistance from a medical librarian for NASH randomized controlled trials (RCTs) with an updated search conducted on 28th September 2021. Articles were included from inception without the use of a date filter. An example of the search strategy can be found in supplementary material 1. References were managed using Endnote X9 for duplicate removal and references.

Eligibility and Selection Criteria
Four authors (MDM, CHN, YHC, JX) were involved in the screening of abstracts and evaluation of full text for inclusion based on the eligibility criteria. In this meta-analysis, only English articles which included adult patients with biopsy proven NASH were considered for inclusion. Paediatric studies were excluded. Trials examining a combination of drugs within the same treatment arm were excluded. Based on provided data, the primary outcomes of this meta-analysis were (i) the resolution of NASH without worsening of fibrosis, (ii) 2-point reduction in NAS score without worsening of fibrosis and (iii) at least 1-point reduction in fibrosis. The secondary outcomes of the meta-analysis included an at least a 1-point reduction in steatosis, ballooning and inflammation from liver biopsy. Additionally, biochemical reduction of aspartate aminotransferase (AST) and alanine transaminase (ALT) were outcomes of interest. When articles did not present continuous variables in mean and standard deviations, formulas from Wan et al and author et al were used in the estimation of mean and standard deviations which are required for the pooling of continuous variables. We considered only the use of full text articles, with conference abstracts excluded from the meta analysis.

Classifications of Treatments
The classification of treatments in this meta-analysis is illustrated in Figure 2 and primary articles were grouped into four major groups namely into (1) inflammation (2) energy (3) fibrosis and (4) bile acids based on the mechanism of action.
Risk of Bias Assessment

The risk of bias assessment was assessed using the Cochrane Risk of Bias 2.0. Briefly, included articles were examined on seven domains including random sequence generation, allocation concealment, masking of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective outcome reporting, and other sources of bias. Disagreements were resolved by consensus or appeal to a third author.

Statistical Analysis

Statistical analysis was conducted in RStudio (R version 4.0.3). The analysis was conducted in a Bayesian network model from a generalized liner model using BUGSnet and JAGS software. The unit of measure in the network meta-analysis was risk ratio (RR) for dichotomous events and mean difference (MD) for continuous events with a log-link and identity-link respectively. Bayes iterations parameters were set to 1000 burn-ins, 1000 adaptations, and 10000 iterations for the Markov Chain Monte Carlo (MCMC) algorithm. Model fit was examined from a visual inspection of the trace and density plot. In view of the small sample sizes involve in the primary articles, surface under the curve cumulative ranking probabilities (SUCRA) analysis was considered the endpoint of treatment outcomes. The SUCRA analysis ranks each treatment group from 0-1 with a higher number relating to an increase probability of a successful event. Both models of fix and random effects were conducted, and evaluation of model fitting was based on the Deviance Information Criterion (DIC). Consistency, which assesses statistical agreement between indirect and direct evidence required for validation of the transitivity assumption was examined through DIC and unrelated mean effects (UME) model. The outputs of the meta-analysis were presented in RR/MD with the corresponding credible intervals (Crl). Publication bias was assessed with visual examination of forest plot for asymmetry.
RESULTS

Summary of Included Articles

1,435 articles were retrieved from the initial search strategy, with 1,201 remaining after duplicate removal. After screening of title and abstract, 165 full texts were reviewed, of which 117 articles were excluded. A total of 48 RCTs comprising of 6282 participants were included in this meta-analysis. 3,448 participants were assigned to the experiment group while 2,834 participants were assigned to the control group. There were 16 experiment groups evaluating medications classified under the inflammation subset15-29, 25 groups under the energy subset16, 30-52, 8 groups under the bile acid subset52-59 and 3 groups under the fibrosis subset60, 61. Majority of the included RCTs had placebo as the control group with exception of 3 articles with Pioglitazone19, Simtzutumab23 and vitamin E as control27. In the case of trials from the same institutional database analysing the same cohort of participants across multiple publications, the most recent publication was included. Summary of the included articles can be found in supplementary material 2. Majority of RCTs were found to have low to moderate risk of bias in at least half of the domains assessed (Supplementary material 3) and there was no evidence of publication bias (Supplementary material 4).

