AnthropoAge, a novel approach to integrate body composition into the estimation of biological age

Carlos A. Fermín-Martínez1,2* & Alejandro Márquez-Salinas1,2*, Enrique C. Guerra1,2, Lilian Zavala-Romero4, Neftali Eduardo Antonio-Villa1,2, Luisa Fernández-Chirino1,3, Eduardo Sandoval-Colín2, Daphne Abigail Barquera-Guevara4, Alejandro Campos Muñoz4, Luis Miguel Gutiérrez-Robledo1, Omar Yaxmehen Bello-Chavolla1

1Research Division, Instituto Nacional de Geriatría, 2MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, 3Facultad de Química, Universidad Nacional Autónoma de México, 4Facultad de Medicina, Universidad Nacional Autónoma de México

*These authors contributed equally to the drafting of this manuscript

Correspondence: Omar Yaxmehen Bello-Chavolla. Dirección de Investigación. Instituto Nacional Geriatría. Anillo Perif. 2767, San Jerónimo Lídice, La Magdalena Contreras, 10200, Mexico City, Mexico. Phone: +52 (55) 5548486885. E-mail: oyaxbell@yahoo.com.mx

CONFLICT OF INTERESTS: The authors declare that they have no conflict of interests.

3,311 text words; 38 references; 5 figures, 1 table.

Running headline: AnthropoAge, a novel estimator of biological aging

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT (250 WORDS)

Methods to estimate biological age (BA) capture different aspects of aging. Here, we consider the role of changes in body composition related to aging as a starting point to incorporate anthropometry into the estimation of BA. To that end, we developed AnthropoAge, a metric to estimate 10-year mortality risk as a proxy of BA using anthropometric and linked mortality data from NHANES-III (n=11,865) and validated it in NHANES-IV (n=7,065). We identified that thigh circumference, arm circumference, body-mass index (BMI), waist-to-height ratio (WHtR) and arm length were useful to predict BA in men, whilst weight, thigh circumference, subscapular and tricipital skinfolds and WHtR in women. We also developed a simplified version of AnthropoAge (S-AnthropoAge) which used only BMI and WHtR, with strong concordance with the complete metric. Both AnthropoAge and S-AnthropoAge were useful to predict 10-year mortality independent of ethnicity, sex, and comorbidities. In comparison to PhenoAge, AnthropoAge/S-AnthropoAge were superior for prediction of cardiovascular, cerebrovascular, cancer-related and nephritis/nephrosis related mortality risk in contrast with other causes. Accelerated aging metrics AnthropoAgeAccel/S-AnthropoAgeAccel identified males with phenotypes of decreased lean and fat mass and females with phenotypes of increased fat mass and increased abdominal adiposity, which likely reflected sexual dimorphisms related to accelerated body composition aging. When jointly assessing PhenoAge and AnthropoAge/S-AnthropoAge, we identified unique aging trajectories with differential mortality risk and comorbidity clustering. AnthropoAge is a useful proxy of BA, which captures cause-specific mortality risk; assessing aging using different BA measures may be useful to better characterize the heterogeneity of the aging process.

Keywords: AnthropoAge, PhenoAge, biological age, chronological age, aging process, anthropometry, body composition
INTRODUCTION

The heterogeneity of the aging process makes it a complex phenomenon to quantify. Methods developed to estimate aging rates beyond chronological age (CA) attempt to address biological changes related to hallmarks of aging, as well as variability captured by individual aging trajectories\(^1,2\). Biological age (BA) refers to the underlying aging processes which modify individual susceptibilities for the development of age-related diseases, disability and functional impairment, ultimately increasing mortality risk\(^3,4\). Besides estimations derived from epigenetic and omics-based markers, previous efforts have used easily-accessible clinical tools to develop BA indicators, including PhenoAge and BioAge\(^5\)\(^-\)\(^7\). Notably, these metrics capture distinct aspects of aging and perform differently depending on which aspect of aging is evaluated\(^8\); overall, we expect that a broader assessment of aging may provide a more comprehensive overview of its mechanisms, including additional aging domains not previously accounted for in previous BA estimations\(^9\).

