Systematic review

Colorectal cancer and microbiota modulation for clinical use. A systematic review.

Julio Madrigal-Matute* and Sara Bañón Escandell

Biomedical Institute for Nutrition and Health (IBIONS).

*Corresponding author:

Julio Madrigal-Matute, PhD

Biomedical Institute for Nutrition and Health (IBIONS).

Phone: +34606008917;

Madrigal-matute@ibions.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Colorectal cancer is one of the top contributors to the global burden of cancer incidence and mortality with genetic and environmental factors contributing to its etiology. Modifiable or environmental factors can be the cause of up to 60% of the risk of developing colorectal cancer. Hence, there is a growing interest in specifically defining what can be improved in our lifestyle to reduce this risk, improve the effectiveness of treatments, reduce side effects, and decrease the risk of recurrence.

One of the elements directly related to lifestyle is gut microbiota. The microbial ecosystem has a vital role in colorectal cancer prevention and antitumoral response through modulation of the immune system and production of short-chain fatty acids. Numerous approaches have been used to identify healthy microbiota that can reduce the risk of cancer development, improve treatment efficacy, and reduce side effects.

Scientific literature in this subject is growing exponentially and, therefore, systematic reviews and meta-analysis are required to ensure that appropriate recommendations are given to patients.

This work aimed to perform a systematic analysis of the published literature to elucidate whether microbiota modulation through pre-, pro-, symbiotic treatment and/or nutritional intervention can be beneficial for patients diagnosed with colorectal cancer.

Detailed analysis of published studies shows that some prebiotics, such as inulin and resistant starch, probiotics such as lactic strains producers of short-chain fatty acids, and consumption of unprocessed plant products, can be effective recommendations for patients diagnosed with colorectal cancer. This advice should always be individually tailored and followed up by a healthcare professional with expertise in the field.

Keywords: cancer, colorectal, nutrition, diet, probiotic, prebiotic, symbiotic, immunotherapy, immune system.
Abbreviations:

CRC, colorectal cancer; ROS, reactive oxygen species; RNS, reactive nitrogen species; MSI, Microsatellite instability; SCFA, Short chain fatty acids; LPS, Lipopolysaccharide; dMMR, deficient DNA mismatch repair; AOM, Azoxymethane; DSS, Dextran sodium sulfate; TNF-α, tumor necrosis factor alpha; MPO, Myeloperoxidase; PCNA, Proliferation cellular nuclear antigen; SLC5A8, Solute Carrier Family 5 Member 8; GPR43, G protein-coupled receptor 43; CEA, Carcinoembryonic antigen; APC, Adenomatous polyposis coli; DHM, 1,2-dimethyl hydrazine; TGF-β, Transforming growth factor beta; TLR2, toll-like receptor 2; DC, dendritic cells; PD-1, Programmed cell death protein 1; PDL-1, Programmed cell death protein ligand 1; CTLA-4, Cytotoxic T-Lymphocyte Associated Protein 4; CYP, Cytochrome P450 Family; GSTM1, Glutathione S-Transferase Mu 1; SULT1, Sulphotransferase Family-1; PYY, Peptide tyrosine; PPARγ, peroxisome proliferator activated receptor gamma; 6,BR, 6-bromoisatin; NE, marine extract; MD, Mediterranean diet; LFD, low fat diet; HFD, high fat diet; EPA, Eicosapentanoic acid; PUFA, polyunsaturated fatty acids; CRP, C reactive protein; SFRP2, Secreted Frizzled Related Protein 2; DNMT1, DNA Methyltransferase 1; COX-2, Cyclooxygenase-2; PGE2, Prostaglandin E2; Cxcl, C-X-C Motif Chemokine Ligand; Bik, BCL2 Interacting Killer; KC, Keratinocytes-derived chemokine; Gr-1, Glucocorticoid Receptor-1; CTNNB1, Beta catenin 1; EGFR, Epidermal growth factor receptor; TYMS, Thymidylate Synthetase; LPE, Lisophosphatideteranolamine; LPC, Lisophosphatidylcholine; G-CSF, Granulocyte Colony-Stimulating Factor; GM-CSF, Granulocyte Macrophage Colony-Stimulating Factor; HDAC, Histone Deacetylase; JAM1, F11 Receptor; 5-FU, 5-flourouracil; EGCG, epigallocatechin-3-gallate;
1. Introduction