Primary Outcomes

Resolution of NASH without Worsening of Fibrosis

The summary of results can be found in Table 1 and Figure 3. In total 3639 patients were assessed for resolution of NASH without worsening of fibrosis. Results from the SUCRA analysis ranked treatments modulating energy as the most likely to achieve resolution in NASH without worsening of fibrosis, followed by treatments modulating fibrosis, bile acids, inflammation, and placebo respectively. When compared to placebo, treatments modulating energy resulted in statistical significance in the resolution of NASH without worsening of fibrosis (RR: 1.84, CrI: 1.29 to 2.65). There was no significant difference between treatments modulating fibrosis (RR 1.68, CrI: 0.55 to 5.28), bile acids (RR: 1.34, CrI: 0.78 to 2.26), and inflammation (RR: 0.94, CrI: 0.59 to 1.46) when compared to placebo. Comparing between treatments, energy was statistically superior to those modulating inflammation in the resolution of NASH without worsening of fibrosis (RR: 1.95, CrI: 1.17 to 3.41, table 1).

2-Point Reduction in NAS without Worsening of Fibrosis
There were a total of 3020 patients assessed for a 2-point reduction in NAS without worsening of fibrosis. In the SUCRA analysis, treatments modulating bile acids were ranked as the most likely treatments for a 2-point reduction in NAS without worsening of fibrosis, following which treatments modulating energy, inflammation, fibrosis and placebo respectively were ranked in descending order. Treatments modulating bile acids were statistically more likely than placebo to result in a 2-point reduction of NAS with no worsening of fibrosis (RR: 1.79, Crl 1.14 to 2.86, Table 1). Similarly, treatments modulating energy were significantly better than placebo in a 2-point reduction of NAS without worsening of fibrosis (RR: 1.60, Crl 1.13 to 2.30). There was however no statistical difference when treatments modulating inflammation (RR: 1.34, Crl: 0.90 to 2.03) or fibrosis (RR: 1.01, Crl: 0.48 to 2.09) were compared to placebo. There was no statistically significant difference between groups (Table 1).

1-Point Reduction in Fibrosis

A total of 3568 patients were assessed for a 1-point reduction in fibrosis. SUCRA analysis ranked treatments modulating bile acids as the best treatment in achieving a 1-point reduction in fibrosis, followed by energy, fibrosis, inflammation and placebo respectively. There was statistically significant benefit in treatments modulating bile acids (RR: 1.54, Crl: 1.20 to 1.97) and energy (RR: 1.27, Crl:1.05 to 1.52) when compared to placebo. However, there was no statistical significance between treatments modulating inflammation (RR: 1.04, Crl: 0.87 to 1.24) and fibrosis (RR: 0.91, Crl: 0.53 to 1.55) when compared to placebo. There was no statistically significant difference between groups (Table 1).

Secondary Outcomes

1-Point Reduction in Steatosis, Ballooning or Lobar Inflammation

The results of the secondary endpoints are summarized in supplementary material 5. A total of 2363 patients were assessed for histological improvements steatosis. In the ranking of treatment, treatments modulating energy were ranked as the best treatment for a histological improvement in steatosis followed by treatments modulating inflammation, bile acids, fibrosis and placebo. There was a significant benefit in 1-point reduction of steatosis between treatments modulating energy when compared to placebo (RR: 1.95, Crl 1.44 to 2.62). Treatments modulating inflammation were also superior to placebo in the reduction of steatosis (RR: 1.64, Crl: 1.20 to 2.26). There was no statistical difference between treatments modulating bile acid (RR: 1.37, Crl: 0.94 to 1.99) or fibrosis (RR: 1.23,
Crl: 0.25 to 4.41) when compared to placebo. There was no statistical difference between groups. The results of ballooning and lobar inflammation are summarized in Supplementary table 5. Briefly, both energy and bile acids were statically superior to placebo (RR: 1.40, Crl: 1.04 to 1.91 and RR: 1.56, Crl: 1.04 to 2.34 respectively) with similar results in lobar inflammation.

