The kinetic of SARS-CoV-2 antibody (Ab) decline determines the threshold for Ab persistence up to one year

Erika Garner-Spitzer, Angelika Wagner, Michael Kundl, Hannes Stockinger, Anna Repic, Anna-Margarita Schoettla, Venugopal Gudipati, Johannes B. Huppa, Renate Kunert, Patrick Mayrhofer, Thomas R. Krell, Maria R. Farct, Eva Hoeltf, Ursula Wiedermann

1 Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
2 Center for Public Health, Medical University of Vienna, Vienna, Austria
3 Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
4 Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna
5 Global Pathogen Safety, Baxter AG, a Takeda company, Vienna, Austria
6 Health Center Erste Bank, Erste Bank, Vienna, Austria

*Correspondence:
Univ. Prof. Ursula Wiedermann, MD, PhD
Institute of Specific Prophylaxis and Tropical Medicine
Centre for Pathophysiology, Infectiology and Immunology
Medical University of Vienna
Kinderspitalgasse 15, Vienna A-1090, Austria
Email: ursula.wiedermann@meduniwien.ac.at

Abstract: Twelve subjects with positive SARS-CoV-2 neutralization test (NT) titers (>1:10) identified in a seroprevalence study with 1655 working adults were followed up for one year. Here we report that 7 of these 12 individuals (58%) still had NT titers ≥1:50, S1-specific IgG concentrations ≥50 BAU/ml and ≥26% ACE2 receptor binding inhibition, measured with surrogate virus NT one year after mild COVID infection. Furthermore, NT_50 titers >1:10 and S1-specific IgG levels >60 BAU/ml present at three months post-infection persisted at detectable levels for 1 year and correlated with circulating S1-specific memory B-cells. Vaccine-induced SARS-CoV2 immune responses decline at similar rates as those after infection; thus the describes threshold of 60 BAU/ml at three months post infection might also be relevant for assessment of Ab persistence after vaccination.

We recently reported in a longitudinal seroprevalence study conducted in a cohort of working adults (n=1655) that neutralizing SARS-CoV-2 RBD-specific antibodies (Abs) persist for at least six months independent of symptom severity (1). This study cohort was followed up to one year and twelve selected subjects with positive neutralization test (NT) titers (>1:10) after infection were analyzed in detail to assess their long-term Ab persistence, T cell reactivity and memory B cells over the course of one year. SARS-CoV-2-specific Abs were evaluated quantitatively with neutralization test (NT_50 1x) and S1 IgG ELISA (BAU/ml), and semi-quantitatively with surrogate-virus neutralization test (sVNT) (% inhibition), RBD Ab ELISA (ratio) and NCP IgG ELISA (ratio) in serum samples obtained after mild COVID infection and 3 months, 6 months and one year thereafter. On cellular level, S1-specific B memory cells were quantified by flow-cytometry and cytokines were measured in culture
supernatants of S1-protein re-stimulated PBMC (see Supporting Information). The ethics committee of the Medical University of Vienna approved this monocentric study (EK 1438/2020, EK 1746/2020).

Results:

Our results show that 7 of 12 subjects (58%) still had NT titers ≥1:50 (positive >1:10), S1-specific IgG concentrations ≥50 BAU/ml (seropositive >35.2 BAU/ml) and ≥26% binding inhibition with sVNT (cut-off 20%) after one year (Fig. 1 A-C). In all subjects RBD-specific Abs remained above the positive cut-off (ratio >1.1), while NCP-specific IgG declined below negative cut-off (ratio <0.8) between 6 months and one year (Fig. 1 D, E).

A) NT_50

B) S1-specific IgG

C) % in-vitro neutralization

D) RBD-specific Abs

E) NCP-specific IgG

F) Ab kinetics
Figure 1 A-F: Kinetics of SARS-CoV-2-specific Abs measured with different assays. A) NT_50 titers 1:x, B) S1-specific IgG in BAU/ml, C) % inhibition in sVNt, D) RBD-specific Ab ratios and E) NCP-specific IgG ratios post-infection and 3 months, 6 months and 1 year thereafter; red lines indicate positive cut-off values, negative cut-off for NCP IgG. F) GM & 95% CI of NT_50 titers, Mean & 95% CI of S1-specific IgG and % inhibition in sVNt.