1.1. Colorectal cancer

Colorectal cancer (CRC) is a disease based on an important genetic component, coupled with key influence from our lifestyle habits. Approximately 10-20% of diagnoses of CRC have a family history with the disease, and through family and twin studies, heritability is estimated to range from 12-35%. Although numerous genome-wide association studies have been performed identifying genes that increase susceptibility to develop CRC, many risk factors remain unknown. However, only 5-7% of patients’ colon cancer has a clear genetic origin. Hereditary CRC syndromes can be subdivided into those associated with polyposis and those without polyposis (Lynch syndrome and familial CRC). Risk factors also include the development of inflammatory bowel disease, including Chron’s disease and ulcerative colitis. These pathologies significantly increase the chances of developing CRC, being highly dependent on environmental and nutritional factors. Specifically, geographical differences in incidence of CRC are influenced by genetic, and mainly environmental and nutritional risks.

It is not surprising that environmental factors have such a strong influence on the risk of developing colon cancer, as the intestinal epithelium is one of the tissues with the highest turnover rate in our body and is in continuous direct contact with nutrients, food toxins, and microbiota.

Etiology

Among the metabolic changes that precede the development of cancer are chronic cell damage due to a pathological increase in reactive oxygen and nitrogen species (ROS and RNS), DNA damage, and chronic inflammation. Inflammation triggers the release of pro-inflammatory cytokines into the gut to regenerate damaged tissue. In certain situations, inflammation becomes chronic, forming a positive feedback loop that facilitates tumor development. Colon tumors generally begin with the transformation of stem and epithelial cells that reside at the base of the colonic crypts. These cells undergo chronic damage by inflammation, oxidative stress, and/or genetic mutations that evolve into a premalignant lesion or polyp. These polyps follow two main routes of differentiation to malignancy: the adenoma-carcinoma type (70-90%) and the serrated (10-20%) type. In addition, another route not associated
with polyposis has been described with a lower incidence, characterized by microsatellite instability (MSI; 2-7%). The development of a malignant tumor is estimated to take 10-15 years on average.

1.2. Gut microbiota

The microbiome includes all types of microorganisms associated with the host, interacting in a complex way and usually found in the epithelial barrier zones. It is acquired at birth by vertical transmission and is modulated throughout our lives by environmental factors. The microbiota is a dynamic niche that is involved in the maintenance of health and in the origin and development of numerous diseases by modulating the homeostasis of the immune system. Although the mechanisms may be varied, one of the most notably is the stimulation of the T-cell response, through the expression of bacterial epitopes or their cross-reactivity with tumor epitopes. Additionally, gut microbiota also modulates the response to tumors by inhibiting specific receptors that promote inflammatory and immune responses. Finally, another important mechanism carried out by the microbiota is the synthesis of metabolites, such as short-chain fatty acids (SCFA), which elicit a local and systemic response in the host organism.

But what is the ideal microbiota composition for health? This is a question that is not easy to answer, although numerous studies have attempted. Analyzing a metabolite panel comparing stool from healthy versus CRC patients, it was found that the best marker to discern between a healthy patient and a CRC patient is primarily a decrease in the CRC patient’s levels of certain SCFA, in particular, acetate and butyrate. The protective effect of SCFA against CRC may be due to their ability to decrease inflammation and modulate the immune response. In addition, SCFA inhibit proliferation and promote apoptosis in neoplastic colonocytes. SCFA play a key role in maintaining intestinal health and preventing the development of numerous pathologies. They are produced by many bacteria in the intestinal tract, in particular, lactic acid bacteria and bifidobacteria. SCFA transporters and their receptors are the communication bridges between the microbiota and the cells of the gut. Butyrate has been shown to decrease intestinal inflammation by regulating epithelial occlusive junctions, which are essential for maintaining the integrity of the intestinal barrier and mucosa by aiding in the homeostasis of ions, nutrients and water.
Among the SCFA-producing bacteria, and specifically butyrate, are those of the genus *Butyricicoccus*, which could protect against colitis in patients with irritable bowel syndrome, as these bacteria are reduced in affected patients. Likewise, other bacteria belonging to the phylum *Firmicutes* such as *Eubacterium rectale*, *Ruminococcus albus*, *R. callidus*, *R. bromii* and *F. prausnitzii* are 5 to 10 times more abundant in healthy patients than in patients with Crohn's disease. The decrease in species such as *Bacteroides fragilis* and *B. vulgatus* is associated with reduced levels of butyric and propionic acid and increased inflammatory markers. Additionally, *Akkermansia muciniphila*, one of the most abundant components of the intestinal microbiota, is found to be decreased in obese patients, those with ulcerative colitis, and those with CRC. *A. muciniphila* ferments mainly mucins, as well as other mono- and polysaccharides, giving rise to various SCFA.