Assessment of body composition and its functional consequences has led to the identification of unique risk phenotypes, including frailty, sarcopenic obesity, osteosarcopenia and metabolically unhealthy obesity\(^10,11\). These phenotypes likely capture alterations in body homeostasis and suggest the existence of a body composition domain of aging\(^12\). Furthermore, the impact of CA in body composition and body shape has been extensively characterized, with declining muscle mass and increasing adiposity, particularly visceral adiposity, being consistently associated with older CA\(^13,14\). Despite the well-known contribution of clinical anthropometric indices to predict overall mortality risk, its implementation in the assessment of BA and aging trajectories has been limited\(^15,16\).

Here, we aimed to develop a novel approach to integrate body composition into the estimation of BA by using anthropometric measurements, considering sex-based
differences to capture 10-year all-cause mortality risk. Moreover, we also tested the combined role of phenotypic and anthropometric age to predict cause-specific mortality and identify body composition patterns linked to accelerated aging.

METHODS

Study population

We developed a BA indicator called Anthropometric Age (AnthropoAge) and its derived accelerated aging metric (AnthropoAgeAccel) using data from the third and fourth National Health Examination Survey cycles (NHANES-III [1988-1994] used as the training cohort and NHANES-IV [1999-2008] as the validation cohort). Complete methods for recruitment, procedures and study design for NHANES are described in detail elsewhere. Briefly, NHANES is a nationally representative, population-based, cross-sectional survey designed to assess health and nutritional status of US population as conducted by the Centers for Disease Control and Prevention (CDC). NHANES underwent National Center for Health Statistics (NCHS) Research Ethics Review Board approval, and all participants provided informed consent.

Anthropometric and body composition data

In addition to demographic, socioeconomic and health-related questionnaires, an analytical subset of the NHANES sample undergoes further biochemical and anthropometric evaluations. For anthropometric data, we considered measurements available in both NHANES-III and NHANES-IV cycles, including height, weight, waist circumference, thigh circumference, arm circumference, triceps skinfold, subscapular skinfold, leg, and arm length. Since calf circumference was not available in all cycles, this parameter was not included. For a subset of NHANES-IV, whole-body Dual X-ray Absorptiometry (DXA) assessments were acquired using Hologic QDR 4500A fan-beam…
bone densitometers, which were used in the validation cohort to assess body composition phenotypes according to aging phenotypes.

All-cause and cause-specific mortality data

We obtained all-cause mortality follow-up data from all cycles using information from the National Death Index for NHANES-III and IV through March 2020. Cause-specific mortality information was evaluated for 8 out of 10 underlying causes of death: cardiovascular, chronic lower respiratory or cerebrovascular diseases, malignant neoplasms, Alzheimer's disease, diabetes mellitus, influenza/pneumonia and nephritis/nephrosis; excluding accidents and non-specified causes of death. Follow-up time was estimated from date of initial interview to last follow-up in person-month time.

Prediction of all-cause mortality based on anthropometric measurements

We used anthropometric measurements to predict all-cause mortality in both NHANES-III and NHANES-IV. We fitted Gompertz proportional hazards regressions using orthogonal polynomials to model the non-linear contribution of anthropometric variables to the prediction of 10-year all-cause mortality. All Gompertz models were carried out with the flexregsurv R package and were stratified by sex and adjusted for CA, ethnicity was included in the shape parameter of the Gompertz distribution. Optimal degrees for orthogonal polynomials were reached by minimization of the Bayesian Information Criterion (BIC).

Derivation of AnthropoAge and AnthropoAgeAccel in NHANES-III

To estimate AnthropoAge, we adapted the method previously described by Levine et al. to develop PhenoAge using 10-year mortality risk. A detailed description of the derivation of AnthropoAge is available in Supplementary Methods. Briefly, we used NHANES-III to fit a multivariable Gompertz proportional hazards regression including anthropometric measurements with orthogonal polynomials as described above; variable and model
selection were conducted using BIC minimization. We then equated this model to a Gompertz regression with only CA as a predictor and solved for age to convert the mortality risk into units of years, thus obtaining AnthropoAge, which represents the BA based on the 10-year mortality risk predicted by an individual’s anthropometry. Following the methods by Liu et al.6, we also developed a metric to estimate accelerated aging termed as AnthropoAgeAccel by regressing AnthropoAge onto CA using residuals from an linear model. This new acceleration metric represents the divergence of anthropometric aging from CA, where values >0 indicate a 10-year mortality risk above that predicted by CA and values ≤0 a risk equal or below that expected by CA.