Abbr.: BAU, binding antibody units; CI, confidence interval; GM, Geometric Mean; NT_50, reciprocal sample dilution resulting in 50% virus neutralization; NCP, nucleocapside protein; RBD, SARS-CoV-2 receptor binding domain; S1, SARS-CoV-2 Spike protein 1; sVNt, surrogate-virus neutralization test.

In order to define a threshold for the persistence of SARS-CoV-2-specific Abs, we correlated the results from three months and one year post-infection. Importantly, NT_50 titers >1:10 at three months after infection remained stable for one year (r=0.861, p=0.0006; Fig 2 A). Regarding S1-specific IgGs, levels >60 BAU/ml also showed robust maintenance up to one year (r=0.846, p=0.0009; Fig 2 B).

The decline kinetics of infection-induced Abs (as also known for vaccine-induced Abs) are best described by two-component models (2-5). The first component, starting after maximum Ab levels are reached a few weeks after completed vaccination or resolved symptoms, is an initial fast decline. The second component starts after a few months and is slowly declining (Fig 1 F). We applied such a model for the Abs measured with different assays, and observed a strong correlation of NT_50 titers with S1-specific IgG and sVNt results for both the fast and slow decline component (NT_50, S1 IgG: fast component: r=0.596, p=0.041; slow component: r=0.571, p=0.047; NT_50, sVNt: fast component: r=0.700, p=0.011; slow component: r=0.691, p=0.013). Decline kinetics of NCP IgG ratios were similar, while RBD-specific Ab ratios showed a different pattern with further increase up to 3 months in most subjects and then slight decline within one year.

Investigating the persistence of SARS-CoV-2 immunity on cellular level, we observed a clear positive correlation of NT_50 titers, S1-specific IgG and circulating S1-specific memory B-cells one year after infection. In contrast, S1-specific IFN-γ and IL-2 levels upon PBMC re-stimulation were higher in
subjects with lower Ab levels and fewer B memory cells, which did not apply for the NCP-specific cytokines (Table 1).

Table 1: S1-specific IgG in BAU/ml, NT_50 titers and respective percentages of B-cells, B memory cells and S1-specific B memory cells quantified by flow-cytometry for four COVID convalescent subjects and one SARS-CoV-2 naïve control. S1- and NCP-specific IL-2 and IFN-γ concentrations (in pg/ml vs. baseline) measured by Luminex technology in supernatants of re-stimulated PBMC cultures (24h).

<table>
<thead>
<tr>
<th>Subject Nr.</th>
<th>age range /years</th>
<th>gender</th>
<th>BAU/ml (1y)</th>
<th>NT_50 1:1 (1y)</th>
<th>B cells (% of lymphos)</th>
<th>B-memory cells (% of B cells)</th>
<th>% S1-specific B memory</th>
<th>S1- & NCP-specific IL-2 (pg/ml) vs. baseline</th>
<th>S1- & NCP-specific IFN-γ (pg/ml) vs. baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>45-50 m</td>
<td>54.9</td>
<td>66</td>
<td>7.1</td>
<td>25.2</td>
<td>0.30</td>
<td>34</td>
<td>31 2 17 15 7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>50-55 m</td>
<td>59.1</td>
<td>66</td>
<td>6.7</td>
<td>18.5</td>
<td>0.41</td>
<td>27</td>
<td>10 1 13 10 6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30-35 m</td>
<td>103.0</td>
<td>85</td>
<td>11.8</td>
<td>14.1</td>
<td>0.79</td>
<td>8</td>
<td>12 0 12 12 6</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>50-55 f</td>
<td>55.4</td>
<td>55</td>
<td>8.1</td>
<td>12.9</td>
<td>0.36</td>
<td>56</td>
<td>18 1 43 13 3</td>
<td></td>
</tr>
<tr>
<td>naïve</td>
<td>40-45 m</td>
<td>--</td>
<td>--</td>
<td>4.2</td>
<td>25.9</td>
<td>0.01</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Discussion:

In order to determine for how long SARS-CoV-2-specific Abs are actually maintained, this study shows that measurement of Ab levels between 3 and 6 months after infection is crucial to assess Ab persistence, which is determined by both maximal initial Ab concentrations and decline kinetics. Also, others report that SARS-CoV-2-specific immune parameters, e.g. RBD-specific Abs, their neutralizing activity and RBD-specific memory B-cells remain rather stable between 6 and 12 months after infection (6,7), but persistence has not been linked to NT_50 and S1-specific IgG decline kinetics and/or threshold.

