Using self-controlled case series to understand the relationship between conflict and cholera in Nigeria and the Democratic Republic of Congo

Gina E C Charnley¹,²*, Kévin Jean³, Ilan Kelman⁴,⁵,⁶, Katy A M Gaythorpe¹,², Kris A Murray¹,²,⁷

1. Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
2. MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK.
4. Institute for Risk and Disaster Reduction, Faculty of Mathematical and Physical Sciences, University College London, London, UK
5. Institute for Global Health, Faculty of Population Health, University College London, London, UK
7. MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia.

* Corresponding author

Email: g.charnley19@imperial.ac.uk

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background Cholera outbreaks contribute significantly to diarrhoeal disease mortality, especially in low-income countries. Cholera outbreaks have several social and environmental risk factors and extreme conditions can act as catalysts for outbreaks. A social extreme with known links to infectious disease outbreaks is conflict, causing disruption to services, loss of income and displacement.

Methods Here, we explored this relationship in Nigeria and the Democratic Republic of Congo (DRC), by fitting publicly available cholera and conflict data to conditional logistic regression models. We used the self-controlled case series method in a novel application, to understand if an exposure period of excess risk (conflict), increased the relative incidence of cholera. We also used a sensitivity analysis to understand potential lag effects.

Results We found that conflict and cholera had a strong positive relationship, especially in the first week after the event, at a national and sub-national level. Conflict increased the risk of cholera in Nigeria by 3.6 times and 2.6 times for the DRC. Conflict was attributed to 19.7% and 12.3% of cholera outbreaks in Nigeria and the DRC, respectively. This was higher for some states/provinces, with a maximum increased risk of 7.5 times.

Conclusion The results found that several states/provinces with the strongest positive relationship were also areas of high reported conflict or were neighbouring states/provinces, suggesting a possible spill-over effect. Our results help highlight the importance of rapid and sufficient assistance during social extremes and the need for pre-existing vulnerabilities such as poverty and access to healthcare to be addressed. In fragile states, conflict resolution should be a top priority to avoid excess risk for both cholera and other health and social implications.

Funding Natural Environmental Research Council, UK Medical Research Council, and the Department for International Development.

Introduction

Diarrhoeal diseases are the eighth leading cause of death worldwide, with cholera contributing significantly, especially in low- and middle-income countries [1]. Over 94% of World Health
Organization (WHO) reported cholera cases are in Africa and more research is needed to understand cholera dynamics on the continent [2]. Previous research has found several environmental and socioeconomic links with cholera, including temperature, precipitation, poverty and water, sanitation, and hygiene (WASH) [3-5]. Furthermore, extremes of these environmental and social conditions can act as catalysts for outbreaks, such as droughts, floods, and conflicts [6-8].

We will focus on the impacts of conflict on cholera outbreaks and compare the results across two countries in Africa, Nigeria and the Democratic Republic of Congo (DRC). Several mechanisms have been suggested through which conflict can lead to infectious disease outbreaks [9-12].

During conflicts, services can be disrupted including access to WASH, disruption of disease control programmes and collapse of health systems (e.g., vaccination coverage). Those displaced by conflict may also find it difficult to access healthcare [13-15]. Populations may not seek medical treatment as they perceive it or healthcare facilities to be unsafe. For example, during the 2018 Ebola outbreak in the DRC healthcare facilities were attacked, dampening efforts to control the virus [16]. Conflict can worsen pre-existing vulnerabilities including poverty, as conflicts can cause loss of income, disruption to education, damage to livelihoods and displacement [17].