Taken together, it appears that SCFA-producing bacteria, such as acetate and butyrate are often associated with healthier microbiota profiles. For these reasons, SCFA are being tested as a therapy for CRC.

Dysbiosis

Pathological changes in the composition of the microbiota is known as dysbiosis. This unbalance in the homeostatic microbiome is related to the origin of various types of tumors due, in part, to the modulation of tumor immunity, with CRC being prominent among these tumor types. Patients with CRC are often characterized by a decrease in beneficial microbiota and an increase in pathogenic opportunistic microorganisms. This pathogenic imbalance can have a variety of origins. A frequent and often underestimated cause of dysbiosis stems from intensive antibiotic use.

Chronic intestinal inflammation and epithelial disruption, two of the most important risk factors for CRC development, are related to intestinal dysbiosis. Many of the pathogenic species identified in different studies associated with the development of CRC belong to the group of hydrogen sulfide (H₂S)-producing bacteria. These bacteria can oxidize SCFA, decreasing its levels locally. H₂S is highly toxic to colonocytes, causes damage to the intestinal epithelium, promotes inflammation, produces metabolic changes, especially through oxidation of butyrate, and can result in the development of CRC. H₂S is also rapidly absorbed by the mucosa, which can disrupt the balance between proliferation and apoptosis and lead to DNA
damage. Furthermore, feces of people at high risk of CRC recurrence have higher concentrations of H₂S. Other studies corroborate these results by finding an increase in *Fusobacterium* spp., and more specifically *Fusobacterium nucleatum*, an H₂S-producing species, in colonic tumor tissue. *F. nucleatum* also promotes tumor growth, cell proliferation and the acquisition of chemoresistance in CRC, favoring inflammation and autophagy as a cytoprotective mechanism of the tumor.

At the phylum level, CRC patients show increased abundance of *Proteobacteria* and *Verrucomicrobia*. Species associated with CRC development include *Bacteroides fragilis*, *Escherichia coli*, *Peptostreptococcus* spp, *Enterococcus faecalis*, *Streptococcus bovis*, or *Porphyromonas* spp. For example, *B. fragilis* and *E. coli* play a key role in the development of familial CRC. In patients with adenomatous polyposis, areas arise in the colonic mucosa where *B. fragilis* and *E. coli* accumulate, leading to a local increase in oncotoxins such as *B. fragilis* toxin and colibactin. These oncotoxins, when transferred to the colon of mice, increase colonic tumor growth and mortality. In addition, *B. fragilis* levels are elevated in patients with diarrhea, with chronic diarrhea being an important risk factor for the development of CRC.

Nonetheless, it may not be so simple to discern which bacteria are beneficial. In general, it appears that it may be context-dependent and that one of the key characteristics of a healthy microbiota is its beneficial/harmful microbiota ratio and/or its diversity.

