Disentangling the roles of demographic and temporal changes in the incidence and prevalence of musculoskeletal disorders: a systematic review.

Hanifa Bouziri1, Alexis Descatha2, Yves Roquelaure2, William Dab1, Kévin Jean1,3

1. Laboratoire MESURS, Conservatoire national des Arts et Métiers, Paris, France.
2. Inserm, EHESP, Iriset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, Univ Angers, Univ Rennes, 28 Roger Amsler, CS 74521, 49045 Anger, Cedex 01, France.
3. MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, United Kingdom

*Correspondence: hanifa.bouziri@lecnam.net

KEYWORDS: Musculoskeletal disorders, Temporal trends, Occupational health, Systematic review, Epidemiology, Chronic diseases.

ABSTRACT:

Background: Musculoskeletal disorders (MSDs) accounted for nearly 1.71 billion people worldwide in 2019 with an estimate of over 126.6 million Americans (or one in two adults) affected and 40 million European workers in 2017. Since age constitutes an important risk factor for MSDs, the overall aging of the working population is expected to influence the burden of disease. However, factors other than aging may play a role in the global trends in MSDs. We conducted a systematic review to summarize the evidence on the role of demographic and temporal changes in the occurrence of MSDs.

Methods: The study protocol was registered in PROSPERO with the number CRD42020221499. Following the PRISMA guidelines, we searched PubMed, ScienceDirect and Web of Science over the 1990-2020 period for articles reporting temporal trends in MSDs incidence or prevalence in the general working-age population. We only included articles controlling for age in the analysis. To ensure the quality of the articles, the bias risk was assessed using the RoB-SPEO tool. The main indicators we extracted were age-controlled time trends in MSDs incidence or prevalence.

Results: Among 966 articles, 16 fulfilled the inclusion criteria, representing 23 results according to the indicators extracted. No study was found with a high risk of bias. Nine used a definition of MSDs based on pain and 14 based on repercussions on work or social life. Twelve results presented time trends in prevalence and 11 in incidence. After controlling for age, temporal trends in MSDs presented some heterogeneity. Indeed, 10 results documented increases and 12 reported non-monotonic changes. Only 1 result reported a decreasing trend in the incidence of MSDs. Several factors other than aging were suggested to explain temporal trends in MSDs, mainly trends in obesity, changing occupational exposures, and cultural factors regarding pain tolerance.
Conclusion: This review shows that factors in addition to aging of the working population may contribute to varying or increasing trends in MSDs. Results also highlight the scarcity of available evidence on time trends in the burden of MSDs and their underlying causes.

INTRODUCTION:

According to the Global Burden of Disease, musculoskeletal disorders (MSDs) affected 1.71 billion people and were the leading contributors to disability worldwide in 2019 [1][2]. These conditions refer to a group of painful disorders of muscles, tendons, and nerves. The causes of MSDs are multifactorial and notably can be induced both by occupational biomechanical and psychosocial risk factors [3]. Since the 1970s, there have been many changes in working conditions, and reinforcement of preventive actions which have notably redistributed the risk factors of MSDs [4][5][6]. These structural changes in the economy have been notably catalyzed by the increase in the digitization of professions. There also is a growing trend in the service sector, which contributes to changes in the patterns of exposure to hazards at work [7]. Their combined effects on the temporal evolution of MSDs are thus challenging to assess. In addition, the aging of the workforce could have implications for the increasing risk of chronic diseases like MSDs [8][6]. In particular, the rising average age of workers in many high-income countries may increase the risk of MSDs in the absence of prevention initiatives. First, due to the degenerative phenomena linked to the aging process itself which induces a reduction in biomechanical tolerance to repetitive and/or prolonged loading. Second, due to prolonged exposure to residual biomechanical stresses and psychosocial risks accumulated during increasingly long careers [3].