Nigeria and the DRC share social and environmental similarities, as well as experiencing cholera outbreaks. Both have active conflicts including the Boko Haram Insurgency in northeastern Nigeria [18] and political unrest in the eastern DRC [19]. They also have the second and third highest numbers of estimated cholera cases per year in Africa, respectively [20], with the Kivu provinces being the most active cholera foci in the world [21]. Conflict and cholera in these two countries have shown temporal changes (Fig 1a-d), and a large proportion of the cholera cases have been reported in conflict-stricken areas (Fig 1e-f). In addition, Nigeria and the DRC have a tropical climate, poor access to WASH and a large proportion of the population living in poverty (<$1.25/day) at 87.7% for the DRC and 62% for Nigeria [22].
Few studies have investigated the impacts of conflict on cholera outbreaks, especially quantitatively. Studies have commonly focused on cholera and conflict in Yemen [10,23-24], its effect on vaccination efforts [25] or the impact of conflict on other diseases such as Ebola [16] and COVID-19. Africa is also a chronically understudied continent in relation to cholera, despite reporting a large proportion of global cases [2].

To bridge this research gap, we aimed to investigate if the incidence of cholera outbreak onset was affected by conflicts in Nigeria and the DRC in the past 23 years. To test this, we used the Self-Controlled Case Series (SCCS) method [27], which has previously been used to test the effectiveness of drug and vaccine intervention on an individual level [28-29] with its used at a population level more recently explored [30]. This study is a novel application of these methods and has the potential to prove its effectiveness in other contexts.

A sensitivity analysis provided further insight into the duration of the conflict effect on outbreaks and a sub-national analysis highlighted priority areas for national cholera prevention. Based on these results, we suggest mechanisms for which conflict is driving cholera and potential risk factors, building on previous research in this area. We hope this information can be used to strengthen disease prevention in conflict settings and reduce additional mortality and morbidity in conflicts.
Fig 1. Changes in cholera and conflict. a, monthly cholera cases and deaths for Nigeria and b, the Democratic Republic of Congo. c, Monthly frequency of conflict events and fatalities for Nigeria and d, the Democratic Republic of Congo and e the number of conflict events and cholera cases as a percentage of the total number of national cases by administrative level 1 for Nigeria and f, the Democratic Republic of Congo. All figures are for the full datasets.
Methods

Datasets

Cholera data were compiled from a range of publicly available sources (WHO disease outbreak news, ProMED, ReliefWeb, WHO regional office for Africa weekly outbreak and emergencies, UNICEF cholera platform, EM-DAT, the Nigerian Centre for Disease Control, and a literature search) in both English and French. The full compiled dataset is available in a GitHub repository (https://github.com/GinaCharnley/cholera_data_drc_nga). An outbreak was defined by the onset of a cholera case and the case definitions for the two countries are shown in S1 Information. Conflict data were provided by the United Nations Office for the Coordination of Humanitarian Affairs Humanitarian Data Exchange [31]. The data included sub-national conflict events, categorised by event type including battles, explosions, protests, riots, strategic developments, and violence against civilians.

The spatial granularity of the analysis was to administrative level 1 (states for Nigeria and provinces for the DRC) and all data points that were reported on a finer spatial scale were attributed to the upper level. To be included in the analysis, the state/province had to report both outbreaks and conflicts during the study period. As such, 22 provinces were included for the DRC and 36 states for Nigeria (states and provinces excluded are shown in S2 Information). The number of conflicts and outbreaks for each province during the study period is shown below (Table 1 and Fig 2).

The study period was specified as Jan 1997 to May 2020, as these were the first and last reports in the conflict data. The temporal scale was set to weekly, with continuous weeks from epidemiological week 1 in 1997 to epidemiological week 20 in 2020 (1-1,220). Continuous weeks was chosen for compatibility with the model and to include periods of conflict that endured from one year into the next. Weeks was chosen, rather than days, to account for reporting lags, as previous work has reported issues in the granularity of data and timeliness of reporting, especially
in humanitarian crises due to different sources of data and logistical difficulties [32-34]. Additional information on the datasets used here are available in S3 Information.