1.3. Food and gut microbiota

Due to the importance of the microbiota in health and in the origin of diseases such as CRC, there is much interest in knowing how to modify the flora in order to have a better homeostatic capacity. The main way in which we can interact directly with our microbiota is through the food we eat. A study of monozygotic and dizygotic twins, and their mothers, shows that while there is a common core microbiota, pathological conditions, such as malnutrition leading to obesity, produce a significant change in the microbiota. These changes result in reduced diversity and modifications in gene expression and metabolic pathways. Along these lines, it has been shown that a "Western" diet (high fat and sugar) can alter the microbiota in periods as short as 1-3 days, and that these changes can be reversed by following a healthier diet (high...
These results show that a healthy diet, mainly a plant-based, can improve our microbiota faster than probably any other therapeutic intervention. In fact, adherence to a Mediterranean diet has been shown to have a beneficial outcome in modulating the microbiota. Participants following this type of diet had higher levels of SCFA, *Prevotella* and *Firmicutes* that degrade plant fibers, in addition to a higher proportion of bifidobacteria/E. coli and better gastrointestinal habits. Therefore, it is likely that part of the health benefits of this dietary pattern are due to its effect on our commensal flora.

In fact, the health benefits of certain dietary patterns, such as fiber consumption, have been evaluated for decades. However, the mechanisms by which fiber decreases the incidence of CRC are not fully understood. Two mechanisms that may be complementary are generally postulated: i) fiber may facilitate gastrointestinal transit decreasing the contact between procancerous substances and ii) the intestinal epithelium, or gut bacteria may ferment fiber, producing SCFA. In an attempt to dissect these mechanisms, a study was conducted using a mouse model in which a representative human microbiota (gnobiotic) was "seeded". It was found that a low-fiber diet leads to an overgrowth of bacterial species that cause degradation of the mucus lining the intestinal barrier. This makes the barrier more permeable to pathogenic organisms, facilitating the development of colitis. In this mouse model, with a low-fiber diet, overgrowth of *B. caccae* and *A. muciniphila* was promoted, with these two species being responsible for the degradation of intestinal mucus.

The importance of nutrition is often underestimated in most scientific and medical fields; however, available data show that it is a key tool in modifying the microbiota.

1.4. Probiotics

Probiotics are defined as "live microorganisms that confer a health benefit when administered in adequate amounts". The benefits are varied and range from the maintenance of intestinal homeostasis to the prevention of diarrhea, irritable bowel syndrome, and constipation. In addition, numerous *in vitro*, preclinical and clinical studies have shown that probiotics may have beneficial effects, specifically in cases of CRC.

Probiotics exert their beneficial action by modifying the gut microbiota, improving the gut barrier and its microenvironment, secreting anti-cancer metabolites, and reducing inflammation.
immune system, particularly through homeostasis of epithelial cell junctions and modulation of T-lymphocytes and dendritic cells activation.36, 76 As an example, \textit{Butyricicoccus pullicaecorum} reduces necrotic enteritis and pathogen abundance in the caecum and ileum in broiler chickens.77 Furthermore, its administration promotes the proper functioning of the intestinal epithelial barrier and reduces colitis in preclinical models.30 One of the most widely used probiotics is \textit{A. muciniphila}, which has been shown in numerous studies to have a beneficial role in health maintenance and a therapeutic effect on various diseases such as obesity,78 or epithelial tumors.79, 80 In this regard, it has been used in preclinical models of chronic colitis, where it improved inflammatory parameters and damage in the colon.81 Additionally, lactic acid bacteria have been frequently used for their health benefits and their immunomodulatory effect,82 contributing to inhibiting the development of pathogens.89 Treatment with \textit{L. salivary} and \textit{L. fermentum} in combination with \textit{L. acidophilus} can reduce CRC cell proliferation in experimental models.83, 84 Furthermore, oral administration of 21 different strains of \textit{Lachnospiraceae} attenuated colorectal inflammation and improved the composition of the microbiota in preclinical models.85 However, a meta-analysis evaluating the role of probiotics in cancer patients failed to find a clear overall beneficial outcome, except in reducing the degree of diarrhea, bowel movement, and the need for antidiarrheal drugs.86

1.5. Prebiotics

Prebiotics are defined as "any substance that is selectively utilized by the recipient organism and confers a health benefit."87 One of the most studied prebiotics is inulin. Inulin is part of a group of dietary fibers known as inulin-type fructans. These compounds are found in numerous foods such as garlic, artichoke, onion and asparagus.88 Inulin-type fructans resist digestion in the small intestine and are fermented in the colon, where they are transformed into lactic acid and SCFA, improving intestinal health.89, 90 Inulin has been shown to increase levels of CRC-protective bacteria such as \textit{Bifidobacteria},91 \textit{Bacteroides},92 and \textit{Akkermansia muciniphila}78 in murine models.

