Impact and effectiveness of social distancing for COVID-19 mitigation – A transnational and transregional study

Tarcísio M. Rocha Filho¹*, Marcelo A. Moret², José F. F. Mendes³

¹Instituto de Física and International Center for Condensed Matter Physics, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70919-970 - Brasília, Brazil

²Centro Universitário SENAI CIMATEC, Salvador, BA – Brazil and Departamento de Física & I3N, Universidade de Aveiro, 3810-193 Aveiro, Portugal

*To whom correspondence should be addressed; E-mail: marciano@fis.unb.br.

We present a detailed analysis of the relationship between the infection rate by SARS-CoV-2 and a distancing index based on COVID-19 Community Mobility Report by Google, for all states in the United States and Brazil, its most populous counties and municipalities, respectively, and all the 22 European Economic Community countries and the United Kingdom, with Google data and at least one thousand deaths by COVID-19 in 2020. We discuss why the infection rate is a proper choice to perform this analysis when analyzing a wide span of time. A strong Spearman’s rank order correlation between the social distancing index and the infection rate in each locality. As a side result, we show that mask mandates increase the values of Spearman’s correlation in the United States, where a mandate was not universally adopted. We also obtain a numerical relationship between the infection rate and the social distancing
Introduction

The current COVID-19 pandemic is the main health crisis in the world in a century, with over 209 million cases and 4.3 million deaths (1). Starting in China in the end of 2019 (2), it spread to all countries in the world, with waves occurring at different moments of time in each locality. A number of interventions were implemented all over the world, such as travel bans, social distancing, and mandatory mask use (3, 4), and its effects have been discussed in different works, which generally concluded that they were effective in reducing the growth of cases and deaths (5–10). Possibly the more effective being lock-downs, workplaces, and business closing and school closing, i.e., the social distancing policies (11), with travel restrictions expected to have modest effects in reducing transmission with a high circulation of the virus (12).

In order to quantify and qualify the degree of social distancing and its effects, some different approaches have been proposed: by survey questionnaires in the population in order to assess adherence to social distancing and to compare it to the growth of cases or deaths (13), or by using mobility data from different sources (14–19). In the latter case, a mobility or social distancing metric is compared to the growth rate on cases (or deaths) of COVID-19, or to the effective reproduction number R_t. As we discuss below, this introduces a limitation in the analysis due to the fact that the interpretation of both the growth rate and R_t at the beginning of the pandemic, when most of the population is still susceptible to the virus, is different to that at later stages, when a non-negligible proportion of the population has already been infected, or has already been vaccinated. A more informative parameter, that conveys more closely information on the circulation of the SARS-CoV-2 virus, is the infection rate β, which is proportional to R_t divided by the proportion of susceptible population (see Eq. 2 below). This explains particularly the result by Gatalo et al. (20) who obtained a strong Pearson correlation between phone
mobility data and growth rates at earlier stages, but a weaker correlation at later stages of the pandemic, for 25 counties in the United States.

We present here a transnational and a transregional analysis of the effect of social distancing for 22 European countries, the United States and Brazil, and a similar transregional study for the 50 and 27 states of the United States and Brazil, and the most populous cities and municipalities in each, respectively. These different localities represent greatly different situations and histories of the pandemic. For instance, as mask use became mandatory at different moments for American states we were able also to obtain some quantitative evidence on its effect in enhancing the effects of social distancing policies. Our main goal is to obtain an explicit social distancing data and the value of the infection rate, with the proportion of susceptible individuals estimated from an epidemiological model calibrated from the time series of deaths in each locality (21).

As a proxy for the “amount” of social distancing we define a metric quantifying the deviation from a base-line representing the pre-pandemic normality. This is far from a simple task and many possibilities exist, and different mobility data are available from different sources (22–25). We require that data is freely available, with coverage up to the city level. For the above cited sources only Google mobility trends satisfies these two criteria, providing data on the following six categories of locations: retail and recreation (D_1); grocery and pharmacy (D_2); parks (D_3); transit stations (D_4); workplaces (D_5) and residential (D_6), as percentages of variation of time spent in each type of place, with respect to a base line defined for the period of January 3 to February 6 2020. An increase (positive value) of the variation of time spent at residence is considered as a positive contribution to the isolation index, while the other five categories contribute with a negative sign. The social distancing index is then defined as a weighted average of the data for each category, with the corresponding sign, with weights given by an (arbitrarily) estimated average proportion of the duration of a day spent in each type of location,
and given by

\[M \equiv 100 + \frac{0.5}{24} D_1 + \frac{1}{24} D_2 + \frac{0.5}{24} D_3 + \frac{1}{24} D_4 + \frac{9}{24} D_5 - \frac{12}{24} D_6, \]

(1)

where, for illustration purposes, we added the value of 100, such that the baseline is close to this value, with no effect of the value of the Spearman’s correlation. The resulting mobility index \(M \) for each Brazilian and American state are shown in (Figs. S1A) and (S1B), respectively, with a similar behavior of \(M \) for the other localities (not shown).