Table 1. Number of events reported by country for the two datasets (Conflicts and Outbreaks). DRC, Democratic Republic of Congo.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Number of Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRC</td>
<td>Conflicts</td>
</tr>
<tr>
<td></td>
<td>4,639</td>
</tr>
<tr>
<td>DRC</td>
<td>Outbreaks</td>
</tr>
<tr>
<td></td>
<td>396</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Conflicts</td>
</tr>
<tr>
<td></td>
<td>8,190</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Outbreaks</td>
</tr>
<tr>
<td></td>
<td>782</td>
</tr>
</tbody>
</table>

Fig 2. Percentage of events in each dataset including conflict and outbreaks, for a, Nigeria and b, the Democratic Republic of Congo by administrative level 1. FCT - Federal Capital Territory.
Model Structure and Fitting

The SCCS method investigates the association between an exposure and an outcome event. The aim is to estimate the effect, by comparing the relative incidence of the adverse events (outbreaks) within an exposure period of hypothesised excess risk (conflicts), compared to all other times (peace, according to the dataset used) [35-37].

Both the event and exposure were set as binary outcomes, either being present (1) or not (0). The observation period was the full study period (1-1,220). The exposure period was the first week after conflict onset and was reported as multiple onsets, not one long exposure period (Fig 3). The event was defined by the week the cholera outbreaks was reported.

Each event and exposure that occurred in the same state/province were designated an identification number and a pre-exposure, exposure, and post exposure period (see S1 and S2 Tables). The data was fit to conditional logistic regression models (function clogit(), R package “survival”) [38]. The model coefficient values were used to calculate incidence rate ratio (IRR) and the percentage attributable fraction (PAF), which is an estimate of the percentage of outbreaks that could be attributed to conflict (full equations in S4 Information).

The datasets for each country were then split by state/province and the analysis repeated for each, to understand if the significance of conflict on cholera outbreaks varied by sub-national location and if conflict was more important in some states/provinces compared to others. All statistical analyses were carried out in R version 3.6.2 and the threshold for significance was p=<0.05.
A sensitivity analysis was used to test different methods of defining the exposure end point. In this context it allowed for further understanding of how long after a conflict event the risk of cholera is heightened. Five alternative exposure periods were tested from the original exposure period (1 week after the onset) and the outbreaks (black triangles) for each state/province for a, Nigeria and b, the Democratic Republic of Congo.

Fig 3. Swimmer plots. Showing the original conflict exposure period (1 week after the onset) and the outbreaks (black triangles) for each state/province for a, Nigeria and b, the Democratic Republic of Congo.
week after the onset of exposure, lag 1) and were named lag periods due to the potential lag effect from conflict onset to cholera outbreaks, these included:

1. Lag 2 - Week of conflict onset + 2 weeks
2. Lag 4 - Week of conflict onset + 4 weeks
3. Lag 6 - Week of conflict onset + 6 weeks
4. Lag 8 - Week of conflict onset + 8 weeks
5. Lag 10 - Week of conflict onset + 10 weeks

The sensitivity analysis was run on both a national and sub-national level and S1 and S2 Figs show additional swimmer plots of lag 10 and line plots of the temporal trends.

Results

Model Output and Comparison

The first week (lag 1) following a conflict had a significant positive relationship on cholera outbreaks in the past 23 years in Nigeria and the DRC. Nigeria showed an effect of greater magnitude (IRR = 3.6, 95%CI = 3.3-3.9) than the DRC (IRR = 2.6, 95%CI = 2.3-2.9). In Nigeria, conflict increased the risk of cholera outbreaks by up to 3.6 times and accounted for 19.7% of cholera outbreaks. For the DRC, the risk was slightly lower, increasing the risk of cholera by 2.6 times and a PAF of 12.3%.