The role of resistant starch as a prebiotic has also been examined in numerous pathologies and its benefits have also been suggested in the field of cancer, particularly in CRC.93 Resistant starch is a group of carbohydrates that resist digestion by pancreatic amylase in the small intestine. This type of starch then
reaches the colon where it is fermented by the microbiota, producing numerous protective effects against tumor development, including production of SCFA (butyrate), regulation of bowel movements and the reduction of colonic pH. Many foods contain resistant starch, such as cereals, vegetables, legumes, seeds, and some nuts. Recent studies are using prebiotics as a basis for the synthesis of therapeutic targets for cancer treatment because of their promising role in this field.

1.6. Symbiotics

Symbiotics are defined as "a mixture including live microorganisms and substrates, which used selectively by the host organism confers a health benefit." A distinction is made between cooperative symbiotics, in which probiotic and prebiotic are administered together and act independently contributing to the health benefit, and synergistic symbiotics, where the probiotic uses the co-administered prebiotic as a substrate. The use of symbiotics is becoming increasingly common in the biomedical literature as a method of enhancing the effects of pro- and prebiotics used individually. For example, the combination of Bifidobacterium animalis subsp. lactis with a resistant starch led to a decrease in the number and incidence of colon neoplasms. Interestingly, the probiotic alone did not produce a similar effect. It was the combination that resulted in protection against cancer development, in part through increased production of SCFA.

Therefore, it seems very promising that symbiotics may play a more effective role than pre- or probiotics alone.

1.7. Oncological treatments and microbiota in CRC

Technological advances and new therapies have dramatically increased the life expectancy of CRC patients. However, CRC patients often show particularly low responses to hospital treatments. For this reason, numerous lines of research are being devoted to better understanding the mechanisms underlying this lack of response to treatments, such as immunotherapy.

The first evidence showing the key role that the microbiota plays in modulating the body's immune response to cancer treatment came from a pioneering study showing that microbial flora, and in particular lipopolysaccharide (LPS) from Gram-negative bacteria, increased the activation of dendritic cells and TCD8+ lymphocytes. In this
way, the microbiota promoted melanoma regression after radiotherapy treatment. In contrast, the use of antibiotics, inhibition of LPS and its signaling, significantly diminished the effect of radiotherapy treatment. Numerous studies have corroborated these data, showing that therapies decrease their efficacy in axenic (without microbial flora) or antibiotic-treated mice. A key study in this field showed that genetically identical mice from two different suppliers responded unequally to the same cancer treatment, due to differences in microbiota. Not only that, but cohousing or fecal transfer eliminated these differences, clearly pointing towards a key role of microbiota in modulating the efficacy of cancer treatment.

Although the role of the microbiota has been studied in different cancer treatments such as radiotherapy, chemotherapy, and surgery, most studies have focused in immunotherapy. This may be due to both the microbiota’s promising role in cancer treatment and its key role in modulating the immune response.

Immunotherapy

Unfortunately, a large proportion of CRC patients do not respond well to immunotherapy. It is known that the effectiveness of some treatments depends, to a large extent, on the individual's genetics and/or cancer phenotype; however, for a majority of CRC patients, the cause of their lack of response is unknown.

Immunotherapy has promising results in numerous tumor types by inducing immunity by T lymphocytes. Thus, the anti-PD-1 drugs pembrolizumab and nivolumab are effective in metastatic patients whose tumors are deficient in DNA mismatch repair (dMMR) enzymes and have high microsatellite instability (MSI-H). For the treatment of refractory dMMR-MSI-H tumors, pembrolizumab and nivolumab combined with an anti-CTLA4, ipilimumab, are used. However, in tumors with active DNA repair enzymes and low microsatellite instability, which account for 85% all tumors, these therapies tend to be ineffective. Therefore, there is great interest in finding methods to improve the efficacy of these therapies in CRC.