The infection rate can be estimated as (26):

\[\beta = \frac{\gamma R_t}{S(t)}, \]

(2)

with \(S(t) \) the proportion of susceptible individuals in the population and \(R_t \) the time dependent effective reproduction number, and \(\gamma \) the recovery rate from infection with the value reported in the literature (we use the value in Ref. (27) in the epidemiological model). We can also write that

\[\beta = P_c C, \]

(3)

where \(C \) is the average number of contacts of one individual per day, and \(P_c \) the average probability of contagion of a susceptible individual from a single contact with an infected individual. Social distancing acts by reducing the number of contacts \(C \), while other non-pharmaceutical interventions reduce the value of \(P_c \).

Results

We consider the following localities:

- All 50 United States states, from the first reported case up to December, 20 2021.
• The 24 United States counties with a population of at least one million and at least 1000 deaths in 2020 (Nassau was not considered due to inconsistent data for the number of deaths), from the first reported case in each county up to December, 20 2021.

• The 22 Brazilian cities (municipalities) with a population of at least 750 thousand from February, 26 2020 to June, 14 2021.

• All 27 Brazilian states from February, 26 2020 to June, 14 2021.

• All countries in the European Economic Community and the United Kingdom with Google Mobility data and at least one thousand deaths by COVID-19 in 2020, from March, 1st 2020 to December 31 2020, with a total of 22 countries.

The span of time of the data was chosen to avoid the effect of vaccination in the United States and Europe, while for Brazil publicly available anonimized and detailed data on each vaccine shot delivered allows to model the time evolution of the pandemic for a longer period.

For estimations of susceptible population in Eq. (2) we use the an epidemiological model described in (21) to determine the attack rate in each locality. Serological surveys also provide such estimates, but are not available usually for every locality and for the required time window. The estimation of R_t is discussed in detail in the supplementary material and the model in (21) is calibrated using the time series of deaths in order to avoid the significant under-notification of cases (28).

The results for the Spearman’s rank-order correlation (29) between the social distancing metric M and the infection rate β for each locality are show in (Fig. 1). In order to assess the effect of mandatory mask use in each United States county and state we compute r_s for two periods: for the whole period cited above and indicating the percentage of time with a mask mandate, and for the period with a mask mandate only, for those counties with a mask mandate for at least 50% of the days since the beginning of the pandemic. For the remaining counties we
consider the whole period and mark the corresponding histogram in black. We also computed
the Spearman’s correlation for each of the six mobility data reported by Google, with results
shown in (Fig. 2) and (Fig. 3). The average of β/γ, over the time period considered for
each locality, versus the total number of deaths at the end of each period is shown in (Fig. 4).
An approximately linear relation, except for a few cases in Brazil, is clearly visible.

Let us then assume that $\beta(t) = \alpha M(t)$, with α a constant, in order to established a numeric
relationship between β and M. The distributions of values of the ratio $\alpha/\gamma = \beta(t)/\gamma M(t)$
for the Brazilian states, Brazilian municipalities, European Countries, United States states and
counties are shown in (Figs. 5A--E), and the average values (CI 95%) are are 0.015
(0.0096–0.023), 0.019 (0.0081–0.042), 0.014 (0.0089–0.021), 0.015 (0.0091–0.027) and 0.014
(0.0084–0.024), respectively. We considered only the time window that allows to an accurate
estimation of R_t. We also show the best fit with a log-normal distribution for values of α/γ in
(Figs. 5F--J).

Discussion

A proper choice of a variable to represent the current circulation of the virus is central to asses
the effects of mitigation policies. The infection rate as expressed in Eq. (3) is affected by the
reduction of social contacts, which at its turn impacts the value of the average number contacts
C, and by other implemented protocols, such as mask wearing, that reduce the probability of
contagion per contact P_c. On the other hand, the effective reproduction number R_t, or any other
measure of growth rate of the pandemic, also depends on the current attack rate, and confuses
variables in the analysis. This is an important point to consider as a more detailed analysis re-
quires a large data set, and therefore a larger time series, and therefore a significant variation of
the attack rate (and consequently of the related proportion of susceptible individuals). Comput-
ing Spearman’s correlation, rather than Pearson correlation for instance, allowed to put forward
more clearly the relationship between the social distancing index defined here and the infection rate, computed from the whole time series for each locality.

While vaccination reduces the proportion of susceptible individuals in the population \(S \), it does not alter the relationship of the infection rate \(\beta \) with social distancing policies with \(M \) as a proxy, and was taken into account in our analysis by using an epidemiological model with vaccination compartments. The approach presented here properly considers all these points, and allowed no demonstrate a monotonous relationship between the infection rate in each locality and a social distancing metric. It also allowed to explicitly obtain a numeric relationship between \(\beta \) and a metric for social distancing. Behavioral changes can also have a significant impact on the evolution of any epidemic, and are difficult to include in the current analysis. Nevertheless, the significant values obtained for the Spearman’s correlation indicates the important role that social distancing has played up to now, particularly in Belgium \(r_s = 0.75 \), Spain \(r_s = 0.8 \) and the United Kingdom \(r_s = 0.88 \), three countries with a high attack rate. The correlation is somewhat smaller for other localities, but nevertheless with significant positive values, indicating an approximately monotonous relationship between the two variables.

For Brazil and the European countries the results for Spearman’s correlation are quite similar: the variation in time spent at residence is negatively correlated with the infection rate, i.e. the more time spent at home the smaller the value of \(\beta \), while other categories are positively correlated. For the United States, due to a much greater variety of mitigation policies implemented, we see a slightly different picture. In general, residence is negatively correlated with \(\beta \) and workplace is positively correlated, as expected. For the remaining categories (grocery and pharmacy, park, retail and recreation and transit stations) we observe both negative and positive correlations in different localities, indicating that the most relevant categories are those related to the increase of time spent at home and the decrease of time spent at work places. For the United States case there is a significant increase in the value of \(r_s \) when considering only
the time period with a mask mandate, which indeed shows its effectiveness.

The values of the proportionality constant α/γ between $\beta(t)/\gamma$ and $M(t)$ are surprisingly close to one another, despite the great differences in the history and implemented policies to mitigate the COVID-19 pandemic. We obtained a log-normal distribution for the value of α/γ (and for α consequently) for all types of localities considered here, with average values significantly closer, despite all the differences between countries, implemented mitigation policies, and timings. This points to a universal efficacy of social distancing, enhanced by a mandatory mask use. Of course not only social distancing affects the evolution of the infection rate which explains the variation observed for the Spearman’s correlation for the different localities.

We saw from (Fig. 4) that even a small increase in β, and thus a small decrease in M, for a long period of time, results in a significant increase in mortality. Our analysis does not grasp the impact of great gatherings of individuals and the possible effect of the so-called superspreading events (20), or the implications of contact tracing. Future research considering socioeconomic and demographic data would certainly provide valuable information on mitigation strategies targeted at specific groups, such as elders and individuals with comorbidities, as well as the impact of school closure separately from other factors (30). We hope that the present work will contribute to a better assessment of the effects of social distancing, and at least partially of mask mandate, on the still ongoing mitigation interventions against the COVID-19 pandemic.

Acknowledgments

This work received financial support from the National Council of Technological and Scientific Development - CNPq (grant numbers 305291/2018-1 MAM) and i3N (grant numbers UIDB/50025/2020 & UIDP/50025/2020) - Fundação para a Ciência e Tecnologia/MEC (Portugal).
References

1. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU).

Supplementary materials

Materials and Methods
Supplementary Text
(Fig. S1)

Author contributions

Conceptualization: T.M.R.F. Interpretation, writing, review & editing: all authors contributed equally.

Competing interests

The authors declare no competing interests.

Data and materials availability

Time series of deaths and cases by country: World Health Organization –

Population by age group for Brazilian municipalities and states: Brazilian Institute for Geography and Statistics – https://brasilemsintese.ibge.gov.br/populacao/

Time series for cases and deaths by COVID-19 by municipality and state in Brazil: Brazilian Ministry of Health – https://covid.saude.gov.br/.

Fig. 1. Spearman’s correlation index r_s between the mobility index M and the infection rate β for: A) Main Brazilian municipalities with population over 750 thousand; B) Brazilian states; C) 22 European countries; d) US counties with at least one million inhabitants. D) All American states. Bar colors give the proportion of days with a mask mandate since the beginning of the pandemic in each location, up to December 20, 2020; E) Same as (D) but considering only
the period with a mask mandate. States without a mask mandate in the period considered are marked in black. F) Same as (D) but for the main counties in the United states. G) Same as (E) but for the main counties in the United states.
Fig. 2. Spearman’s correlation index r_s between each mobility variable and the infection rate β.
for the main Brazilian municipalities, each Brazilian state and European countries.

Fig. 3. Spearman’s correlation index r_s between changes in each mobility category and the infection rate β for A) Counties with more than one million inhabitants and one thousand deaths
for the period from the first COVID-19 case up to December, 20 2020; B) Same as (A) but for the period with a mask mandate, except those counties with no mask mandate in 2020 (marked in black in figure 3E) for which the whole period is considered; C) Same as (A) for all US states; D) same as (B) for all US states.

Fig. 4. Total number of deaths per 100 thousand inhabitants at the end of the considered period as a function of the average value of β/γ during the same time span.
Fig. 5. Coefficient $\beta/\gamma M = \alpha/\gamma$ for A) Brazilian states; B) Brazilian municipalities, C) US states; D) US counties and E) European countries. The normalized histogram (in red) and the log–normal distribution function (in black) for the values for α/γ: F) Brazilian states; G) Brazilian municipalities, H) US states; I) US counties and J) European countries. The values for α/γ (CI 95%) are 0.015 (0.0096–0.023), 0.019 (0.0081–0.042), 0.014 (0.0089–0.021), 0.015 (0.0091–0.027) and 0.014 (0.0084–0.024), respectively.