Of the 36 Nigerian states included in the analysis, 24 showed significant associations between conflict and cholera for one week of exposure. The strongest effect was found in Kebbi, Lagos, Osun, Borno and Nasarawa, with IRR values ranging from 6.8 to 6.2 (Fig 4a). Eleven out of 22 DRC provinces included in the analysis showed a significant relationship between conflict and cholera, one week after the event. Tanganyika, Kasai-Oriental, Maniema, Nord-Kivu and Kasaí found the strongest values and some were the highest values found in the analysis. In Tanganyika, conflict increased cholera risk by 7.5 times and 3.7 times for Kasaí (Fig 4b).
Sensitivity Analysis

Lag 1 had the strongest effect on cholera outbreaks at a national level for both Nigeria and the DRC, which then decreased through the weeks up to week 10. For both countries magnitude of change in effect size was greatest between week 1 and week 2 and by week 6 the change was minimal and plateaued (Fig 5). From week 1 to week 10 the risk decreased from 3.6 to 2.08 for...
Nigeria and from 2.6 to 1.5 for the DRC. This suggests that the risk of conflict on cholera is highest soon after the event but remains a detectable association albeit at a lower level for potentially a long period of time after the event.

Fig 5. Incidence rate ratio (IRR) for the effect of exposure to conflict within 1, 2, 4, 6, 8 and 10 weeks of the event and cholera at a national level. For a, Nigeria and b, the Democratic Republic of Congo. Only results that were significant at the threshold $p<0.05$ are plotted here.
At a sub-national level, trends were similar to the national analysis, except at lag 6 where some states/provinces found increased values. Thirty Nigerian states were found to be significant for at least one of the lag periods and the most significant states predominately followed the trends of the national analysis. Values ranged from Kebbi at 6.9 to 4.0 times increased risk of cholera, to Gombe at 2.4 to 1.5 (Fig 6a).

Fig 6. Incidence rate ratio (IRR) for the effect of exposure to conflict within 1, 2, 4, 6, 8 and 10 weeks of the event and cholera at administrative level 1. For a, Nigeria and b, the Democratic Republic of Congo. Only results that were significant at the threshold p=<0.05 are plotted here.
For the DRC, 13 provinces were found to be significant for at least one of the lag periods and the most significant provinces (Kasaï-Oriental, Maniema, Tanganyika, and Nord-Kivu) all decreased until lag 4 or 6 and then increased (Fig 6b). The IRR values for Kasaï-Oriental, the provinces with the greatest effect, ranged from 7.3 to 3.8 and the least positive relationship in Sud-Ubangi was from 2.3 to 1.3.

Discussion

Our results show that conflict and cholera are positively associated in Nigeria and the DRC from 1997 to 2020, with a stronger effect in Nigeria compared to the DRC. Conflict events in Nigeria increased the risk of a cholera outbreak by 3.6 times during the first week (lag 1) and 2.6 times for the DRC. The percentage of cholera outbreaks attributable to the conflicts reported here was 19.7% for Nigeria and 12.3% for the DRC. The sensitivity analysis showed a decrease in effect as the weeks progressed, with some states/provinces seeing a plateau or increase around 6 weeks after the event. The decrease with the lag duration may be a “diluting” effect, as the probability of an outbreak will increase across a longer period. Despite this, the positive relationship remains through the sensitivity analysis, up to 10 weeks. The states/provinces that increased after week 6, were often those with the strongest initial effect, especially in the DRC. This larger initial effect may have a longer lasting impact, potentially due to conflict severity. The most significant states/provinces followed similar trends to the national analysis and had a range of peak IRR values, which were all in week 1 after the conflict event, ranging from 6.9 in Kebbi, Nigeria and 7.3 in Kasaï-Oriental, the DRC. This showed that in some states/provinces, the effect of conflict was much greater than the national level.