We here propose S1-specific IgG concentrations of 60 BAU/ml three months post-infection as a potential threshold to predict maintenance of neutralizing Ab levels for one year. S1-specific IgG (in BAU) determined by ELISA are more accessible than NT assay results and might thus be more suitable for routine measurements (8). We further show that the frequency of persisting S1-specific B memory cells correlated with the level of maintained Abs in recovered subjects. A recent publication described a clear correlation between post-infection memory B cells and subsequent vaccine-induced antibody levels (9), indicating an immunological booster response originating from the previously established memory B cells.

Ab-mediated virus neutralization is not the only mechanism of protection against SARS-CoV-2 infection and T-cell immunity in convalescent COVID-19 patients has been shown to maintain for 180 days despite varying kinetics of the neutralizing Ab responses (e.g. slow/rapid waning or persistence) (10). Our data indicate that also one year after infection Abs are not necessarily accompanied by antigen-specific T cell recall responses, as more S1-specific T-cell proliferation (IL-2) was present in subjects retaining lower Ab levels.

Taken together, our data suggest that a threshold of Ab levels can be identified three months after (even) mild infection predating persistence of SARS-CoV-2 specific Ab levels up to one year. Several mathematical models show that NT titers and S1 IgG binding Abs correlate with protective vaccine efficacy as well as that vaccine-induced Abs decline at similar rates as those following infection (11).
Thus, our identified threshold might be helpful in assessing protection after vaccination, in particular as long as no valid correlate of protection has been identified in vaccine trials.

Materials & Methods:

Ab measurements:

The **SARS-CoV-2 neutralization test (NT) assay** was performed as previously described (13). **Anti-SARS-CoV-2-QuantVac-ELISA (IgG)**, **SARS-CoV-2-NeutralISA surrogate virus neutralization test (svNT)** and **SARS-CoV-2 NCP-specific IgG ELISA**, all obtained from Euroimmun®, Labordiagnostik AG (Lübeck, Germany) were carried out according to the manufacturer's instructions. **SARS-CoV-2 RBD-specific Abs** were determined with commercial ELISA for total Abs (Beijing Wantai Biological Pharmacy Enterprise, Beijing, China) according to manufacturer's instructions.

For detailed information on **SARS-CoV-2-specific Ab detection, quantification of S1-specific B memory cells, S1-specific re-stimulation of PBMC and cytokine measurements** see Supplementary Information.

Author contributions:

UW, HS, AW, EH, TRK, and EGS designed research; EGS, AR, AS and MRF performed research; VG, JBH, RK and PM contributed new analytic tools; EGS and MK analyzed data; and EGS, MK and UW wrote the paper.

Acknowledgements:

We would like to thank Sylvia Rudolf and Clemens Burtscher, MD (both Health Center Erste Bank, Erste Bank, Vienna, Austria), as well as Ines Zзвезды (BSc), Maria Oriola (MSc), Santino Posch, all associated with the Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, and Vanessa Maurer (BSc), Tatjana Matschi (BSc), Karin Schoiswohl (BSc), Barbara Schaar (BSc) and Andrea Wendl (BSc), all associated with the Institute for Hygiene and Applied Immunology, Medical University of Vienna, for their excellent administrative and technical support.

SARS-CoV-2 was sourced via EVAg (supported by the European Community) and kindly provided by Christian Drosten and Victor Corman (Charité Universitätsmedizin, Institute of Virology, Berlin, Germany).

The study received funding from the Austrian Federal Ministry of Education, Science and Research within the research framework in relation to the coronavirus disease 2019 pandemic (GZ 20200225 104).
References:

