The immunogenetics of viral antigen response is associated with sub-type specific glioma risk and survival

Geno Guerra¹, Linda Kachuri², George Wendt¹, Helen M. Hansen¹, Steven J. Mack³, Annette M. Molinaro¹,², Terri Rice¹, Paige Bracci², John K. Wiencke¹,²,⁴, Nori Kasahara¹,⁷ Jeanette E Eckel-Passow⁵, Robert B. Jenkins⁶, Margaret Wrensch¹,⁴, Stephen S. Francis¹,²,⁷

1. Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
2. Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
3. Department of Pediatrics, University of California, San Francisco, Oakland, California, USA
4. Institute of Human Genetics, University of California San Francisco, San Francisco, California
5. Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
6. Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
7. Weill Institute for Neurosciences, University of California San Francisco, San Francisco, USA

Running title
Immunogenetics of viral antigen response and glioma

Corresponding author
Stephen S. Francis
1450 Third St
San Francisco, CA 94158
stephen.francis@ucsf.edu

Conflict of Interest
None

Authorship
GG, LK, and SSF conceived of the study and wrote main drafts of the manuscript. GG, LK, GW, SJM, NK, and SSF conducted and advised on informatic and statistical analyses along with result interpretations. HMH, AMM, TR, PB, JKW, JEE, RBJ, and MW were involved in primary data collection. All authors contributed and reviewed the final manuscript.

Manuscript word count
6410 words

Funding
Work at University of California, San Francisco was supported by the National Institutes of Health (grant numbers T32CA151022, R01CA52689, P50CA097257, R01CA126831, R01CA139020, R01AI128775, and R25CA112355), the National Brain Tumor Foundation, the Stanley D. Lewis

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
and Virginia S. Lewis Endowed Chair in Brain Tumor Research, the Robert Magnin Newman Endowed Chair in Neuro-oncology, and by donations from families and friends of John Berardi, Helen Glaser, Elvera Olsen, Raymond E. Cooper, and William Martinusen.

This publication was supported by the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, through UCSF-CTSI Grant Number UL1 RR024131. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

The collection of cancer incidence data used in this study was supported by the California Department of Public Health pursuant to California Health and Safety Code Section 103885; Centers for Disease Control and Prevention’s (CDC) National Program of Cancer Registries, under cooperative agreement 5NU58DP006344; the National Cancer Institute’s Surveillance, Epidemiology and End Results Program under contract HHSN261201800032I awarded to the University of California, San Francisco, contract HHSN261201800015I awarded to the University of Southern California, and contract HHSN261201800009I awarded to the Public Health Institute, Cancer Registry of Greater California. The ideas and opinions expressed herein are those of the author(s) and do not necessarily reflect the opinions of the State of California, Department of Public Health, the National Cancer Institute, and the Centers for Disease Control and Prevention or their Contractors and Subcontractors.
Abstract

Background

Multiple studies have implicated infections in glioma susceptibility, but the evidence remains inconsistent. Genetic variants in the human leukocyte antigen (HLA) region modulate host response to infection and have been linked to glioma risk. In this study we leveraged genetic predictors of antibody response to 10 viral antigens to investigate the relationship and glioma risk and survival.

Methods

Genetic reactivity scores (GRS) for each antigen were derived from genome-wide significant (p<5×10^{-8}) variants associated with immunoglobulin G antibody response in the UK Biobank cohort. We conducted parallel analyses of glioma risk and survival for each GRS and HLA alleles imputed at two-field resolution using data from 3418 glioma patients and 8156 controls.

Results

Genetic reactivity scores to Epstein-Barr virus (EBV) ZEBRA and EBNA antigens and Merkel cell polyomavirus (MCV) VP1 antigen were suggestively associated with glioma risk and survival (unadjusted p<0.05). GRS_{ZEBRA} and GRS_{MCV} were associated in opposite directions with risk of IDH wild type gliomas (Odds ratio OR_{ZEBRA}=0.91, p=0.007 / OR_{MCV}=1.11, p=0.005). GRS_{EBNA} was associated with both increased risk for IDH mutated gliomas (OR=1.09, p=0.04) and improved survival (Hazard ratio HR=0.86, p=0.01). HLA-DQA1*03:01 was significantly associated with decreased risk of glioma overall (OR=0.85, p=3.96x10^{-8}) after multiple testing adjustment.

Conclusion

This first systematic investigation of the role of genetic determinants of viral antigen reactivity in glioma risk and survival provides insight into complex immunogenomic mechanisms of glioma pathogenesis. These results may also inform applications of antiviral based therapies in the treatment of glioma.
Keywords

Glioma, human leukocyte antigen, Epstein-Barr virus, Merkel cell polyomavirus, polygenic risk score

Key points

- Genetically predicted response to 3 viral antigens had associations with risk and survival of glioma
- \textit{HLA-DQA1*03:01} is a possible shared genetic mechanism of response to EBV ZEBRA and IDH-WT glioma

Importance of the Study

Several clinical trials have suggested a prognostic benefit to antiviral medications in glioma treatment, although the exact mechanisms at play are unknown. Many studies have explored the link between various viruses and glioma. This is the first study to explore the association between genetic determinants of viral antigen response and both glioma risk and survival. The ideas and results presented here may help to detangle decades of viral-glioma associations and guide research to other viral therapies to improve glioma prognosis.
Introduction

Studies linking viruses and cancer date back over 100 years and laid the foundation for understanding oncogenes. It has also become increasingly clear, as well evidenced by the current pandemic, that host genetics play an important role in response to viruses. To date, seven viruses have been accepted to be tumor-initiating in humans. These include Epstein-Barr virus (EBV), hepatitis B virus (HBV), human papillomavirus (HPV), human T-lymphotropic virus-1 (HTLV-1), hepatitis C (HCV), Kaposi’s sarcoma herpesvirus (HHV-8) and Merkel cell polyomavirus (MCV). Recent analyses have shown that infections account for ~13% of human cancers worldwide. However, viruses have not been definitively implicated in the etiology of glioma despite decades of suggestive associations.

As first suggested by Wrensch et al. (1997) and later replicated in more extensive analyses within the Glioma International Case-Control Study (GICC), a history of previous infection with Varicella zoster virus (VZV) is inversely associated with glioma susceptibility. VZV has been the only infectious agent consistently linked to adult glioma, conferring an approximately 20% decrease in risk. A suite of other viruses have been associated with both the risk and grade of glioma, including EBV, MCV, John Cunningham virus (JCV), BK virus (BKV), human Cytomegalovirus (CMV) and human herpesvirus-6 (HHV-6), but with discordant results.

Recently, several studies/clinical trials have suggested a prognostic benefit of antiviral medications in the treatment of glioma. A retrospective study of the treatment of patients with newly diagnosed glioblastoma with valganciclovir in addition to standard care of therapy demonstrated significantly improved survival times when compared to standard of care alone. The actual mechanistic effect of this association is unknown, yet CMV and potentially other herpesviruses as oncomodulators have been hypothesized.

Genetic host response to viral infection could play a role in elucidating potential links between viruses and glioma incidence and prognosis. The adaptive immune system is involved in both the regulation of viral infection and tumor surveillance; it is also exceedingly diverse between individuals. Studies have demonstrated significant heritable components (32-48%) of antibody response to many viruses and have identified genetic loci within the host in genes related to cell entry, cytokine production, and immune response. Genetic variants of the class I and II human
leukocyte antigen (HLA) genes contribute the most important identified components of genetic determinants of response to viral antigens. Class II genes each encode half of a heterodimeric class II HLA protein, which presents extra-cellularly-derived peptides to CD4+ helper T-cells. The immune response is triggered when a CD4+ T-cell recognizes the combination of a class II HLA protein and its bound peptide. It is well studied that CD4+ T-cells have an important role in creating and sustaining effective anti-tumor immunity.

The HLA region of the genome is considered the most polymorphic region of the human genetic system. HLA region polymorphisms have been shown to alter the risk and progression of disease in a variety of autoimmune (notably HLA class II) and malignant conditions. A 2001 study presented suggestive evidence of associations between presence/absence of single HLA antigens and astrocytic glioma in a small (n_case = 65) case control study. Altered expression levels of various non-classical (non-antigen presenting) HLA genes have also been previously associated with glioma and multigene HLA haplotypes have been suggestively implicated as having non-additive effects on glioma risk, but no germline variants within the HLA have been directly identified as risk loci in a glioma GWAS.

In this study we leveraged previously published genome-wide SNP associations with viral antibody response to generate genetically inferred antigen reactivity profiles and evaluated their association with risk and survival by major glioma subtypes. We further conducted imputed HLA gene association analysis with glioma risk and survival and our findings suggest a convergence of genetic mechanisms regulating host immune response to viral challenge and glioma development and progression.

Methods

Study Populations

We analyzed three glioma case-control sets assembled based on genotyping platform and study population for a total sample size of 3418 cases and 8156 controls (Figure 1, Table 1). The first set included 1973 cases from the Mayo Clinic and University of California, San Francisco (UCSF) Adult Glioma Study and 1859 controls from the Glioma International Case-Control Study (GICC) who were genotyped on the Illumina OncoArray, as previously described. The second dataset...
included 659 cases and 586 controls from the UCSF Adult Glioma study genotyped on the Illumina HumanHap370duo panel. The third dataset included 786 glioma cases from The Cancer Genome Atlas (TCGA) with available molecular data genotyped on the Affymetrix 6.0 array. Cancer-free controls were assembled from two Wellcome Trust Case Control Consortium (WTCCC) studies genotyped using the Affymetrix 6.0 array: 2,917 controls from the 1958 British Birth cohort and 2,794 controls from the UK Blood Service control group. Molecular subtype information (IDH mutation and 1p/19q codeletion status) was downloaded from Ceccarelli et al. supplementary table 1 for the third dataset and was provided directly from the UCSF AGS study and Mayo Clinic for the first and second datasets.

Quality Control and Imputation

Standard quality control procedures were implemented prior to imputation. Analyses were restricted to individuals of predominantly (>70%) European ancestry, determined using ADMIXTURE and the HapMap 3 reference populations. Within each ancestral group, we removed samples with excess heterozygosity (>3 standard deviations (SD) from mean), <95% call rates, and discordant self-reported and genetically inferred sex. Relatedness checks were performed within each study using KING (kinship >0.12), filtering out up to second-degree relations and retaining the samples with higher call rate. TCGA blood samples were preferentially chosen when both blood and tumor sequencing data were available for the same patient (693 European samples had both blood and tumor samples available). SNPs with <95% call rate were removed, along with variants deviating from Hardy-Weinberg equilibrium (p<10^{-6}) or at a low minor allele frequency (MAF<0.005). Samples genotyped on the same platform (i.e., Affymetrix 6.0 for TCGA and WTCCC) were imputed together using the multi-ethnic TOPMed reference panel (ver. r2).

Statistical Analysis

Genetically Predicted Viral Antigen Response

Genetic seroreactivity scores (GRS) were calculated to obtain genetically inferred viral antigen response profiles in each of the glioma datasets. For each GRS, candidate variants and corresponding effect sizes were obtained from genome-wide summary statistics for seroreactivity
to 10 viral antigens previously identified in Kachuri and Francis et al. 202032 in 7895 randomly selected individuals of European descent from the UK Biobank (UKB) cohort which has serological measures. For each antigen we preferentially selected independent SNPs (linkage disequilibrium, LD, $r^2 < 0.01$ within 500kb) with the lowest p-value among genome-wide significant variants ($p<5\times10^{-8}$). LD proxies ($r^2 > 0.9$) were obtained for variants unavailable in the target glioma datasets. For each individual, an antigen-specific GRS was calculated as a weighted sum with weights (β) corresponding to a standard deviation increase in antibody response:

$$GRS_{\text{Antigen}} = \beta_1 \times \text{SNP}_1 + \ldots + \beta_k \times \text{SNP}_k$$

Each GRS was calculated using a minimum of 3 variants with MAF ≥ 0.01 and imputation quality ($R^2 > 0.3$). The resulting scores were standardized within each study separately to have mean=0 and SD=1.

Antigen GRS Associations with Glioma Susceptibility

GRS associations with disease risk were examined for glioma overall and for molecular subtypes defined by the specific tumor alterations: IDH mutation status, 1p/19q codeletion, and $TERT$ promoter mutations. For each GRS, odds ratios (OR) were estimated using logistic regression models adjusted for age, sex, and the first 10 genetic ancestry principal components (PCs). Models in the UCSF-Mayo dataset were further adjusted for contributing site. Adjustment for age was not possible in TCGA-WTCCC as all controls from the 1958 British Birth Cohort (n=2,917) were of the same age. GRS associations from each study were meta-analyzed using the fixed-effects inverse-variance method implemented in the R package, metafor (v2.4). Heterogeneity in study-specific GRS associations was assessed using Cochran’s Q test.

Antigen GRS Associations with Glioma Survival

The association between each antigen GRS and overall survival was assessed using a Cox proportional hazards regression model with follow-up time calculated from the date of first surgery to either date of death or date of last known contact. The latter were censored at that date. Analyses were conducted for glioma overall and molecular subtypes with a minimum of 50 cases and 20 events (deaths). Proportionality assumptions were checked within each dataset via examination of Kaplan-Meier curves. Hazard ratios (HR) were estimated using Cox models adjusted for age, sex, the top 10 genetic ancestry PCs, and study site (if applicable). Associations
with survival in each study were combined using fixed-effects meta-analysis. For each statistically significant (p<0.05) glioma-GRS association, survival differences were further assessed using Kaplan-Meier analysis by comparing mortality trajectories in patients with high genetically predicted immune reactivity (top 20% of the GRS distribution) to the remainder.

Regional HLA Analyses of glioma risk and survival

Classical HLA alleles were imputed for samples in all cohorts at 2-field resolution using SNP2HLA\(^41\) and the Type 1 Diabetes Genetics Consortium (T1DGC) reference panel of 2,767 unrelated individuals. Associations were tested for 77 alleles (MAF>=0.01) with imputation quality >0.3 across eight genes: HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRB1.

Subtype-specific associations with risk were estimated using logistic regression models with the same set of covariates as in the GRS analysis. HLA allele associations with mortality were assessed using SPACox\(^42\), an extension of the Cox model with improved type I error control in high-dimensional settings. Study-specific risk and survival associations were combined in a meta-analysis. Associations for each HLA allele were considered statistically significant if p<6.5x10\(^{-4}\) based on a Bonferroni correction for 77 alleles tested.