Several of the states/provinces showing the strongest effect between conflict and cholera also coincide with areas of high conflict (Fig 1). This provides further evidence to the hypothesis that conflict may be a driver of cholera in Nigeria and the DRC. States/provinces surrounding high conflict areas were also highly significant areas (e.g., Abia, Ogun, Osun, Maniema, and
Tanganyika), showing a potential spill-over effect. The states/provinces here were studied independently but a possible explanation may be people fleeing areas of conflict or a cholera outbreak to neighbouring states, as displacement is a known risk factor for disease outbreaks [12]. This is especially important for cholera, as a large proportion of people will be asymptomatic but can still shed the pathogen into local reservoirs [39]. Cholera outbreaks can be explosive and self-limiting, due to the high number of asymptomatic individuals, reducing the susceptible pool [39]. This potentially explains why the impacts of conflict on cholera was greatest in lag 1. The incubation period of cholera is short [40], making the large effect at lag 1 biologically possible for the pathogen and a realistic timeframe for elevated exposure to manifest in cases. Other examples of cholera cases emerging within the first week after an adverse event include Cyclone Thane hitting the Bay of Bengal [41], water supply interruption in the DRC [42] and Cyclone Aila in West Bengal [43]. This provides further evidence of the need for quick and effective aid in humanitarian crisis to avoid outbreaks and reduce mortality [44]. Healthcare facilities can suffer in periods of conflict and cholera outbreaks can overwhelm systems, a potential cause of the relationship between conflict and cholera shown here. Care can be inaccessible because of direct infrastructure damage or difficulties getting to the facilities due to impromptu roadblocks [45]. Supplies may be stolen and/or unable to be delivered, including oral rehydration solution (ORS), pathogen-sensitive antibiotics and oral cholera vaccines, which are important for cholera outbreak control and mortality [46]. Finally, safety is a serious issue, both for healthcare workers and patients and non-governmental (NGO) organisations can withdraw from these areas, citing an inability to ensure the safety of their staff [47]. Steps need to be taken globally to reduce this violence, such as using active clinical management for all patients to enhance the acceptance of pathogen-specific treatment centres [48].

Conflict has the potential to worsen pre-existing vulnerabilities, which can exacerbate poverty, another potential cause of the effect of conflict on cholera in the results. The impacts of poverty
can be far reaching and is a known risk factor for cholera [5,49], along with other diseases [50]. For example, poor urban settlements have faced the brunt of urban outbreaks including Zika, Ebola, typhoid, and cholera, due to crowding and poor access to WASH [51]. Those in poorer communities may also have more contacts and greater transmission, creating a vicious cycle [50]. Conflict can result in loss of possessions, habitual residence, and an inability to find employment, reducing income generation, savings and financial backstops [17]. In times of worsening poverty, people may not be able to afford healthcare and basic medical supplies, especially in vulnerable groups. This disruption to daily life can cause many more deaths than direct battlefield fatalities and leads to stagnation in development [52].

A lack of WASH facilities is likely to have contributed to the positive relationship between cholera and conflict found here. Although WASH and poverty were not directly evaluated, their effects are likely to have been important. Conflict events can lead to disruption in sanitation and hygiene and adverse events can act as catalysts in the interaction of contaminated water and the human populations [53]. Displacement from conflict can cause issues in accessing WASH (e.g., latrine access, soap availability) and several displacement camps have seen rapid cholera outbreaks, including the DRC after the Rwandan genocide in 1994 [2]. If people are displaced due to conflict, this may result in the use of water with unknown risk, or because alternatives are lacking, leading to outbreaks.

A potential limitation of the methods used here are confounders, such as the presence of waterbodies in the most significant states/provinces including the Lake Chad basin in Nigeria and the African Great Lakes Region in the DRC. Water is considered fundamental in cholera transmission [54], although no study has yet demonstrated a long-term persistence of toxigenic Vibrio cholerae in African lakes [55]. Several reporting issues are likely to have affected the data used here, including underreporting, overreporting and a reporting lag. Underreporting is a significant issue in global cholera estimates, due to asymptomatic cases and disincentives to report [56]. This may be worsened in conflicts, due displaced populations, or disruption to surveillance.
Alternatively, during times of conflict health surveillance can be enhanced by the government and/or NGOs [33]. Reporting delay is another potential problem and some national reporting delays, have been found to range from 12 days for meningococcal disease to 40 days for pertussis [33]. To help account for these issues, both the event and the exposure was set to a binary outcome and weekly data was used, instead of daily. A lack of age and sex-disaggregation in the data also means that demographic risks and changes were missed and more work and data is needed to address this.