Knowing the ideal composition of microbiota to improve the efficacy of immunotherapy treatments is no easy task. It is likely, as mentioned above, that the key lies in increasing the ratio of bacteria that are beneficial to health and decreasing those that are harmful. In this line, mice transplanted with microbiota from CRC patients show, after treatment with anti-PD-1, a decrease in the anti-tumor response in CRC and lower survival, compared to those transplanted with microbiota from
Among the bacteria that may be beneficial to improve immunotherapy are: Clostridiales, Ruminococcaceae, Enterococci, Collinsella, Alistipes, Faecalibacterium spp, A. muciniphila, B. fragilis, Eubacterium linosum or Bifidobacteria, although most studies have been performed on epithelial type tumors.19, 79, 80

Therefore, the study of the microbiota in the treatment of cancer patients, especially in CRC patients whose treatments do not reach the effectiveness of other types of cancer, is essential.

Effect of surgery on the microbiota

Colorectal surgery in humans aims for total tumor removal plus the addition of a safety perimeter. When this clean-border surgery is achieved, the likelihood of tumor recurrence decreases considerably.108 However, local recurrences are common, up to 15%, the origin of which appear to be linked to the biology of the primary tumor and/or seeding of the tumor bed during surgery.109-111 Most tumors recur at the site of the anastomosis due to incomplete wound closure, the inherent porosity of the junctional area, improper healing, and/or the presence of collagenolytic organisms that increase porosity.112, 113 In this regard, a high-fat diet increases the production of colorectal tumors in preclinical models of anastomosis.105 This mechanism is linked to the overproduction of collagenolytic organisms at the suture site. Pre-operative fecal analysis shows that obese patients respond by increasing collagenolytic micro-organisms after taking antibiotics. In contrast, non-obese patients have decreased levels of collagenolytic micro-organisms.105 Therefore, a healthy microbiota low in collagenolytic microorganisms is key to increasing the chances of successful CRC surgery and avoiding recurrences.

1.8. Study aims

The overall aim of this work is to review published studies on the modification of the microbiota in CRC.

The specific objectives of this work are to evaluate the impact of modulating the microbiota in CRC patients through; 1) probiotics, 2) prebiotics, 3) symbiotics and 4) nutritional changes. We aim to analyze the potential use of these approaches to modulate the microbiota in CRC patients.
2. Methods

2.1. Systematic search

The search strategy was defined between January 15th and April 15th, 2021. The search and filtering in the Pubmed database took place on April 24th, 2021. The language used for the search and filtering of the publications was English. The detailed analysis of the selected publications was carried out from April 25th to May 31st, 2021.

The search strategy included six types of terms: (1) target disease of the study; (2) type of cancer; (3) microbiota and dysbiosis; (4) oncology treatment, (5) use of nutrition and/or supplementation with pro-, pre- and symbiotics and (6) original articles.

To broaden the search terms, asterisks were added to the end of the words. Keywords were combined using the Boolean operators "AND", "OR" and "NOT". The search strategy is detailed in Table 1.

The results of the different levels of the search can be found in the attached supplementary files.

Inclusion criteria

Only original articles were selected. Biographies, commentaries, duplicate publications, editorials, guides, interviews, news items, personal narratives, errata, retractions, reviews, systematic reviews and meta-analyses were excluded. In the next level of screening, only articles published in English that had mechanistic results and outcomes, at least in vivo, were selected by analysis of the abstract.

Publications that met the criteria above were downloaded and reviewed.

3. Results

3.1. Literature search

Figure 1 shows the flow diagram of the search and selection process. This diagram has been made by adapting the work to the guidelines for systematic searches recommended by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The Pubmed search yielded 202 results. The articles were screened for eligibility criteria. As a result of the first screening, a total of 108 articles
were selected. After applying the next filtering on the type of results, a total of 62 articles remained for analysis. Of these 62 studies, 15 included human clinical trials (Fig. 1).