Reduction in Liver Enzymes (AST, ALT)

In total, there was 4874 and 5013 patients examined for AST and ALT respectively. The results of the network analysis are summarized in supplementary material 6. For reduction in AST, treatment ranking in descending order were treatments modulating bile acids, energy, placebo, inflammation, and fibrosis. Treatments modulating bile acids (MD: -7.60, Crl: -11.20 to -3.99) and energy (MD: -6.11, Crl: -6.88 to -5.33) resulted in similar reduction of AST when compared to placebo. There was no statistical difference between treatments modulating inflammation and placebo (MD: 0.68, Crl: -0.81 to 2.18).

Treatments modulating fibrosis resulted in an increase in AST compared to placebo (MD: 25.49, Crl: 22.74 – 28.23). Additionally, most treatments were superior to those modulating fibrosis in the reduction of AST. In reduction of ALT, treatments modulating inflammation, bile acids, energy, fibrosis, and placebo were found to be in descending order of treatment ranking. Treatments modulating inflammation resulted in largest reduction in ALT (MD: -6.57, Crl: -8.99 to -4.16) when compared to placebo. There was a statistically significant reduction between treatments modulating bile acid (MD: -5.17, Crl: -7.02 to -3.31) and placebo. Similarly, treatments modulating energy (MD: -3.43, Crl -5.11 to -1.74) and fibrosis (MD: -2.84, -4.19 to -1.50) resulted in a statistically significant reduction in ALT when compared to placebo. Treatments modulating inflammation were superior to most treatments in ALT reduction.
DISCUSSION

NASH poses a significant burden on the individual, society, and economy. In the absence of efficacious pharmacological treatments for NASH, weight loss remains the only available option for patients to reverse their liver disease. Unfortunately, due to the limited efficacy and sustainability of weight loss, patients are at risk of progressing to end stage complications of the disease that can only be treated by a liver transplant. Current clinical trial design has predominately focus on displaying efficacy compared to placebo treatment. In this class effect network meta-analysis of 48 NASH randomized controlled trials, we demonstrate the comparative benefits of histological endpoints in NASH. Energy modulating treatments were significantly better than placebo in achieving all the 3 primary outcomes (NASH resolution with no worsening of fibrosis, 2-point improvement in NAS with no worsening of fibrosis, and at least 1-point improvement in fibrosis without worsening of steatohepatitis), while bile acid modulating treatments were only significantly better than placebo in achieving 2-point improvement in NAS without worsening if fibrosis and an at least a 1-point improvement in fibrosis without worsening of steatohepatitis (Figure 4). There was no statistical significance between bile acid modulating treatments and placebo in achieving NASH resolution without worsening of fibrosis.

In our analysis, treatment modulating energy and bile acids were the most successful treatment for NASH. Within energy modulating treatment, notable studies included the recently published phase 2 trial of subcutaneous semaglutide in which almost half of the patients in the intervention arm achieved resolution of NASH with no worsening of fibrosis. In the PIVENS study, pioglitazone was associated with improvement in hepatic steatosis, lobular inflammation along with serum AST and ALT levels. On the contrary, bile acids are thought to impact both energy delivery into the liver, as well as modulate inflammatory pathways in the liver. Obeticholic acid remains the only NASH drug to achieve a primary endpoint of at least 1-point improvement in fibrosis with no worsening of NASH in a phase 3 study.