In summary, our analysis shows a clear relationship between cholera and conflict in both Nigeria and the DRC at both a national and sub-national level and especially in lag 1. Conflict increased the risk of cholera outbreaks by up to 7.3 times in some states/provinces and almost 20% of cholera outbreaks being attributable to conflict in Nigeria. This finding potentially holds in other countries and diseases and the SCCS method could be used in different contexts. Cholera risks are likely multi-factorial in both northeastern Nigeria and eastern DRC and several conditions need to be met for emergencies to lead to cholera outbreaks. Sufficient and rapid support, along with enhanced efforts to build community trust can reduce this access risk. Finding conflict resolution should be the main priority in fragile states and pre-existing vulnerabilities need to be addressed, such as poverty, expansion of affordable healthcare and improvements in WASH. By reducing these vulnerabilities, communities will have greater resources to adapt to social extremes and could help to reduce vulnerabilities both in times of conflict and peace.

Acknowledgements

This work was supported by the Natural Environmental Research Council [NE/S007415/1], as part of the Grantham Institute for Climate Change and the Environment’s (Imperial College London) Science and Solutions for a Changing Planet Doctoral Training Partnership. We also acknowledge joint Centre funding from the UK Medical Research Council and Department for International Development [MR/R0156600/1]. We thank the organisations who published and those who
collected the data that was used here, including the Nigerian Centre for Disease Control and
Ministère de la Santé RDC. Finally, we acknowledge and thank Heather Whitaker (Open University)
and Yonas Weldeaselassie (University of Warwick) for their assistance and advice in the SCCS
methodology.

Competing interests

The authors declare no competing interests.

References

4. Leckebusch GC, Abdussalam AF. Climate and socioeconomic influences on interannual variability of cholera in Nigeria. Health Place. 2015; 34: 107-17.

Supporting information

S1 Information. Cholera case definitions according to the Nigerian Centre for Disease Control and the Ministère de la Santé Publique de la République démocratique du Congo.

NCDC:

Suspected case: Severe dehydration or death from acute watery diarrhoea in a patient aged 5 years or more. In an epidemic situation: A suspected case in any person aged 5 years or more with acute watery diarrhoea with or without vomiting.

Confirmed case: A suspected case in which *Vibrio cholerae* O1 or O139 has been isolated in the stool.

RDC Ministère de la Santé:

Suspected case: Severe dehydration or death following acute watery diarrhoea in a patient aged 5 years or more. In an epidemic situation: Acute watery diarrhoea with or without vomiting in a patient aged 1 year or more.
S2 Information. Excluded events. States/provinces removed as they did not report conflict and cholera in the study period (1997-2020).

Democratic Republic of Congo:

- Haut-Uele - 629 conflict events removed
- Kasaï-Central - 234 conflict events removed
- Lomani - 101 conflict events removed
- Tshire - 70 conflict events removed

Nigeria:

- Imo - 239 conflict events removed
S3 Information. Dataset information.

Cholera data was compiled from a range of publicly available sources (WHO’s disease outbreak news, ProMED, ReliefWeb, WHO’s regional office for Africa weekly outbreak and emergencies, UNICEF cholera platform, EM-DAT, the Nigerian CDC and a literature search) in both English and French. A data charting form was used to enable a dynamic data entry process and collected data on date, geographic location, cases, deaths, hospitalisations, fatality rates, gender, age, oral cholera vaccinations, risk factors, aid and the source of the report. Data spanned from 1971-2021 for Nigeria and 1978-2021 for the DRC on a daily temporal scale and was provided at the finest spatial scale possible.

Conflict data was provided by the United Nations Office for the Coordination of Humanitarian Affairs’s Humanitarian Data Exchange (HDX, 2020). The data included sub-national conflict events for both countries on a fine spatial scale, given to the exact location in longitude/latitude. This was reported on a daily temporal scale and spanned from 1997 to 2020. The data was also categorised by event type which included battles, explosions, protests, riots, strategic developments and violence against civilians. This was further sub-categorised within these groups and reported number of fatalities.