Derivation of a simplified version of AnthropoAge and AnthropoAgeAccel

To promote wider application of the concept of Anthropometric Age into large-scale epidemiological studies, we sought to develop a simplified version of AnthropoAge. We selected only body-mass index (BMI) and waist-to-height ratio (WHtR) given the robust association of changes in body fat distribution with aging19. We performed similar procedures to those used for AnthropoAge and AnthropoAgeAccel in NHANES-III. These simplified metrics were named S-AnthropoAge and S-AnthropoAgeAccel, respectively.

Evaluation of AnthropoAge performance in NHANES-IV

We validated the utility of AnthropoAge for prediction of 10-year all-cause mortality in NHANES-IV using Gompertz proportional hazard regression models and the area under receiver operating characteristic curves (AUROC) and compared its performance with PhenoAge, CA, and individual anthropometric measurements using non-parametric ROC tests with bootstrapping (B=1,000) in the pROC R package. We also compared average bias and limits of agreement between AnthropoAge/AnthropoAgeAccel and S-AnthropoAge/S-AnthropoAgeAccel using Bland-Altman analyses in the blandr R package.
We hypothesized that AnthropoAge and PhenoAge would assess different domains of aging, as previous studies have shown for similar metrics8. For this purpose, we evaluated cause-specific mortality using Fine & Gray semiparametric competitive risk regression models with the \textit{survival} R package to contrast predictive performance (ΔBIC and C-statistic) between AnthropoAge, S-AnthropoAge and PhenoAge in subjects with complete mortality data. Moreover, we used Kaplan-Meier curves to compare survival trajectories between individuals with accelerated anthropometric aging and accelerated phenotypic aging (defined as AnthropoAgeAccel >0 and PhenoAgeAccel >0, respectively) and those with physiological aging (acceleration metrics ≤0). Finally, we built a combined accelerated aging indicator with the following categories: physiological aging (both AnthropoAgeAccel and PhenoAgeAccel ≤0), accelerated AnthropoAge (AnthropoAgeAccel >0 but PhenoAgeAccel ≤0), accelerated PhenoAge (AnthropoAgeAccel ≤0 but PhenoAgeAccel >0) and multidomain acceleration (both AnthropoAgeAccel and PhenoAgeAccel >0) and compared its mortality risk using Gompertz proportional hazard regression models adjusted by CA, sex, number of comorbidities and with ethnicity in the shape parameter.

\textbf{Phenotypes for accelerated anthropometric aging}

We evaluated sex-specific differences in body composition for accelerated phenotypic and anthropometric aging using anthropometry and DXA measurements from NHANES-IV cycles. These were visualized using spider plots with the \textit{fmsb} R package.

\textbf{RESULTS}

\textit{Study population}

For both NHANES-III and NHANES-IV we included only participants ≥20 years. After accounting for availability of anthropometric and mortality data, we included 18,930 subjects from NHANES-III (n=11,865) and NHANES-IV (n=7,065). A flowchart diagram of participant selection for the study is available in \textbf{Supplementary Figure 1}. Amongst these
individuals, 9,533 were female (50.4%) with a median CA of 45 (IQR 31-64) years and a median PhenoAge of 57.41 (IQR 43.25-77.12); regarding ethnicity, most participants self-identified as non-Hispanic White (8,767, 46.3%), followed by Mexican American (4,855, 25.6%), and non-Hispanic Black (4,260, 22.5%). We observed no significant differences in CA comparing cases from NHANES-III and NHANES-IV; however, median PhenoAge values were higher in NHANES-III compared to NHANES-IV (57.8 years [IQR 43.7-78.0] vs. 56.5 years [IQR 41.5-74.0], p<0.001). Regarding anthropometric measurements stratified by sex, we observed that all variables except for subscapular skinfold significantly differed between men recruited in NHANES-III and NHANES-IV. Similarly, in women all anthropometric variables apart from BMI differed between NHANES-III and NHANES-IV (Supplementary Table 1). A total of 4,561 deaths were recorded in NHANES-III (38.4%), whilst 1,311 were recorded in NHANES-IV (18.6%).