While our study demonstrated that both the energy modulating class and the bile acid modulating class appeared to have the best outcomes on liver histology, drugs from these classes reported relevant metabolic adverse effects. Fircostat, an ACC inhibitor from the energy modulating class, can cause hypertriglyceridemia, while obeticholic acid, an FXR agonist from the bile acid modulating class can increase the low-density lipoprotein (LDL) levels. Patients with NASH are at increased risk of...
cardiovascular disease and cardiovascular related mortality and thus long term results from this adverse
effects must also be balanced against the comparative liver related benefits. These drugs may benefit
from co-prescriptions with lipid medications. In the phase 2 CONTROL study, obeticholic acid
prescribed together with atorvastatin demonstrated safety and tolerability66. Evidence from meta-
analysis have also shown that statins are safe treatment in NASH67. Conversely, some drugs like GLP1-
RAs have demonstrated improvements in cardiovascular events and cardiovascular mortality in non-
NASH subjects and may have synergistic benefits over and above benefits to just the liver in patients
with NASH68.

As we only included studies that had paired liver biopsies to demonstrate changes in histology, there
were several studies that we were unable to include in the comparisons. PXL770, an AMP-activated
kinase (AMPK) activator, and TVB-2640, a fatty acid synthase (FASN) inhibitor, have both
demonstrated encouraging results in phase 2a studies69, 70. Additionally, combination therapy was also
excluded from our analysis. Combination therapy requires principal component analysis to account for
a potentiating or addictive effects. Previous literature suggested that combination therapy has the
potential to increase response rate from synergistic effects of combined drugs and reduce side effects
seen in monotherapy71 and remains to be explored.

Strengths and Limitations

The current analysis provides the first Bayesian network analysis based on the mechanism of action
with energy and bile acids modulating treatment showing superiority in achieving the primary endpoint.
The basis of the classification of the current network analysis was to achieve a larger sample size for
sufficient power to detect significant differences. However, there are several limitations to this meta-
analysis. The classification of treatments was based on the proposed pathogenesis of NASH the
groupings can potentially be contentious. However, the process was done with expert consensus, and
were based around classifications previously described in the field72. Additionally, compared to other
classes with significantly larger quantity of studies, the recent introduction in anti-fibrotic treatment can
be poorly represented. Lastly, current trial design is ill-equipped to assess long term attenuation of
outcomes including the rate of cardiovascular events, liver related events, and mortality.
Conclusion

In conclusion, we demonstrate the relative superiority of drugs modulating energy pathways and bile acids in the treatment of NASH among the available drug targets. These findings further reinforce the hypothesis that the key in treating NASH is not just in trying to improve the pathological changes in the liver, but in targeting the systemic milieu. This serves as a guide to optimize the development of drugs, as well as in selecting drugs for combination therapies. However, more studies are still needed to investigate the longer-term outcomes including both liver related outcomes as well as cardiovascular outcomes in order to justify true benefit to the NASH patient.
REFERENCES

FIGURE AND TABLE LEGENDS

Figure 1: Illustration of basis of non-alcoholic steatohepatitis treatment targets in aetiological pathway of non-alcoholic steatohepatitis.

Figure 2: Classification of treatments. (ASK-i: Apoptosis signal-regulating kinase inhibitor, CCR2/CCR5-i: C-C chemokine receptor type 2/ C-C chemokine receptor type 5 inhibitor, PDE-i: Phosphodiesterase inhibitors, LOXL2-i: Lysyl Oxidase Like 2 inhibitor, Galectin3-i: Galectin-3 inhibitors, Thyroid HR B: Thyroid hormone receptor-β, PPAR-g: Peroxisome proliferator-activated receptor gamma, PPAR-a/d: Peroxisome proliferator-activated receptor alpha/delta, OHGA: Oral hypoglycemic agent, MPC: Mitochondrial pyruvate carrier, HMGCoA: 3-hydroxy-3-methylglutaryl-CoA, GLP-RA: Glucagon-like peptide-1 receptor agonists, FGF21: Fibroblast growth factor 21, FAs: Fatty acids, EPA: Eicosapentaenoic acid, DHA: Docosahexaenoic acid, DPP4-i: Dipeptidyl peptidase-4 inhibitors, ACC: Acetyl-CoA carboxylases, ASBT/BA: Apical Sodium Dependent Bile Acid Transporter/bile acid, FXR/BA: Farnesoid X receptor/bile acid, FGF19/BA: Fibroblast growth factor 19/bile acid)

Figure 3: Summary of network heat plot of treatment in resolution of non-alcoholic steatohepatitis without worsening of fibrosis.

Figure 4: Comparison of drug classes in histological outcomes.

Table 1: Comparison of treatments for resolution of non-alcoholic steatohepatitis, 2-Point reduction in NAFLD activity score and 1-Point reduction in fibrosis.
Table 1: Comparison of treatments for Resolution of NASH, 2-Point Reduction in NAS and 1-Point Reduction in Fibrosis

<table>
<thead>
<tr>
<th></th>
<th>Energy</th>
<th>Fibrosis</th>
<th>Bile Acid</th>
<th>Inflammation</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution of NASH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>-</td>
<td>1.09 (0.33, 3.55)</td>
<td>1.37 (0.74, 2.65)</td>
<td>1.95 (1.17, 3.41)*</td>
<td>1.84 (1.29, 2.65)*</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>0.92 (0.28, 3.03)</td>
<td>-</td>
<td>1.26 (0.37, 4.48)</td>
<td>1.79 (0.54, 6.20)</td>
<td>1.68 (0.55, 5.28)</td>
</tr>
<tr>
<td>Bile Acid</td>
<td>0.73 (0.38, 1.36)</td>
<td>0.80 (0.22, 2.71)</td>
<td>-</td>
<td>1.43 (0.71, 2.86)</td>
<td>1.34 (0.78, 2.26)</td>
</tr>
<tr>
<td>Inflammation</td>
<td>0.51 (0.29, 0.86)*</td>
<td>0.56 (0.16, 1.84)</td>
<td>0.70 (0.35, 1.41)</td>
<td>-</td>
<td>0.94 (0.59, 1.46)</td>
</tr>
<tr>
<td>Placebo</td>
<td>0.54 (0.38, 0.77)*</td>
<td>0.59 (0.19, 1.81)</td>
<td>0.75 (0.44, 1.29)</td>
<td>1.07 (0.68, 1.69)</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2-Point Reduction in NAS without Worsening of Fibrosis</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>-</td>
<td>1.59 (0.71, 3.58)</td>
<td>0.89 (0.51, 1.56)</td>
<td>1.19 (0.71, 1.99)</td>
<td>1.60 (1.13, 2.30)*</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>0.63 (0.28, 1.41)</td>
<td>-</td>
<td>0.56 (0.24, 1.33)</td>
<td>0.75 (0.34, 1.64)</td>
<td>1.01 (0.48, 2.09)</td>
</tr>
<tr>
<td>Bile Acid</td>
<td>1.12 (0.64, 1.96)</td>
<td>1.79 (0.75, 4.24)</td>
<td>-</td>
<td>1.34 (0.72, 2.46)</td>
<td>1.79 (1.14, 2.86)*</td>
</tr>
<tr>
<td>Inflammation</td>
<td>0.84 (0.50, 1.40)</td>
<td>1.33 (0.61, 2.97)</td>
<td>0.75 (0.41, 1.38)</td>
<td>-</td>
<td>1.34 (0.90, 2.03)</td>
</tr>
<tr>
<td>Placebo</td>
<td>0.63 (0.43, 0.89)*</td>
<td>0.99 (0.48, 2.07)</td>
<td>0.56 (0.35, 0.88)*</td>
<td>0.75 (0.49, 1.11)</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-Point Reduction in Fibrosis</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>-</td>
<td>1.39 (0.79, 2.44)</td>
<td>0.82 (0.61, 1.11)</td>
<td>1.22 (0.98, 1.52)</td>
<td>1.27 (1.05, 1.52)*</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>0.72 (0.41, 1.26)</td>
<td>-</td>
<td>0.59 (0.33, 1.06)</td>
<td>0.88 (0.50, 1.53)</td>
<td>0.91 (0.53, 1.55)</td>
</tr>
<tr>
<td>Bile Acid</td>
<td>1.21 (0.90, 1.65)</td>
<td>1.69 (0.94, 3.04)</td>
<td>-</td>
<td>1.48 (1.09, 2.00)*</td>
<td>1.54 (1.20, 1.97)*</td>
</tr>
<tr>
<td>Inflammation</td>
<td>0.82 (0.66, 1.02)</td>
<td>1.14 (0.65, 2.01)</td>
<td>0.68 (0.50, 0.91)*</td>
<td>-</td>
<td>1.04 (0.87, 1.24)</td>
</tr>
<tr>
<td>Placebo</td>
<td>0.79 (0.66, 0.95)*</td>
<td>1.10 (0.65, 1.87)</td>
<td>0.65 (0.51, 0.83)*</td>
<td>0.96 (0.81, 1.15)</td>
<td>-</td>
</tr>
</tbody>
</table>

Legend: * denotes statistical significance, NASH = Non-alcoholic steatohepatitis, NAS = Non-alcoholic fatty liver disease (NAFLD) Activity Score.
<table>
<thead>
<tr>
<th></th>
<th>Energy</th>
<th>Fibrosis</th>
<th>Treatment</th>
<th>Placebo</th>
<th>Inflammation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.89</td>
<td>0.71</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.27, 3.09)</td>
<td>(0.35, 1.36)</td>
<td>(0.35, 0.78)</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>1.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.32, 3.69)</td>
<td></td>
<td>(0.78)</td>
<td>(0.59)</td>
<td>(0.56)</td>
</tr>
<tr>
<td>BA</td>
<td>1.42</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.73, 2.88)</td>
<td>(0.37, 4.66)</td>
<td>(0.75)</td>
<td>(0.71)</td>
<td>(0.71)</td>
</tr>
<tr>
<td>Placebo</td>
<td></td>
<td></td>
<td>1.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.55, 5.45)</td>
<td></td>
<td>(0.94)</td>
</tr>
<tr>
<td>Inflammation</td>
<td>1.80</td>
<td>1.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.15, 3.62)</td>
<td>(0.54, 6.33)</td>
<td>(0.68, 2.92)</td>
<td>(0.67, 1.72)</td>
<td></td>
</tr>
</tbody>
</table>
Analysis of Mechanistic Pathway in the Treatment of Non-Alcoholic Steatohepatitis (NASH). Evidence from a Bayesian Network Meta-Analysis

Primary Outcomes

Worsening of NASH without Worsening of Fibrosis

1. Energy
 RR: 1.84, CrI: 1.29 to 2.65

2. Fibrosis
 RR: 1.68, CrI: 0.55 to 5.28

3. Bile Acids
 RR: 1.34, CrI: 0.78 to 2.26

4. Inflammation
 RR: 0.94, CrI: 0.59 to 1.46

1-Point Reduction in Fibrosis

1. Energy
 RR: 1.89, CrI: 1.27 to 2.85

2. Fibrosis
 RR: 1.69, CrI: 0.55 to 5.45

3. Bile Acids
 RR: 1.33, CrI: 0.75 to 2.30

4. Inflammation
 RR: 0.94, CrI: 0.58 to 1.50

2-Point Reduction in NAS without Worsening of Fibrosis

1. Bile Acids
 RR: 1.79, CrI: 1.14 to 2.86

2. Energy
 RR: 1.60, CrI: 1.13 to 2.30

3. Inflammation
 RR: 1.34, CrI: 0.90 to 2.03

4. Fibrosis
 RR: 1.01, CrI: 0.48 to 2.09