The study period was selected as Jan 1997 to May 2020, as these were the first and last reports in the conflict data. The spatial granularity of the analysis was to administrative level 1 (states for Nigeria and provinces for the DRC) and all data points that were reported on a finer spatial scale were attributed to the upper level. To be included in the analysis, the state/province had to report both outbreaks and conflicts during the study period, therefore 22 provinces were included for the DRC and 36 states for Nigeria.
S4 Information. Percentage attributable fraction (PAF) equations.

Estimate the number of outbreaks attributable to conflicts, A_i, for each province i. Using the formula:

$$A_i = \lambda_i d_i^{E+} (IRR - 1)$$ (1)

Where d_i^{E+} is the total duration of conflict exposure for the province i (if no conflict in province i, thus $d_i^{E+} = 0$), λ_i is the rate of outbreak occurrence in a Poisson process in the absence of conflict, and IRR is the incidence rate ratio associated with exposure to conflict. With N_i^{E-} being the number of outbreaks observed in the province i during the un-exposed period and T being the total period of observation, an estimator of λ_i is $\hat{\lambda}_i = N_i^{E-}/(T - d_i^{E+})$, which leads to:

$$\hat{A} = \sum_i N_i^{E-} d_i^{E+} / (T - d_i^{E+}) (IRR - 1)$$ (2)

Based on \hat{A} and N, the total number of outbreaks observed, we can easily obtain the equivalent of the population attributable fraction, PAF, which corresponds to the proportion of the total number of outbreaks in both countries that are attributable to conflicts (this is equivalent to the PAF obtained in classical epidemiological studies, but here population refers to the “population of provinces”):

$$PAF = \frac{\hat{A}}{N}$$ (3)
The layout of the data frame used to create the pseudo-dataset for the model. Each new ‘end’ period represents a different sensitivity analysis and each event and exposure are given a reference number (indiv). The example shown here is for the Democratic Republic of Congo Conflict dataset.

<table>
<thead>
<tr>
<th>province</th>
<th>exday</th>
<th>eventday</th>
<th>start</th>
<th>end</th>
<th>start1</th>
<th>end0</th>
<th>end1</th>
<th>end2</th>
<th>end4</th>
<th>end6</th>
<th>end8</th>
<th>end10</th>
<th>indiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bas-Uele</td>
<td>3</td>
<td>374</td>
<td>1</td>
<td>542</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Bas-Uele</td>
<td>4</td>
<td>374</td>
<td>1</td>
<td>542</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Bas-Uele</td>
<td>6</td>
<td>374</td>
<td>1</td>
<td>542</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Bas-Uele</td>
<td>7</td>
<td>374</td>
<td>1</td>
<td>542</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>Bas-Uele</td>
<td>9</td>
<td>374</td>
<td>1</td>
<td>542</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>5</td>
</tr>
</tbody>
</table>

The pseudo-dataset created from the data in S1 Table for the first two reference numbers. This data can then be fit to the model (conditional logistic regression).

<table>
<thead>
<tr>
<th>indiv</th>
<th>exday</th>
<th>eventday</th>
<th>start</th>
<th>end</th>
<th>event</th>
<th>exgr</th>
<th>interval</th>
<th>loginterval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>374</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0.693147180559945</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>374</td>
<td>3</td>
<td>13</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>2.30258509299405</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>374</td>
<td>13</td>
<td>542</td>
<td>1</td>
<td>0</td>
<td>529</td>
<td>6.2709884318583</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>374</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.09861228866811</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>374</td>
<td>4</td>
<td>14</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>2.30258509299405</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>374</td>
<td>14</td>
<td>542</td>
<td>1</td>
<td>0</td>
<td>528</td>
<td>6.26909628370626</td>
</tr>
</tbody>
</table>
Figure. Swimmer plots showing the conflict dataset for lag 10 in the sensitivity analysis. In relation to outbreaks (black triangles) for Nigeria (NGA) and the Democratic Republic of Congo (COD).
S2 Figure. Number of outbreak (orange) and conflict (purple) events by year in Nigeria and the Democratic Republic of Congo over the full study period.