Results

The creation of a GRS was attempted for all antigens with genome-wide significant seroreactivity-associated variants (p<5x10\(^{-8}\)) as reported in Kachuri and Francis et al. 2020\(^32\). This included 10 antigens: Four EBV antigens (EA-D, EBNA, p18, ZEBRA) and antigens for BKV, HHV7, HSV1, JCV, MCV, and VZV. We did not include antigens for CMV and HHV6 in our study as there were an insufficient (<3) number of significantly associated SNPs in the previously published GWAS. An antigen-specific GRS was considered successfully created if at least three independent SNPs passed LD clumping and thresholding and were present (or able to be replaced via proxy SNP) in the three glioma study datasets. GRS were successfully generated for EBV EA-D, EBV EBNA, EBV p18, EBV ZEBRA, and MCV. Only one independent SNP remained for each of HSV1, BKV and VZV after LD clumping, although having numerous SNPs meet genome-wide significance in the previous seroreactivity study. Three SNPs remained for both JCV and HHV7, but an insufficient amount overlapped with SNPs in our three glioma datasets, and we were unable to
find appropriate proxy SNPs (SNP $r^2>0.9$). Complete information of variants included in each GRS, including nearest gene, and corresponding risk associations with glioma are reported in Supplementary Table S1.

The variants included in each GRS were overwhelmingly located in the HLA region, with only a few predictors located elsewhere across the genome: rs67886110 in 3q25.1 an eQTL for MED12L and P2RY12 (EBV EBNA), rs7618405 in 3p24.3 (MCV), and rs7444313 in 5q31.2 near TMEM173 (MCV). Of the 38 SNPs included across the 5 GRSs, 2 had a significant association (Bonferroni-corrected $p<1.3\times10^{-3}$) with overall glioma risk: rs9265517 in HLA-B (EBV EBNA), $p=3.08\times10^{-4}$ and rs926847 in HLA-DRB9 (MCV), $p=2.9\times10^{-4}$. The EBV EBNA SNP was more strongly associated (based on p-values) with IDH mutated glioma patients versus controls ($p=2.56\times10^{-4}$) compared to IDH wild type patients versus controls ($p=3.1\times10^{-3}$).

Figure 2 shows the correlation of predicted antigen responses (GRSs) as measured in the UCSF-Mayo cases and controls. Most notably, the GRS for MCV was inversely correlated with GRSs for EBV ZEBRA (Pearson's $r = -0.28$, $p = 3.9\times10^{-70}$) and EBV EBNA ($r = -0.19$, $p = 6.28\times10^{-31}$).

Viral antigen GRS associations with glioma risk

In the combined meta-analysis of three case-control studies we identified nominally significant ($p<0.05$) associations for three antigen-specific GRSs (**Figure 3**). Genetic predisposition to an increased serological response to EBV ZEBRA was inversely associated with risk of glioma overall (per 1 SD increase in GRS: Odds Ratio, $\text{OR}_{\text{ZEBRA}}=0.94$, 95% confidence interval, CI = 0.89-0.99, $p=0.01$, 3418 cases). The remaining GRS associations were subtype-specific. GRS_{EBNA} was associated with an increased risk of IDH mutated gliomas (OR_{EBNA}=1.09,1.004-1.18, $p=0.04$, 1074 cases) and the magnitude of this effect increased for IDH mutated 1p/19q codeleted gliomas (OR_{EBNA} =1.14, 1.012-1.28, $p=0.031$, 396 cases). No other statistically significant associations with risk in IDH mutated gliomas were found.

We observed some evidence of antagonistic pleiotropy between genetic determinants of antibody response to EBV ZEBRA and MCV, which generalized across glioma subtypes. GRS_{ZEBRA} and GRS_{MCV} were associated with susceptibility to IDH wild type gliomas, but in opposite directions: Higher genetically predicted reactivity to EBV ZEBRA was inversely associated with glioma risk (OR_{ZEBRA}=0.91, 0.85-0.98, $p=0.007$, 1479 cases), while increased predicted antibody response to
MCV conferred an increased risk (ORMCV=1.09, 1.02-1.17, p=0.013). This pattern persisted for IDH wild type 1p/19q non-codeleted gliomas (ORZEBRA=0.91, 0.84-0.9, p=0.01; ORMCV=1.11, 1.03-1.19, p=0.005, 1280 cases). The correlation between GRSZEBRA and GRSMCV (Pearson’s r=-0.28, p=3.9x10^{-70} in UCSF-Mayo, Figure 2) suggests a possible shared underlying genetic mechanism between the response to the two antigens.

Viral antigen GRS-survival associations

The number of available cases and events (deaths) across the three studies is available in Supplementary table S5. Associations between genetically predicted viral antigen response profiles and survival were primarily restricted to IDH mutated gliomas (Figure 4). We did not detect any significant GRS associations in the analysis of glioma overall, which is consistent with the strong prognostic significance of molecular glioma subtypes. GRS_{EBNA} was associated with survival in 1074 IDH mutated glioma cases (per 1 SD increase: Hazard Ratio, HR=0.86, 0.76-0.96, p=0.01, 325 events), suggesting that a higher genetically predicted reactivity to EBV EBNA improved duration of survival.

GRS for two EBV antigens were associated with survival amongst 244 IDH mutated 1p/19q codeleted glioma cases, but in opposite directions (HREBNA=0.75, 0.57-0.998 p=0.048 / HRZEBRA=1.27,1.01-1.6, p=0.0415, 64 events). This subtype-specific result was limited to the UCSF-Mayo dataset due to insufficient number of reported events (deaths) in IDH mutated 1p/19q codeleted glioma cases from TCGA and AGS-i370.

GRS_{EBNA} was also associated with improved survival outcomes in 614 IDH mutated 1p/19q non-codeleted glioma cases (HR=0.75, 0.74=0.997, p=0.045, 222 events), suggesting the association of GRS_{EBNA} is independent of 1p/19q status. Figure 5 visualizes the suggestively significant GRS_{EBNA} associations using survival curves.

Meta-analysis GRS-subtype associations where Cochran’s Q was significant (p<0.05), indicating potentially heterogeneous GRS-glioma associations across studies, were reanalyzed using a random-effects meta-analysis. The reanalysis did not change our reported significant results. Interestingly, the heterogeneity was generally between UCSF-Mayo and AGS-i370 cases.

HLA allele-glioma associations
Of the 77 HLA alleles imputed at two field resolution, only HLA-DQA1*03:01 reached Bonferroni-corrected significance (Bonferroni corrected $p<6.5\times10^{-4}$) for association with glioma risk in a meta-analysis. The presence of an HLA-DQA1*03:01 allele was associated with a decrease in overall glioma risk (OR=0.85, $p=3.96\times10^{-4}$). This allele was also nominally associated ($p<0.05$) with risk of IDH wild type (OR=0.82, $p=1.4\times10^{-3}$) and IDH wild type 1p/19q non-codeleted gliomas (OR=0.81, $p=2.6\times10^{-3}$). These subtype-specific associations and direction of effect mirror those of GRS$_{\text{ZEBRA}}$ presented above, suggesting HLA-DQA1*03:01 as a potential shared marker for both glioma risk and EBV ZEBRA seroreactivity. Results of all HLA allele (one and two field resolution) associations with glioma risk tested in a meta-analysis are available in Supplementary Table S2.

Discussion

In this study, we conducted a systematic investigation of genetically predicted antibody response to ten viral antigens, representing seven distinct viruses in relation to glioma risk and prognosis in a meta-analysis of three patient cohorts with molecular subtype information. We discovered evidence that genetic predisposition to both increased and decreased reactivity to specific viral antigens influences susceptibility to glioma in a subtype-specific manner. This pattern of effect modification by glioma subtype also extends into prognosis where we observed specific viral antigen GRSs associated with survival. Although the GRS-glioma association results presented here are only suggestively significant ($p<0.05$) and do not remain significant after adjusting for multiple testing (Bonferroni corrected $p<1.67\times10^{-3}$), the associations drawn in this study are intriguing and the GRSs created here could be applied to previous studies of infections and glioma risk, with the hypothesis that differing results between studies may be partially due to individual differences in genetic factors that affect antigen reactivity.

Epstein-Barr virus was the first recognized human oncovirus43 and exists in two distinct life cycles within a host: a lytic phase of active infection where new viruses are produced, and a latent phase where the virus remains dormant to avoid detection by the host. Distinct sets of antigens are produced during these two phases, two of such are EBNA, during the latent phase of infection, and the ZEBRA (BamHI Z Epstein-Barr virus replication activator) protein which initiates a change from latent to lytic gene expression. Past evidence suggests processes during the latent stage are responsible for the virus’ oncogenic properties via mechanisms promoting cell growth.

It is made available under a CC-BY-NC-ND 4.0 International license.

Preprint doi: https://doi.org/10.1101/2021.09.13.21263349; this version posted September 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
and preventing cell apoptosis (reviewed in Akhtar et al. 2018⁴⁴). Recent work has also implicated the ZEBRA protein as oncogenic with evidence demonstrating its ability to deregulate immune surveillance and promote immune escape⁴⁵.

In contrast MCV is the most recently recognized human oncovirus, first described in 2008 and later accepted as a causal agent for Merkel cell carcinoma⁴⁶, a neuroendocrine carcinoma. Previous studies have identified the presence of MCV DNA in glioma patients and have drawn an association with infection and increased risk of glioma⁴⁴,²⁻¹⁵. It has been shown that both the large T and small T antigens of MCV are oncoproteins that target tumor suppressor proteins such as pRB (protein retinoblastoma). Although the exact latency mechanism in polyomaviruses is unknown, it has been suggested that complex protein-mediated latency may be critical to the MCV lifecycle⁴⁷.

One of our main findings is that genetic predisposition to increased seroreactivity to EBV ZEBRA was associated with a decreased overall glioma risk, with a significant decrease in IDH wild type subtypes. Predicted reactivity to the MCV VP1 antigen mirrored the same IDH wild type associations but in the opposite direction, where higher reactivity was associated with increased glioma risk. The significant inverse relationship between predicted reactivity to EBV ZEBRA and MCV VP1 highlights the possibility of shared genetic components of antibody response to the two antigens. Understanding the underlying mechanisms guided by these genetics is left as an open question. A possible link is that the class II HLA allele DQA1*03:01 was associated with decreased glioma risk in the same subtypes associated with GRSs for EBV ZEBRA. In our previous UK Biobank analysis³² the presence of HLA-DQA1*03:01 was positively associated with EBV ZEBRA seroreactivity measurements (β=0.168, p=1.3×10⁻¹⁶). Taken together, the associations between HLA-DQA1*03:01, EBV ZEBRA and glioma risk suggest possible shared underlying immunogenetic architecture. As HLA class II proteins present potentially antigenic peptides, functional genetic alterations can result in changes to the binding affinity of specific antigens, modulating the potential for recognition by CD4+ helper T-cells. It is possible that the heterodimeric DQ proteins half-encoded by DQA1*03:01 have improved binding or recognition of peptides presented by EBV ZEBRA proteins and glioma (specifically IDH WT), allowing for an increased immune response in both cases. As IDH wild type has generally been shown to serve as a marker for more severe glioma cases, the exact somatic tumor alterations leading to recognized peptide variants in these tumors is not clear and is an area that warrants future
investigation. Further analysis of viral-tumor protein homology is needed to understand if this could be a possible connection.

Interestingly, a higher genetically predicted response to EBV EBNA was nominally associated with increased risk in IDH mutated/1p/19q codeleted gliomas. Still, reactivity towards EBV EBNA was more strongly associated with improved survival in IDH mutated gliomas. This discrepancy between the disease-promoting and pro-survival associations of GRS_{EBNA} may suggest the presence of different biologic pathways after initiation of disease. It may also point towards EBV latency-mediated treatment effects. Previous studies show that the EBV latency type predicts the relative amount of induced reactivation generated by cytotoxic chemotherapy drugs{{48}}. Therefore, individuals who react strongly to EBV EBNA antigens may exhibit a different pattern of reactivation when treated with temozolomide. Further research is required to elucidate this putative association, yet it is clear that EBV lytic/latent cycling is a critical aspect of other germline interactions and disease risk.

The shared genetic architecture between the viruses studied here, as seen in the correlations in Figure 2, may result in a lack of specificity. This limitation in our study may be occurring in other viruses that share the same underlying genetic programming of antigen response. Specifically, this may be happening with VZV which is associated with a unique pattern of LD spanning a large region of the HLA{{32}} as described in Kachuri and Francis et al. 2020.

Additionally, the instrument of choice, a GRS, has its limitations. We could not study the relationship between reactivity to multiple antigens (BKV, HSV-1, JCV, VZV, HHV-7, HHV-6, CMV) although seroreactivity measurements were available in the UK Biobank due to the limited or no genome-wide associations detected for these phenotypes in Kachuri and Francis et al. 2020. Furthermore, the clumping and thresholding approach to GRS development may not be optimal for regions with complex LD structure, such as HLA. An approach that can appropriately account for the long-range correlation structure and capture non-linear interactions, such as haplotype effects, may improve future studies that use genetically inferred immune responses. Another major limitation is the relatively low SNP density in the HLA region in both the present study and the UKB analysis used to develop the GRS. The HLA region is highly polymorphic and imputation of alleles from SNP data is limiting and prone to error. Additional studies leveraging HLA sequencing approaches are required to provide further granularity of the genetic determinants of antigen response and glioma risk/survival.
This is the first study that directly examines the underlying genetic architecture of antigen reactivity to common viruses and glioma risk and survival. We observed important associations between programmed reactivity to viruses and glioma etiology and prognosis. This methodology offers a unique approach for future studies to reinvestigate long-running epidemiologic associations and possibly clarify effects of viral therapies in the treatment of glioma.

Data Availability

Genotype data of control samples from the 1958 British Birth Cohort and UK Blood Service Control Group were made available from the Wellcome Trust Case Control Consortium (WTCCC) and downloaded from the European Genotype Archive under ascension numbers EGAD00000000021 and EGAD00000000023, respectively. Genotype data of glioma cases from The Cancer Genome Atlas (TCGA) were obtained from Database of Genotypes and Phenotypes (dbGaP) (phs000178). Genotype data of control samples from the Glioma International Case Control Study (GICC) are available from dbGaP under accession phs001319.v1.p1.
References

<table>
<thead>
<tr>
<th>IDH mutation status</th>
<th>UCSF-Mayo Cases</th>
<th>GICC Controls</th>
<th>AGS i370 Cases</th>
<th>AGS i370 Controls</th>
<th>TCGA Cases</th>
<th>WTCCC Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutant</td>
<td>588 (30%)</td>
<td>NA</td>
<td>111 (17%)</td>
<td>NA</td>
<td>375 (48%)</td>
<td>NA</td>
</tr>
<tr>
<td>Wild type</td>
<td>699 (35%)</td>
<td>NA</td>
<td>416 (63%)</td>
<td>NA</td>
<td>364 (46%)</td>
<td>NA</td>
</tr>
<tr>
<td>Missing</td>
<td>686 (35%)</td>
<td>NA</td>
<td>132 (20%)</td>
<td>NA</td>
<td>47 (6%)</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Molecular subtype based on IDH mutation and 1p/19q codeletion</th>
<th>UCSF-Mayo Cases</th>
<th>GICC Controls</th>
<th>AGS i370 Cases</th>
<th>AGS i370 Controls</th>
<th>TCGA Cases</th>
<th>WTCCC Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-codel</td>
<td>244 (12%)</td>
<td>NA</td>
<td>9 (1%)</td>
<td>NA</td>
<td>143 (18%)</td>
<td>NA</td>
</tr>
<tr>
<td>MT-noncodel</td>
<td>291 (15%)</td>
<td>NA</td>
<td>94 (14%)</td>
<td>NA</td>
<td>230 (29%)</td>
<td>NA</td>
</tr>
<tr>
<td>WT-noncodel</td>
<td>507 (26%)</td>
<td>NA</td>
<td>416 (63%)</td>
<td>NA</td>
<td>357 (46%)</td>
<td>NA</td>
</tr>
<tr>
<td>Missing/other</td>
<td>905 (47%)</td>
<td>NA</td>
<td>140 (22%)</td>
<td>NA</td>
<td>56 (7%)</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA: not applicable to controls
Datasets from three glioma cohorts with available molecular subtyping (Uetrosf-AGS, Mayo clinic and TCGA) were paired with controls on appropriately matched genotyping platforms. The three resulting studies were processed through quality controls as described in methods and imputed using the TOPMed imputation server. SNP2HLA was used to impute HLA alleles from SNP data. Risk and survival analysis were performed separately on each study's imputed HLA alleles, on multiple glioma molecular subtypes, and a fixed-effects meta analysis was performed to aggregate results. Separately, genetic reactivity scores to 5 viral antigens were created using previously published GWAS data. Cases and controls across the 3 studies were then assessed a genetically predicted antibody reactivity score (GRS) to each of the 5 antigens. Risk and survival analysis were performed separately on each study using each GRS score as a predictor, with results aggregated using a fixed effects meta analysis for each subset of glioma patients and controls based on molecular subtype.
Figure 2: GRS correlations within the UCSF-Mayo cases and controls

Pearson correlations between genetically predicted antigen responses (via GRS) as computed in the UCSF-Mayo glioma cases and controls. Values were printed in each block if and only if the associated correlation test p-value was less than 0.01.
Figure 3: Nominal GRS-glioma subtype risk association meta-analysis forest plots

<table>
<thead>
<tr>
<th>GRS EBV-ZEBRA</th>
<th>Odds Ratio</th>
<th>OR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glioma Overall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGS–i370</td>
<td></td>
<td>0.97 [0.87, 1.09]</td>
</tr>
<tr>
<td>UCSF–Mayo</td>
<td></td>
<td>0.94 [0.87, 1.01]</td>
</tr>
<tr>
<td>TCGA–WTCCC</td>
<td></td>
<td>0.91 [0.83, 1.00]</td>
</tr>
<tr>
<td>FE Model (Q = 0.85, p = 0.65)</td>
<td></td>
<td>0.94 [0.89, 0.99]</td>
</tr>
<tr>
<td>IDH wild type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGS–i370</td>
<td></td>
<td>0.90 [0.79, 1.03]</td>
</tr>
<tr>
<td>UCSF–Mayo</td>
<td></td>
<td>0.92 [0.82, 1.02]</td>
</tr>
<tr>
<td>TCGA–WTCCC</td>
<td></td>
<td>0.91 [0.80, 1.02]</td>
</tr>
<tr>
<td>FE Model (Q = 0.05, p = 0.97)</td>
<td></td>
<td>0.91 [0.85, 0.97]</td>
</tr>
<tr>
<td>IDH wild type 1p/19q non-codel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGS–i370</td>
<td></td>
<td>0.90 [0.79, 1.03]</td>
</tr>
<tr>
<td>UCSF–Mayo</td>
<td></td>
<td>0.92 [0.81, 1.04]</td>
</tr>
<tr>
<td>TCGA–WTCCC</td>
<td></td>
<td>0.90 [0.80, 1.02]</td>
</tr>
<tr>
<td>FE Model (Q = 0.04, p = 0.98)</td>
<td></td>
<td>0.91 [0.84, 0.98]</td>
</tr>
<tr>
<td>GRS MCV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDH wild type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGS–i370</td>
<td></td>
<td>1.10 [0.96, 1.25]</td>
</tr>
<tr>
<td>UCSF–Mayo</td>
<td></td>
<td>1.06 [0.95, 1.17]</td>
</tr>
<tr>
<td>TCGA–WTCCC</td>
<td></td>
<td>1.13 [1.00, 1.28]</td>
</tr>
<tr>
<td>FE Model (Q = 0.80, p = 0.67)</td>
<td></td>
<td>1.09 [1.02, 1.17]</td>
</tr>
<tr>
<td>IDH wild type 1p/19q non-codel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGS–i370</td>
<td></td>
<td>1.10 [0.96, 1.25]</td>
</tr>
<tr>
<td>UCSF–Mayo</td>
<td></td>
<td>1.10 [0.97, 1.24]</td>
</tr>
<tr>
<td>TCGA–WTCCC</td>
<td></td>
<td>1.13 [1.00, 1.28]</td>
</tr>
<tr>
<td>FE Model (Q = 0.20, p = 0.91)</td>
<td></td>
<td>1.11 [1.03, 1.19]</td>
</tr>
<tr>
<td>GRS EBV-EBNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDH mutated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGS–i370</td>
<td></td>
<td>1.06 [0.85, 1.32]</td>
</tr>
<tr>
<td>UCSF–Mayo</td>
<td></td>
<td>1.00 [0.88, 1.13]</td>
</tr>
<tr>
<td>TCGA–WTCCC</td>
<td></td>
<td>1.18 [1.05, 1.33]</td>
</tr>
<tr>
<td>FE Model (Q = 2.79, p = 0.25)</td>
<td></td>
<td>1.09 [1.00, 1.17]</td>
</tr>
<tr>
<td>IDH mutated 1p/19q codeleted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGS–i370</td>
<td></td>
<td>0.88 [0.41, 1.88]</td>
</tr>
<tr>
<td>UCSF–Mayo</td>
<td></td>
<td>1.06 [0.90, 1.24]</td>
</tr>
<tr>
<td>TCGA–WTCCC</td>
<td></td>
<td>1.27 [1.06, 1.53]</td>
</tr>
<tr>
<td>FE Model (Q = 0.04, p = 0.98)</td>
<td></td>
<td>1.14 [1.01, 1.28]</td>
</tr>
</tbody>
</table>
Forest plot meta-analysis results of GRS-glioma risk associations which were nominally statistically significant (unadjusted p <0.05). Response to antigens EBV ZEBRA, MCV and EBV EBNA had associations which reached this threshold. Results are reported as odds ratios, along with 95% confidence intervals. Briefly, each header indicates the studied viral antigen GRS, within are its association with molecular glioma subtypes reported with p<0.05, and the 95% confidence interval of each study-specific effect. The diamond visualizes the 95% confidence interval for the fixed effect (FE) meta-analysis across all 3 studies. Each meta-analysis was tested for between-study heterogeneity (Q statistic), with p<0.05 indicating evidence of study-specific associations.
Figure 4: Nominal GRS-glioma subtype survival association meta-analysis forest plots

<table>
<thead>
<tr>
<th>GRS EBV-EBNA</th>
<th>Hazard Ratio</th>
<th>HR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDH mutated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGS–i370</td>
<td></td>
<td>0.97 [0.76, 1.23]</td>
</tr>
<tr>
<td>UCSF–Mayo</td>
<td></td>
<td>0.82 [0.70, 0.95]</td>
</tr>
<tr>
<td>TCGA</td>
<td></td>
<td>0.87 [0.63, 1.20]</td>
</tr>
<tr>
<td>FE Model (Q = 1.39, p = 0.50)</td>
<td></td>
<td>0.86 [0.76, 0.96]</td>
</tr>
<tr>
<td>IDH mutated 1p/19q non-codel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGS–i370</td>
<td></td>
<td>0.97 [0.76, 1.23]</td>
</tr>
<tr>
<td>UCSF–Mayo</td>
<td></td>
<td>0.79 [0.64, 0.98]</td>
</tr>
<tr>
<td>TCGA</td>
<td></td>
<td>0.81 [0.53, 1.23]</td>
</tr>
<tr>
<td>FE Model (Q = 1.60, p = 0.45)</td>
<td></td>
<td>0.86 [0.74, 1.00]</td>
</tr>
<tr>
<td>IDH mutated 1p/19q codeleted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCSF–Mayo</td>
<td></td>
<td>0.75 [0.57, 1.00]</td>
</tr>
</tbody>
</table>

GRS EBV-ZEBRA		
IDH mutated 1p/19q codeleted		
UCSF–Mayo		1.27 [1.01, 1.59]

Forest plot meta-analysis results of GRS-glioma survival associations which were nominally statistically significant (unadjusted p <0.05). Genetically inferred response to antigens EBV ZEBRA, MCV and EBV EBNA had associations which reached this threshold. Results are reported as hazard ratios, along with 95% confidence intervals. Briefly, each header indicates the studied viral antigen GRS, within are its association with molecular glioma subtypes reported with p<0.05, and the 95% confidence interval of each study-specific effect. The diamond visualizes the 95% confidence interval for the fixed effect (FE) meta-analysis across included studies. Studies which had an insufficient number of cases/events in a subtype were not included in the meta-analysis. Each meta-analysis (where more than one study was included) was tested for between-study heterogeneity (Q statistic), with p<0.05 indicating evidence of study-specific associations.
Figure 5: Kaplan Meier curves for significant GRS$_{EBNA}$ - glioma molecular subtype associations

Kaplan-Meier curves for which GRS$_{EBNA}$ was suggestively associated with subtype specific glioma survival differences (unadjusted $p < 0.05$ via Cox regression). The second and third plots are distinct partitions of the IDH mutated subgroup. To visualize, unnormalized GRS scores across the included studies were binned based on the case-specific 80th percentile score in the UCSF-Mayo dataset. P-values included on each plot are results of a log-rank test for difference between the two curves. Below each set of curves provides the number of cases surviving beyond that time point, for each of the two GRS groups. In all cases, the glioma cases with higher GRS score for EBV EBNA had visually improved survival outcomes compared to the bottom 80%.