Abstract
The global crisis triggered by the COVID-19 pandemic has highlighted the need for a proper risk assessment of respiratory pathogens in indoor settings. This paper documents the COVID Airborne Risk Assessment (CARA) methodology, to assess the potential exposure of airborne SARS-CoV-2 viruses, with an emphasis on the effect of certain virological and immunological factors in the quantification of the risk. The proposed model is the result of a multidisciplinary approach linking physical, mechanical and biological domains, benchmarked with clinical and experimental data, enabling decision makers or facility managers to perform risk assessments against airborne transmission. The model was tested against two benchmark outbreaks, showing good agreement. The tool was also applied to several everyday-life settings, in particular for the cases of a shared office, classroom and ski cabin. We found that 20% of infected hosts can emit approximately 2 orders of magnitude more viral-containing particles, suggesting the importance of super-emitters in airborne transmission. The use of surgical-type masks provides a 5-fold reduction in viral emissions. Natural ventilation through the opening of windows at all times are effective strategies to decrease the concentration of virions and slightly opening a window in the winter has approximately the same effect as a full window opening during the summer. Although vaccination is an effective protection measure, non-pharmaceutical interventions, which significantly reduce the viral density in the air (ventilation, masks), should be actively supported and included early in the risk assessment process. We propose a critical threshold value approach which could be used to define an acceptable risk level in a given indoor setting.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The CARA model and data to reproduce the results are under CERN copyright, and available on Apache 2.0 open source license from our code repository. The terms and conditions for use, reproduction, and distribution can be found under the 2.0 version of the Apache License.