Anthropometric measurements and prediction of 10-year mortality

We observed a marked sexual dimorphism in the non-linear contribution of anthropometric variables to 10-year all-cause mortality risk from Gompertz regression models. Men had the highest mortality risk at lower BMI values with a progressive decrease at greater values, while women displayed a uniform risk increase across BMI. WHtR was associated with uniform risk increases in both men and women. Higher triceps skinfold values were associated with lower mortality in women but not in men. Finally, the rest of anthropometric characteristics were associated with higher risk of all-cause mortality at lower values. Notably, men presented a consistently higher risk compared to women across most parameters except for tricipital and subscapular skinfold. (Figure 1).

Derivation of AnthropoAge and AnthropoAgeAccel

For fitting Gompertz models, anthropometric variables underwent selection using BIC minimization to generate AnthropoAge. In men, AnthropoAge included BMI, WHtR, arm
length, and thigh and arm circumferences, while in women it included WHtR, weight, thigh circumference, and subscapular and tricipital skinfolds (Supplementary Table 2). For S-AnthropoAge, we used orthogonal polynomials to model BMI with 3 degrees and WHtR with 2 degrees for both men and women (Supplementary Table 3). AnthropoAgeAccel values were derived by extracting the residuals obtained from regressing AnthropoAge onto CA for men and women separately using linear models. In the training cohort, median AnthropoAge values were higher but not significantly different in men compared to women (44.0 years [IQR: 30.7 – 63.9] vs. 42.8 years [IQR: 30.6 – 63.7], p=0.158). Similarly, AnthropoAgeAccel values did not differ significantly between men and women (-0.28 years [IQR: -2.0, 1.67] vs. -0.19 years [IQR: -2.17, 1.91], p=0.825) (Figure 2). Notably, we found no significant discrepancies or systematic bias between AnthropoAge and S-AnthropoAge in Bland-Altman analyses, with overall low bias (0.098 years, 95% CI: 0.059 to 0.136) and a high intra-class correlation coefficient (ICC 0.9929, 95%CI 0.9928-0.9930, p<0.001) (Supplementary Figure 2). No systematic bias was observed for any ethnicity in either PhenoAge, AnthropoAge nor S-AnthropoAge compared with CA (Supplementary Figure 3). These metrics have been deployed within a ShinyApp along with the estimation of PhenoAge to facilitate its use for research purposes, available at https://bellolab.shinyapps.io/anthropoage/.

AnthropoAge and S-AnthropoAge predict 10-year all-cause mortality

We evaluated the performance for prediction of all-cause mortality of AnthropoAge in both the training and validation cohorts compared to PhenoAge, CA, and selected individual anthropometric measurements. In the training cohort, AnthropoAge had significantly higher AUROC for prediction of all-cause mortality compared to CA, BMI, WHtR, thigh circumference and triceps skinfold; however, it showed significantly lower predictive performance compared to PhenoAge (p<0.001). In the validation cohort, AnthropoAge
performed better than CA and all anthropometric measurements, with similar performance compared to PhenoAge ($p=0.385$) (Figure 3). When assessing predictive performance stratified by sex and number of comorbidities in NHANES-IV, we did not observe significant differences between AnthropoAge, S-AnthropoAge and PhenoAge (Figure 3c-d, Supplementary Table 4).

Assessment of cause-specific mortality using CA, PhenoAge and AnthropoAge

Given that PhenoAge, AnthropoAge and S-AnthropoAge predict 10-year all-cause mortality, we sought to investigate whether each metric performed better for prediction of cause-specific mortality. We conducted this analysis in 14,129 (74.6%) subjects with complete measurements to estimate all aging metrics from NHANES-III and NHANES-IV cycles. After adjustment by sex, ethnicity, and number of chronic comorbidities, both AnthropoAge and S-AnthropoAge had better predictive performance for cardiovascular, cerebrovascular, cancer-related and nephritis/nephrosis related mortality risk, while PhenoAge was better for predicting diabetes, influenza/pneumonia, and Alzheimer’s related mortality. All metrics performed equally low for the prediction of chronic lower respiratory diseases (Table 1). Moreover, we evaluated a possible interaction effect between biological age and sex on cause-specific mortality. We found that AnthropoAge significantly interacted with sex to predict cardiovascular disease (HR for interaction 0.988, 95%CI: 0.982-0.993), Alzheimer’s disease (HR for interaction 1.029, 95%CI: 1.016-1.042), chronic lower respiratory disease (HR for interaction 1.028, 95%CI: 1.009-1.046), and nephritis/nephrosis (HR for interaction 1.018, 95%CI: 1.013-1.023) related mortality, with men as the reference group. We replicated these interactions between BA and sex using PhenoAge and S-AnthropoAge, which suggests the existence of sexual dimorphisms related to aging and mortality risk.

Body composition of accelerated Anthropometric Age phenotypes
Additionally, we characterized body composition of cases with DXA, anthropometric and complete PhenoAge data from NHANES-IV (n=4,041). Compared to women with AnthropoAgeAccel ≤0, women with AnthropoAgeAccel >0 had higher BMI, WHtR and arm circumference, and lower tricipital and subscapular skinfolds; regarding body composition with DXA, these women had significantly higher overall and appendicular lean mass index (ALMI) and overall fat mass index, higher trunk fat-to-lean-mass ratio and overall higher fat percentage; regarding PhenoAge components, women with AnthropoAgeAccel >0 had higher PhenoAge, C-reactive protein (CRP), red blood cell distribution width (RDW), alkaline phosphatase (ALP) and white blood cell (WBC) count, but significantly lower albumin and lymphocyte percentage (Figure 4a-c). In contrast, men with AnthropoAgeAccel >0 had lower BMI, thigh and arm circumferences, weight, subscapular and tricipital skinfolds and arm length. With DXA body composition, men with accelerated anthropometric aging had lower ALMI, appendicular fat mass index (AFMI), and overall lean-mass and fat-mass index, as well as lower total and lumbar bone mineral density (BMD) compared with men with AnthropoAgeAccel≤0; regarding PhenoAge components, these men had higher CRP, ALP, WBC and RDW with lower creatinine and lymphocyte percentage (Figure 4d-f). We also confirmed a similar pattern using S-AnthropoAgeAccel (Supplementary Figure 4). These findings also denote sharp sexual dimorphisms in body composition phenotypes at higher risk of 10-year all-cause mortality, which require further evaluation.

Multidomain assessment of aging

Next, we explored the 10-year mortality risk trajectories of AnthropoAgeAccel, S-AnthropoAge and PhenoAgeAccel. Notably, accelerated aging displayed higher risk of overall mortality compared with physiological aging for all metrics. When combining phenotypic and anthropometric aging, we found that individuals with multidomain
acceleration had the highest risk of mortality (Figure 5). Using Gompertz proportional hazard regression models, we observed that cases with accelerated AnthropoAge (HR 1.40, 95%CI: 1.29-1.52), accelerated PhenoAge (HR 1.78, 95%CI: 1.63-1.93) and multidomain acceleration (HR 2.46, 95%CI: 2.27-2.66) had higher risk for all-cause mortality compared to individuals with physiological aging after adjustment for age, sex, number of comorbidities, and ethnicity. A similar pattern was observed when using S-AnthropoAge, where risk was highest when both S-AnthropoAge and PhenoAge were accelerated after adjustment for age, sex, number of comorbidities and ethnicity (HR 2.33, 95%CI: 2.15-2.52). Aging metrics have been previously shown to capture comorbidity profiles 6,8,20, on that basis, we investigated whether AnthropoAge, S-AnthropoAge and the multidomain aging indicator distinguished specific comorbidity profiles. Subjects with an increasing number of comorbidities had higher AnthropoAgeAccel and S-AnthropoAgeAccel values independently of CA categories (Supplementary Figures 5a, 6a). Similarly, when using the combined aging indicator, the proportion of subjects with high comorbidity burden was larger in the accelerated AnthropoAge, accelerated PhenoAge and multidomain acceleration categories, indicating that simultaneous consideration of these metrics increases the likelihood of identifying accumulation of comorbidities (Supplementary Figures 5b, 6b).

DISCUSSION
In this work, we developed a novel aging metric based on anthropometric parameters, aiming to predict 10-year mortality risk as a proxy of BA. We showed that AnthropoAge and S-AnthropoAge predict all-cause mortality and are superior for predicting cardiovascular, cancer, stroke and nephritis/nephrosis related mortality compared with PhenoAge. Furthermore, their accelerated aging metrics identify subjects at higher risk of mortality independently of sex, CA, ethnicity, and number of chronic comorbidities. We
further showed that accelerated anthropometric aging has sharp sexual dimorphisms, with males displaying a phenotype of decreased lean and fat mass and females displaying a phenotype of increased fat mass and increased abdominal adiposity; these dimorphisms also reflect different impacts on cause-specific mortality. Finally, we demonstrate that PhenoAgeAccel and AnthroAgeAccel, when considered simultaneously, may identify unique aging phenotypes with distinct comorbidity profiles and differential risk of all-cause mortality, which may indicate domain or tissue-specific aging rates.8,21.

As shown in our study, AnthroAge identifies distinct patterns of body fat and lean mass distribution which contribute to increased mortality risk and may reflect aging rates. The contribution of body composition to the evaluation of BA has previously been explored, identifying marked sex-based differences of body shapes with aging.15,16 In contrast to these previous studies, AnthroAge and S-AnthroAge attempt to capture the contribution of anthropometric measurements to 10-year all-cause mortality risk independently of CA, which may clarify the relationship between body composition and aging beyond BMI, given that this latter metric may not completely capture the complexity of this phenomenon.22,23 Recent analyses have also shown that a richer diversity of biomarkers may lead to more precise assessments of BA and that aging phenotypes may have influence on body composition and even facial expressions.$^{24–26}$.

Sexual dimorphisms have been distinguished in relation to aging rates, age-related diseases and mechanisms associated to adaptive homeostasis.27,28 A relevant addition of our study is the characterization of sexual dimorphisms in body composition-related aging and their associated mortality risks; these sharp sex-based differences are consistent with previous findings of unique body shapes between men and women and its implications in cardio-metabolic risk.$^{15,29–31}$ Thus, AnthroAge, S-AnthroAge and their accelerated aging metrics widen our understanding of disparities in aging rates and longevity.
attributable to biological sex32. Further studies are required to determine the extent to which known sexual dimorphisms in body fat and muscle functionality33 may aid in the estimation of BA and its relative performance in comparison to blood biomarkers.

A previous analysis using data from the Baltimore Longitudinal Study of Aging proposed four domains to integrate functional, phenotypic, and biological aging rates including: body composition, energy regulation, homeostatic mechanisms and neurodegeneration/neuroplasticity12. Similarly, the work by Kuo et al. demonstrated that PhenoAge and BioAge evaluate different domains of aging, with genetic data suggesting the evaluation of unique aging pathways by using either BA indicator7,8. In line with these findings, we observed that PhenoAge and AnthropoAge have distinct abilities to predict cause-specific mortality independently of sex, ethnicity, and comorbidity burden; furthermore, simultaneous consideration of both accelerated metrics model unique mortality risk trajectories which may better reflect the heterogeneity of aging rates. Consideration of multiple markers of aging may increase the likelihood of modeling complex interactions between different biological domains9 and it may prove useful to tailor specific strategies to promote healthier aging or reduce the burden associated with unhealthy aging34.

AnthropoAge, S-AnthropoAge and PhenoAge offer unique opportunities to translate the concept of BA onto clinical practice or routine use, as they can be implemented with simpler measurements compared to those using omics technologies or genomic data9,35,36.

Our study had some strengths and limitations. By using large population-based datasets, we were able to capture a diverse population, with varying body phenotypes which likely reflect underlying patterns of BA. However, despite including ethnicities to estimate AnthropoAge and S-AnthropoAge, ethnic differences in body composition may require specific validation studies to adapt these metrics to different populations37. Furthermore, we were not able to assess the impact of longitudinal changes in AnthropoAge, S-
AnthropoAge and its accelerated metrics in modifying mortality risk, which may allow to translate these metrics onto specific strategies to intervene on aging rates by targeting body composition. Finally, despite being easily implementable, the reliability of anthropometric parameters depends upon adequate techniques and reproducibility for their measurement, which may hinder their adequate usage. In conclusion, we showed that anthropometric measurements could be implemented to capture the contribution of body composition into the estimation of BA. Based on these findings, we developed AnthropoAge and S-AnthropoAge, which capture 10-year mortality risk as proxies of BA, and its accelerated aging metrics AnthropoAgeAccel and S-AnthropoAgeAccel, which predict the CA-independent contribution of anthropometric measurements to mortality and identify body composition phenotypes with marked sexual dimorphisms linked to accelerated aging. Finally, we show that consideration of multiple BA indicators may improve identification of accelerated aging trajectories to better characterize the complexities and heterogeneities of the aging process.

ACKNOWLEDGMENTS

This project was registered and approved by the Research Committee at Instituto Nacional de Geriatría, project number DI-PI-006/2020. NEAV, CAFM, AMS, ECG, and ESC are enrolled at the PECEM Program of the Faculty of Medicine at UNAM. NEAV and ESC supported by CONACyT.

AUTHOR CONTRIBUTIONS

Research idea and study design: CAFM, AMS, ECG, NEAV, LMGR, OYBC; data acquisition: CAFM, AMS, ECG, OYBC; analysis/interpretation: CAFM, AMS, OYBC; statistical analysis: CAFM, AMS, OYBC; manuscript drafting: CAFM, AMS, ECG, LZR, LFC, DABG, NEAV, ESC, ACM, LMGR, OYBC; supervision or mentorship: OYBC. Each
author contributed important intellectual content during manuscript drafting or revision and accepts accountability for the overall work by ensuring that questions pertaining to the accuracy or integrity of any portion of the work are appropriately investigated and resolved.

DATA AVAILABILITY: All code, datasets and materials are available for reproducibility of results at https://github.com/oyaxbell/anthropoage/

CONFLICT OF INTEREST/FINANCIAL DISCLOSURE: Nothing to disclose.

FUNDING: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

REFERENCES

among midlife adults of the same chronological age have implications for future frailty risk

TABLE 1. Performance of Fine & Gray semiparametric competitive risk regression models to evaluate cause-specific mortality using AnthropoAge, S-AnthropoAge and PhenoAge. Herein we show the C-statistics (95% CI) and differences in the Bayesian Information Criterion (ΔBIC = BIC_Model-1 - BIC_Model-2) to contrast model predictions, where a ΔBIC < -2 indicates that the first model is better at predicting a specific outcome, while a ΔBIC > 2 favors the second model. All models are adjusted for age, sex, ethnicity and number of comorbidities.

<table>
<thead>
<tr>
<th>Cause-specific mortality</th>
<th>Events (n)</th>
<th>AnthropoAge C-statistic</th>
<th>S-AnthropoAge C-statistic</th>
<th>PhenoAge C-statistic</th>
<th>ΔBIC (AnthropoAge vs. S-AnthropoAge)</th>
<th>ΔBIC (AnthropoAge vs. PhenoAge)</th>
<th>ΔBIC (S-AnthropoAge vs. PhenoAge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
<td>1048</td>
<td>0.755 (0.742-0.767)</td>
<td>0.754 (0.741-0.766)</td>
<td>0.756 (0.743-0.768)</td>
<td>0.334</td>
<td>-6.312</td>
<td>-6.646</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>139</td>
<td>0.849 (0.82-0.878)</td>
<td>0.848 (0.819-0.878)</td>
<td>0.85 (0.82-0.88)</td>
<td>0.089</td>
<td>3.326</td>
<td>3.237</td>
</tr>
<tr>
<td>Stroke</td>
<td>125</td>
<td>0.863 (0.844-0.883)</td>
<td>0.864 (0.845-0.883)</td>
<td>0.842 (0.822-0.863)</td>
<td>2.946</td>
<td>-42.767</td>
<td>-45.713</td>
</tr>
<tr>
<td>Cancer</td>
<td>213</td>
<td>0.822 (0.802-0.842)</td>
<td>0.823 (0.803-0.843)</td>
<td>0.809 (0.789-0.83)</td>
<td>4.430</td>
<td>-35.333</td>
<td>-39.763</td>
</tr>
<tr>
<td>Influenza or Pneumonia</td>
<td>64</td>
<td>0.813 (0.769-0.858)</td>
<td>0.814 (0.769-0.858)</td>
<td>0.85 (0.809-0.891)</td>
<td>0.717</td>
<td>27.489</td>
<td>26.771</td>
</tr>
<tr>
<td>Cause-specific mortality</td>
<td>Events (n)</td>
<td>AnthropoAge C-statistic</td>
<td>S-AnthropoAge C-statistic</td>
<td>PhenoAge C-statistic</td>
<td>ΔBIC (AnthropoAge vs. S-AnthropoAge)</td>
<td>ΔBIC (AnthropoAge vs. PhenoAge)</td>
<td>ΔBIC (S-AnthropoAge vs. PhenoAge)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Nephritis or Nephrosis</td>
<td>1426</td>
<td>0.754 (0.742-0.767)</td>
<td>0.753 (0.741-0.766)</td>
<td>0.756 (0.744-0.768)</td>
<td>3.051</td>
<td>-40.195</td>
<td>-43.246</td>
</tr>
<tr>
<td>Alzheimer</td>
<td>150</td>
<td>0.825 (0.794-0.856)</td>
<td>0.825 (0.794-0.855)</td>
<td>0.865 (0.839-0.891)</td>
<td>2.045</td>
<td>79.996</td>
<td>77.951</td>
</tr>
<tr>
<td>COPD</td>
<td>148</td>
<td>0.605 (0.564-0.647)</td>
<td>0.606 (0.564-0.648)</td>
<td>0.609 (0.569-0.65)</td>
<td>0.328</td>
<td>1.206</td>
<td>0.878</td>
</tr>
</tbody>
</table>
FIGURE 1. Non-linear contribution of anthropometric variables to 10-year all-cause mortality using Gompertz proportional hazard regression fitted with orthogonal polynomials and adjusted by chronological age, sex and number of comorbidities, with ethnicity included in the shape parameter.
FIGURE 2. Scatter plots showing the best linear fit of AnthropoAge and PhenoAge stratified by sex in NHANES-III (training cohort, a-b) and NHANES-IV (validation cohort, c-d) as well as density plots of AnthropoAgeAccel and PhenoAgeAccel stratified by sex in both cohorts (e-h).
FIGURE 3. Area under the receiving operating characteristic curves (AUROC) comparing the performance of PhenoAge, AnthropoAge, chronological age (CA), waist-to-height ratio (WHR), thigh circumference, triceps skinfold and the body-mass index (BMI) for 10-year all-cause mortality in NHANES-III (a) and NHANES-IV (b). AUROC for AnthropoAge, S-AnthropoAge and
PhenoAge stratified by sex (c) and number of comorbidities (d), there were no significant differences between the three metrics in any of the categories.
FIGURE 4. Spider plots comparing patterns of anthropometry, DXA-derived body composition and PhenoAge components transformed into z-scores stratified by sex comparing cases with AnthropoAgeAccel>0 (accelerated) and ≤0 (physiological).
FIGURE 5. Kaplan-Meier curves comparing AnthropoAgeAccel (a), S-AnthropoAgeAccel (b) and PhenoAge (c) values >0 (Accelerated) vs ≤0 (Physiological) for prediction of 10-year all-cause mortality. Using the multidomain aging indicator (d), we...
compared mortality risk among Physiological aging, Accelerated AnthroAge, Accelerated PhenoAge and Multidomain acceleration categories.