Exposures to the main risk factors of MSDs, such as biomechanical, organizational, and psychosocial factors, have evolved over time with different trends[9] [10][11][12]. Consequently, successive cohorts of workers have not been exposed to MSD risk factors with the same intensity and frequency throughout their lives. Moreover, risk factors of MSDs and their changes over time have mainly been studied individually or by family (e.g. biomechanical, organizational, psychosocial), but a global view of their simultaneous trends is still lacking. Disentangling the respective role of temporal evolutions in the exposure to these factors and age in the occurrence of MSDs is thus needed to monitor current trends and design adapted prevention policies [13][3][14][15]. Furthermore, understanding the evolution of exposures over time while accounting for age would allow a more accurate prediction of future trends in MSDs and help to prevent and control their occurrence [16][17].
In this systematic review, we collated and analyzed existing evidence on the respective roles of demographic and temporal changes in the occurrence of MSDs.

METHODS:

1. **Search strategy**

 The study protocol was registered in PROSPERO (CRD42020221499) [18]. This protocol is consistent with the preferred carry-over items for systematic review and meta-analysis protocol statements (PRISMA) reporting [19][20][21]. Any modification of the methods stated in the present protocol was registered in PROSPERO (see the reference mentioned before).

 We searched four different electronic bibliographic databases for studies published between 1990 and 2020: Medline, ScienceDirect, Wiley, and Web of Science. The search terms included: 1) "Musculoskeletal disease*" AND ("time trends" OR "time trends" OR "over time") AND ("incidence" OR "prevalence"); 2) ("Musculoskeletal disease*" OR "Musculoskeletal disorder*" OR "Absence of disease specific to professional diagnosis") AND ("time trends" OR "time trends" OR "over time") AND ("incidence" OR "prevalence"); 3)"Musculoskeletal disorder*" AND ("time trends" OR "time trends") AND ("incidence" OR "prevalence"). The Covidence Systematic Review software allowed the selection of studies, their download, and the removal of duplicates [22]. Once the articles were selected by keywords, a first selective screening was carried out based on titles and abstracts (step 1). Only original articles were included; conference reports, literature reviews, and editorials were excluded. At this stage, only articles that reported MSD or MSD proxies as primary or secondary outcomes while mentioning the notion of temporal trend were included.

 The final inclusion of articles (step 2) was done based on a complete review of those selected in the previous step. Articles defining MSD as a group or set of diseases localized at or around the joints (wrists, elbows, shoulders, spine, or knees) were selected. The pathologies targeted here concerned the muscles, tendons and tendon sheaths, nerves, bursae, joints, ligaments, at the periphery of the joints of the upper limbs, the spine, and the lower limbs. We excluded MSDs defined as a joint manifestation of organic diseases (e.g. psoriasis, lupus, gout, etc.) or as the joint location of systemic inflammatory origins (e.g. secondary osteoarthritis). At this step, only articles reporting temporal trends in incidence and/or prevalence in MSD while controlling for age were selected. We included studies conducted among the working-age population. Studies of people under 18 and unpaid domestic workers were excluded.
Both steps 1 and 2 were performed by two independent authors to assess the eligibility of studies identified in the databases. Any conflict in article screening or full-text assessment was resolved by a third senior researcher. All articles included were read for the identification and extraction of the following characteristics: geographical localization, population studied, study design and recruitment, start and end date of follow-up, MSD sites (superior members, inferior members & back, or not specified), criteria used for MSD definition (either based on pain or on disability), a diagnostic method for MSD.

2. Assessing risk of bias and quality of evidence

To assess the risk of bias across included studies, we used the RoB-SPEO tool [23]. Most of the bias judgmental criteria were adapted from the last systematic reviews of the Navigation Guide. As this review focuses on temporal trends in a set of diseases and not on an association with a specific exposure, we did not analyze bias related to exposure criteria. The biases we assessed were selection bias, potential biases linked to misclassification of MSDs, biases due to incorrectly taking confounding factors into account, and bias due to potential conflict of interest. Each article has been classified according to its level of bias (low, probably low, probably high, high). We also assessed the quality of the statistical trend tests by using this classification: satisfactory quality, probable satisfactory quality, probable unsatisfactory quality, unsatisfactory quality. Further details on the criteria and classifications used for the risk of bias and quality of evidence assessment are available as supplementary material.

3. Analysis of the temporal trends of the occurrence of MSDs

Information concerning the methods to control for age, the raw temporal trends (if reported in the article) of the MSDs, and the prevalence and/or the incidence of MSDs over time while controlling for age were extracted. For each article, the temporal trends in the prevalence and/or incidence of MSDs were analyzed according to the location and severity of MSDs. If an article investigated multiple types of MSDs and/or addressed both temporal trends in the prevalence and incidence of MSDs, we considered these results independently; therefore, the total number of results could possibly be higher than the number of studies included. We also distinguished two groups of results based on the MSD sites and criteria used for MSD definition, either based on pain or on repercussion on work and/or social life (hereafter called disability). The changes in temporal trends in MSDs have been summarized according to whether they have decreased, varied, or increased.
4. Synthesized evidence

We compared the raw time trends in MSDs and controlled age, when the articles addressed both, to see if there were any differences between them, and therefore if it would be possible to dissociate age from time in the occurrence of MSDs over time. Then for each article, when they were mentioned, we included the interpretations and hypotheses which explained or could explain the temporal trends in MSD observed.

RESULTS:

1. Studies selection

A total of 966 study records were identified through our systematic search, of which 263 were duplicated (Figure 1). A further 658 records were excluded after the title and abstract screening because they did not present original results and/or did not report results based on MSDs and/or did not address temporal trends in their occurrence. Of the 45 full-text articles assessed for eligibility, 29 were classified as non-eligible, of which 13 were because they did not control for age in reporting trends. A total of 16 studies fulfilled the eligibility criteria and were thus included in the review.

2. General characteristics of the studies

The 16 articles included in the studies were published between 2003 and 2020 (Table 2), among which 12 were published after 2010. Overall, the studies were conducted in 3 geographic areas: 12 in Europe (among which 5 were in Scandinavian countries), 3 in the USA, and 1 in Australia. The duration of the study period ranged from 10 to 55 years across studies. Nine studies relied on sampled populations (3 cohort designs, 5 repeated cross-sectional studies) representing a total of 1,387,930 individual working-age adults. Among these, 2 studies focused on the male population only. The other 8 studies relied on a time-series design based on surveillance data collected within 5 countries and 1 subnational administrative area.

The recruitment of individuals for repeated cross-sectional studies was carried out from household-based sampling designs. Among cohort studies, 1 article relied on the recruitment of hospital-based participants, 1 recruited participant from occupational health records, and 1 recruited participant from previous surveys completed at home. Most of the time-series studies relied on hospital-based surveillance systems (5 out of 8 articles 8).
Among the articles included, 5 defined MSDs based on pain, and 11 defined them according to a disabling disability. These 11 articles relying on a disabilities-related MSDs definition were conducted in the Scandinavian countries, the United Kingdom, and Australia. Among those, the site of MSDs was not specified for 8 articles, 2 articles considered MSD affecting the inferior members and the back, and 1 considered MSD affecting the superior members.

3. Risk of bias and quality of the studies

The studies selected were mainly carried out on the general working population, and the risk of selection bias was considered low or probably low. Overall, the participants were carefully selected based on a well-defined sampling strategy based on random selection from a national longitudinal or cross-sectional survey.

We considered MSDs based on medical diagnosis to be reliable. We classified both MSDs based on the medical diagnosis and/or disability at low risk of bias. MSDs defined based on pain were classified as a probable low risk of bias. For the studies which administered a questionnaire, we considered that they probably had low bias since it is a good method for detecting chronic pain and disability in the individuals recruited. Studies dealing with temporal trends in MSDs by controlling for age and then for other factors were considered at low risk of bias for the confounding factors. Studies not taking other potential confounders were considered likely to be at low risk of bias since here we are only looking at temporal trends in MSDs. In the included studies, most of the study authors did not declare a conflict of interest, nor did they receive any support from a company suggesting that there could be a financial interest in the results. Therefore, we assessed these studies as having a low risk of bias in this area. For the studies not clearly mentioning it in the paper, we checked that all the authors were affiliated with public (research) agencies or scientific institutions and when this was the case, we considered that the studies had a low probability of bias. We did not identify any other biases and therefore assessed all studies as having a probable low risk of other biases.

Among 16 articles, 9 studies included either tests for temporal trends or confidence intervals for each value of incidence or prevalence of MSDs for the years that followed. The studies were considered to be of satisfactory quality (trends tests, or Chi-squared), or of probable satisfactory quality (if 95% CI for MSDs incidence and/or prevalence). The studies without statistical tests were considered to be of a probable unsatisfactory quality. In general, we did not identify studies where there was a high risk of bias, or where the quality was too low to
justify an exclusion from the review (Table 1). For more information go to the supplementary materials.

4. Temporal trends of the incidence and prevalence of MSDs

Some studies reported simultaneously several results based on several MSDs and/or prevalence and incidence of MSDs so that the 16 included studies represented a total of 23 results. Among these results, 9 used a definition of MSD based on pain and 14 based on the impact on work or social life. Within the total of 23 results, 12 presented temporal trends in prevalence and 11 in incidence. Five studies were controlled for age in time trends in MSDs by stratification, 4 articles by adjustment, 3 articles by standardizations, 3 articles by direct standardization, and 3 by age-period cohort (see Table 2).

Among the 3 articles defining MSDs based on disability, 1 (Pekkala et al., 2017) showed that absences due to MSDs decreased over time after adjusting for age. Two articles reported an increase in MSDs over time, 1 of which reported trends in knee osteoarthritis (Spitael et al. 2020), while the other reported trends in osteoarthritis (Swain et al. 2020) (Figure 2.A). Among the 9 results based on pain-related MSD definition, 7 showed non-monotonous change over time, and 2 reported increasing trends (Grosschädl et al. 2014 for lower back pain, and Guido et al. 2020 for pain in all locations) (Figure 2.B). These results showed heterogeneity in the time trends in MSDs varying between increase and non-monotonous changes (Table 2).

The results show that the temporal evolution of the incidence of MSDs causing disability tends to increase or vary according to their site. Among the 6 articles not specifying the location of MSDs, 3 show variable trends, two reported increases over time and 1 (Holte et al. 2003) reported sex-specific results, with an increase in women, and bell curve for men. In addition, two articles reported an increase over time in MSDs located in superior members. For the inferior members and the back, two articles showed an increase in MSDs, and 1 article reported a variable evolution of MSDs (Figure 2.C and Table 2).
5. Synthesized evidence

We note that a small number of articles analyzed temporal variations in MSDs, and even less were age-controlled.

Controlling or not controlling for age may produce divergent pictures of the temporal trends in some specific MSDs. In the article by Yu et al. (2017), the raw temporal trend in the incidence of osteoarthritis is variable, whereas an increase in osteoarthritis is observed when standardizing for age. In the article by Dick (2020), the raw time trend in the prevalence of back and hand pain increases. After adjusting by age, an increasing trend was still observed for people < 55 years, but variable trends were observed for those aged 55-64 years, while an increase in pain over time was observed for those ≥ 65 years. Thus, these results highlight a potentially distinct role for age and time in the occurrence of MSDs, at least for older age categories.

Fifteen articles suggested that factors other than aging could explain the temporal trends in MSD (Table 2). Regardless of the temporal trends of MSDs observed, in most articles, we find a hypothesis of a link between cultural changes around the perception of pain (in both caregivers and patients), and a better knowledge of pathologies with improvements in detection and treatment techniques [24][25]. We also noticed that 5 articles related the trends they reported in MSDs to similar temporal trends in obesity and body mass index. Additionally, Dick et al. (2020) suggested that changes in psychosocial and organizational factors at work could explain the non-monotonic trends in MSDs that they observed between 2002 and 2014. Söderberg et al. (2018) suggested that the non-monotonic trends they reported reflected changes in disability eligibility criteria rather than in the underlying exposures. Finally, the only article which reported a decrease in the instances of sick leave due to MSD (Pekkala et al., 2017) explained it by a probable reduction in the physical demands of work and better health and safety at work.
DISCUSSION:

This literature review identified a limited number of articles reporting temporal trends in MSDs by controlling for age. Study duration ranged from 10 to 55 years across studies, which allowed for analyzing the occurrence of MSDs over a long term. Temporal trends in MSDs varied according to the site of the MSDs, the criteria used to define MSDs (either assimilated to pain and/or a disability), and the indicator used (prevalence or incidence). We observed heterogeneity of the temporal trends of treated MSDs which mainly varied between non-monotonic or increasing trends. Of note, based on studies reporting both crude and age-controlled trends, we observed that accounting for or not accounting for age could lead to diverging temporal trends, at least among the highest age categories.

This literature review identified some important gaps or residual uncertainty in the evidence currently available. First, although our inclusion criteria were broad, the systematic review identified only studies conducted in Western high-income countries (the USA, Scandinavian countries, European countries, and Australia). This lack of evidence considering the burden of MSDs and their socio-economic implication does not allow us to provide an interpretation on the scale of the global working population [26].

The indicators we used to define the groups of MSDs (pain vs. disability) are more or less sensitive to temporal variations in the occurrence of MSDs. To diagnose the occurrence of MSDs, several scales allow for quickly and easily assessing pain intensity (visual analog pain scale, simple numeric scale, simple verbal scale) [27][28]. It is important to note, however, that although the validity of these diagnostic tests is comparable in educated patients, those who are less or uneducated may be led to answer differently. These scales do not allow for a complete assessment of the pain component, but they can allow for repeated self-assessments since they are very quick to complete. It is also possible that the pain reported by patients responds more quickly to changes in working conditions or other factors (such as cultural changes) than do longer disabling pathologies. Therefore, we must remain cautious about our interpretations of temporal changes in the occurrence of MSDs depending on whether we observe postponed pain or more disabling pathologies diagnosed by doctors [29]. Pain classification measurements must therefore include aspects such as the severity, frequency, and intensity of pain as well as measurements of changes in working conditions [30].

We hypothesize that the heterogeneity of temporal trends in the occurrence of MSDs results from various, maybe diverging trends in their underlying causes. In most of the countries
covered by this review, a fundamental change in the tertiarization of work has been observed, which resulted in an overall reduction in occupational physical constraints [31][32]. However, a reduction in MSD is not systematically expected from a decrease in exposure to biomechanical factors. The analyzes from the ESTEV survey show in particular that the viscoelastic nature of periarticular soft tissues can also play a role in the occurrence of low back pain [33]. Thus, prolonged exposure from carrying heavy loads can potentially cause an irreversible deformation of these tissues ("memory of the exposure" or "creep phenomenon"), which may explain the fact that in the higher age groups, some MSDs do not decrease, despite decreased biomechanical exposures. Moreover, the reduction of occupational physical constraints may have arisen concomitantly with an increase of work-related mental load, which can also play a significant role in the occurrence of MSDs [34][9].

The main limitation of this review holds in the fact that we exclusively searched electronic bibliometric databases of scientific literature. This means that we did not use the gray literature and governmental reports on MSDs that were not reviewed by external readers.

Finally, we do not have studies capturing MSD data during the health crisis linked to the COVID-19 pandemic. This sanitary situation could possibly be at the origin of the evolution and emergence of certain professions which can potentially be at the origin of changes in the occurrence of MSDs (telework and bad postures, sedentary habits, intensification of work, work on task linked to a digital platform, increased deliveries carrying heavy loads at reduced times, stress, etc.) [35][36][37]. In the future, longitudinal data that can capture this information could be an interesting addition to the interpretation and understanding of the occurrence of MSDs over time [38].

CONCLUSION:

To our knowledge, there is no systematic review on the temporal trends of MSDs controlling for age which we could compare with our results. Our systematic review revealed a disparity in the temporal trends of MSDs controlling for age, according to their site and whether we are treating pain or disabilities linked to MSDs; we mainly distinguish between non-monotonic changes and an increase over time. Factors other than aging have also been suggested such as obesity, changes in occupational and cultural exposures, and pain tolerance. The current body of evidence, however, is that there are some residual uncertainties, especially given the low number of articles on this subject and the fact that we only found articles in the wealthiest countries. Notably, this review shows the type of research and data that are lacking to anticipate the temporal trends in the MSDs occurrence,
which is an important question in terms of prevention. We also showed that in the included articles, the temporal trends of MSDs varied mainly between increase and non-monotonic changes depending on their site, severity, and age.

FINANCIAL SUPPORT

All authors are salaried staff members of their respective institutions.

AUTHOR CONTRIBUTIONS

Contributions to the conception of the systematic review: William Dab, Kévin Jean, Hanifa Bouziri.

Leading the revision of this systematic review: Hanifa Bouziri, Kévin Jean

Leading the design of this systematic review: All authors

Substantial contributions to the design of this systematic review: All authors.

Conducting the research: Hanifa Bouziri

Selection of studies for review: Hanifa Bouziri, Alexis Descatha, Kévin Jean

Correction of conflicts: William Dab

Data extraction: Hanifa Bouziri

Assessment of risk of bias: All authors

Assessment of quality of evidence: All authors

Drafting the manuscript with the use of the template: Hanifa Bouziri

Revising the manuscript critically for important intellectual content: All authors.

Final approval of the systematic review to be published: All authors.

Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: All authors.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

ACKNOWLEDGMENTS

The authors are responsible for the opinions expressed in this article, and they do not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated.
REFERENCES:

508 [31] S. Memmi, ‘How have the exposures of private sector employees to occupational risks evolved over the last twenty years? First results of the SUMER survey [Comment ont
évolué les expositions des salariés aux risques professionnels sur les vingt dernières années?

Figure 1: Flow chart diagram of studies selection using PRISMA-ScR Flow Diagram recommendations.

- **Identification**
 - Records identified through database searches using keywords (Medline, PubMed, Science Direct, Wiley, Web of Science)
 - Total articles with duplicates (n = 966)

- **Screening**
 - Articles screened (title & abstract) (n = 703)
 - Records excluded (n = 658)
 - Non-original articles (review, protocol, meeting report, etc.)
 - Does not address the prevalence or incidence of MSDs and/or occupational diseases
 - Does not address temporal trends in the occurrence of MSDs

- **Full-text reading**
 - Full-text articles assessed for eligibility (n = 45)
 - Exclusion criteria after full reading (n = 29)
 - 13 Does not take age into account (no adjustment for age)
 - 6 Does not address the prevalence or incidence of MSDs over time (but average over a given period)
 - 1 Does not treat MSDs (or MSDs proxies) as a primary outcome.
 - 5 MSDs as a joint manifestation of organic diseases (psoriasis, lupus, gout, certain infectious diseases, etc.)
 - 2 Wrong population (not adults).
 - 2 Fractures

- **Include**
 - Articles included (n = 16)
Figure 2: Temporal trends of the incidence and prevalence of MSDs according to their location and severity.

A. Temporal trend of the prevalence of MSDs inducing repercussions on work or social life with age considerations.

B. Temporal trend of the prevalence of pain with age considerations.

C. Temporal trend of the incidence of MSDs inducing repercussions on work or social life with age considerations.
Table 1: Summary of risk of bias and quality across studies on temporal trends of MSDs considering the age

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias</td>
<td></td>
</tr>
<tr>
<td>a. Bias in the selection of study participants</td>
<td>Low</td>
<td>PL</td>
<td>PL</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>b. Bias due to misclassification of MSDs</td>
<td>Low</td>
<td>PL</td>
<td>Low</td>
<td>PL</td>
<td>PL</td>
<td>Low</td>
<td>PL</td>
<td>PL</td>
<td>PL</td>
<td>Low</td>
<td>Low</td>
<td>PL</td>
<td>PL</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>c. Bias due to poor consideration of confounding factors</td>
<td>Low</td>
<td>PL</td>
<td>PL</td>
<td>Low</td>
<td>PL</td>
<td>Low</td>
</tr>
<tr>
<td>d. Bias due to conflict of interest</td>
<td>Low</td>
<td>low</td>
<td>PL</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>PL</td>
<td>PL</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>e. Other biases</td>
<td>PL</td>
</tr>
<tr>
<td>Quality of the statistical tests</td>
<td>PUS</td>
<td>PSQ</td>
<td>PSQ</td>
<td>PUS</td>
<td>SQ</td>
<td>PUS</td>
<td>SQ</td>
<td>PSQ</td>
<td>SQ</td>
<td>PUS</td>
<td>SQ</td>
<td>PUS</td>
<td>PUS</td>
<td>SQ</td>
<td>PUS</td>
<td>PUS</td>
</tr>
</tbody>
</table>

Legend for the bias: low in green, probably low (PL) in light green, probably high (PH) in light orange, high in orange. Legend for the quality of the statistical tests: satisfactory quality (SQ) in green, probable satisfactory quality (PSQ) in light green, and probable unsatisfactory quality (PUS) in light orange.
Table 2: Summary of the articles dealing with temporal trends in MSDs with and without taking age into account.

<table>
<thead>
<tr>
<th>Ref</th>
<th>Date</th>
<th>Country</th>
<th>Recruitment</th>
<th>Period</th>
<th>Population</th>
<th>Sample size</th>
<th>MSD type</th>
<th>Diagnosis</th>
<th>Raw time trends</th>
<th>Time trends taking into account the age</th>
<th>Dealing with age</th>
<th>Interpretation for age specific time trends</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 cohort studies</td>
<td></td>
</tr>
<tr>
<td>Guido [24]</td>
<td>2020</td>
<td>Europe 17 studies</td>
<td>Variable</td>
<td>1991 – 2015 (24 years)</td>
<td>General population</td>
<td>660,028 individuals</td>
<td>All pain including MSDs</td>
<td>Self-reported</td>
<td>Untreated</td>
<td>Prevalence: increase</td>
<td>Age-period-cohort (ACP)</td>
<td>Evolving perception of pain that can be explained by cultural or biological changes (in patients and practitioners).</td>
</tr>
<tr>
<td>Solomon [27]</td>
<td>2007</td>
<td>UK</td>
<td>Household</td>
<td>1949-2004 (55 years)</td>
<td>Men from rural areas</td>
<td>34,486 individuals</td>
<td>MSD-related job loss</td>
<td>Questionnaire</td>
<td>Untreated</td>
<td>Incidence: increased</td>
<td>Adjusted</td>
<td>Acceptance of evolving occupational diseases that can be explained by cultural changes (in patients and practitioners).</td>
</tr>
<tr>
<td>5 repeat cross-sectional studies</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Großschädli [29]</td>
<td>2014</td>
<td>Austria</td>
<td>Household</td>
<td>1973 – 2007 (34 years)</td>
<td>General population</td>
<td>64,052 individuals</td>
<td>Back pain</td>
<td>Self-reported</td>
<td>Untreated</td>
<td>Prevalence: increase</td>
<td>Standardization</td>
<td>Linked to workload, sedentary activities, BMI and obesity, evolving perception of pain, and cultural changes</td>
</tr>
<tr>
<td>Marti</td>
<td>2014</td>
<td>US</td>
<td>Household</td>
<td>1997-</td>
<td>General</td>
<td>78,328</td>
<td>Back pain</td>
<td>Questionnaire</td>
<td>Untreated</td>
<td>Prevalence: variable</td>
<td>Adjusted</td>
<td>Linked with BMI & obesity</td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leijon [32]</td>
<td>2009</td>
<td>Sweden</td>
<td>Household</td>
<td>1990–2006 (16 years)</td>
<td>General population</td>
<td>Low back pain</td>
<td>Self-reported</td>
<td>Prevalence: variables</td>
<td>Direct standardization</td>
<td>Linked to increased professional or economic pressure and/or resulting from cultural changes (in media)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 time-series studies</td>
<td></td>
</tr>
<tr>
<td>Ackerman [33]</td>
<td>2019</td>
<td>Australia</td>
<td>Medical records</td>
<td>2003–2013 (10 years)</td>
<td>General population</td>
<td>Hip Arthroplasties</td>
<td>Medical exam</td>
<td>Untreated</td>
<td>Incidence: increase</td>
<td>Stratified ages</td>
<td>Linked with BMI & obesity</td>
<td></td>
</tr>
<tr>
<td>Gelfman [34]</td>
<td>2009</td>
<td>US</td>
<td>Medical record</td>
<td>1981–2005 (24 years)</td>
<td>General population (Olmsted County, Minnesota)</td>
<td>Carpal tunnel syndrome (CTS)</td>
<td>Medical records</td>
<td>Untreated</td>
<td>Incidence: increase</td>
<td>Direct standardization</td>
<td>Greater awareness of CTS among the general population and increasing proportion of at-risk occupations</td>
<td></td>
</tr>
<tr>
<td>Holte [35]</td>
<td>2003</td>
<td>Norway</td>
<td>Administrative records (pensions)</td>
<td>1968–1997 (29 years)</td>
<td>General population</td>
<td>Disability pension: RA, OA, soft tissue rheumatism</td>
<td>Medical exam</td>
<td>Untreated</td>
<td>Incidence: increase among women, bell-shaped among men (peaked in the 80s)</td>
<td>Stratified ages</td>
<td>Linked to an increased general demand for fitness or changes in pain perception explained by cultural changes</td>
<td></td>
</tr>
<tr>
<td>Palonen [36]</td>
<td>2015</td>
<td>Finland</td>
<td>Hospital record & surgery</td>
<td>1998–2011 (13 years)</td>
<td>General population</td>
<td>Open and arthroscopic rotator cuff repair</td>
<td>Medical exam & surgery</td>
<td>Untreated</td>
<td>Incidence: increase</td>
<td>Stratified ages</td>
<td>Medical and technical advances leading to improved access to diagnosis and surgery</td>
<td></td>
</tr>
<tr>
<td>Pekkanen [37]</td>
<td>2017</td>
<td>Finland</td>
<td>Administrative records (sickness)</td>
<td>2005–2014 (25–64 yrs.)</td>
<td>General population</td>
<td>Sickness absence due to</td>
<td>Medical exam</td>
<td>Untreated</td>
<td>Prevalence: decrease</td>
<td>Adjusted</td>
<td>Probably linked to the alleviation of the physical demands of the work and better occupational...</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Study</td>
<td>Country</td>
<td>Population</td>
<td>Health Service</td>
<td>Surveillance Method</td>
<td>Incidence</td>
<td>Prevalence</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td>------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Swinels et al. [38]</td>
<td>Belgium</td>
<td>General practitioners</td>
<td>1992-2013 (21 years)</td>
<td>network of registers</td>
<td>U shape</td>
<td>increase</td>
<td>Linked to BMI & obesity, better access to diagnosis, surgery and preventive medicine, and cultural changes (in patients and practitioners)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Yu [40]</td>
<td>UK</td>
<td>General population</td>
<td>1997-2017 (20 years)</td>
<td>medical record</td>
<td>Bell curve</td>
<td>increase</td>
<td>Cultural changes in practitioners, cohort effect among people born after the 1960s, who may be less exposed to very physically demanding occupations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yu [40] 2017 UK Medical records (primary care) 1992-2013 (21 years) General population Osteoarthritis Medical exam Incidence: Variable Prevalence: Increase Direct standardization and ACP Similar trends in obesity, a risk factor for OA, and the increased reporting of painful symptoms

Swinels et al. [38] 2020 Belgium Medical exam (primary healthcare) 1992-2013 (21 years) General practitioners (primary care) from a network of registers Incidence: U shape Prevalence: Increase Linked to BMI & obesity, better access to diagnosis, surgery and preventive medicine, and cultural changes (in patients and practitioners)