3.2. Characteristics of included results

Table 2 shows the characteristics of the included studies. The type of intervention performed, type of cancer, type of study, impact on the microbiota, the mechanism proposed by the authors, and its impact on cancer development are shown. Finally, the last column includes a more subjective criterion, namely the quality of the data analyzed on a scale ranging from very low = 1, low = 2, medium = 3, high = 4, very high = 5. This criterion has been assessed according to the experimental design, statistical analysis and strength of the mechanisms demonstrated. Figure 2 shows the distribution of the included studies.

4. Discussion

A patient’s microbiota plays a key role in modulating the immune system as a natural defense against tumor development and during cancer treatment, especially in CRC. However, there is no defined therapeutic strategy for the microbiota in a CRC patient. To make the transition from clinical trials to patient treatment, it is necessary to review all published data on microbiota-related therapeutic approaches in CRC in a systematic way. The therapeutic modulators of the microbiome include primarily probiotics, prebiotics, symbiotics and nutrition.

Probiotics

One of the most frequent probiotic combinations for the study of CRC is that of Lactobacillus and Bifidobacterium. In several studies, pre-inoculation with Lactobacillus acidophilus or a cocktail approved for commercial use in China, called Bifico, which consists of Bifidobacterium longum, Lactobacillus acidophilus, and Enterococcus faecalis, reduced colon tumor growth in preclinical models. Bifico treatment also caused a decrease in Desulfovibrio, Mucispirillum and Odoribacter, associated with an enrichment in Lactobacillus. However, another study reported that a combination of Bifidobacterium and Lactobacillus was not able to improve 5-FU treatment, despite improving the flora composition.
The mixture of three different strains of *Lactobacillus* and one of *Bifidobacterium* decreases the incidence and number of tumors in a preclinical model of CRC associated with colitis.130 VSL\#3 is a commercial probiotic containing a mixture of different strains of *Lactobacillus*, *Bifidobacterium* and *Streptococcus*. In a murine model with a Western diet, treatment with VSL\#3 and metformin decreases colonic tumor formation, through reduced cell proliferation and macrophage infiltration.128 However, VSL\#3 alone shows no protection against colonic tumor development in other studies.116, 128 In fact, in a model of colitis associated with CRC and inflammation, VSL\#3 increases macroscopic lesions, as well as their invasiveness and histological grade.116 Therefore, it is important not to prescribe probiotics without scientific basis.

In addition, the *Lactobacillus* genus alone is probably the most widely tested probiotic in CRC (Fig. 2 d&e). A study conducted with *Lactobacillus casei* in a model of CRC associated with colitis, combined with FOLFOX, showed improvement in various inflammatory and microbiota parameters; however, it did not show reduction in tumor development.124 In this study, FOLFOX increases apoptosis in intestinal epithelial cells, while the probiotic inhibits cell death in healthy epithelial cells.124 Nonetheless, it is difficult to assess the effect of a given treatment in an animal model, but it is even more complicated in models that use injections of tumor cells in different (heterotopic) locations, as is the case in this study.124 Another study with the *L. casei* BL23 strain showed a total inhibition of the incidence of colorectal tumors in mice. This mechanism could be associated with increased expression of Bik, a proapoptotic gene, and a decrease in Ki67.126 *Lactobacillus reuteri* strain can also reduce colon tumors through the production of histamine, which is associated with a decrease in inflammatory markers at both local and systemic levels.127

Another well-studied probiotic is *Akkermansia muciniphila* (Fig. 2 d). Several studies support its potential use in CRC patients with promising results. Preclinical studies have shown that it is more efficient against CRC than IL-2 therapy. The combination of A. muciniphila and IL-2 was significantly more effective than their separate actions in reducing tumor volume and increasing survival.115 The effect of A. *muciniphila* appears to be related to a membrane protein called Amuc, which is recognized by Toll-like receptor 2 (TLR2). Cellular mechanisms and immune effects mediated by TLR2 lead to increased efficacy of IL-2 immune therapy.115
Therefore, it seems that probiotics, especially lactic acid bacteria, SCFA producers and *A. muciniphila* could be beneficial for patients diagnosed with CRC.

Prebiotics

Many of the prebiotics used in the CRC literature are oligo- and polysaccharides (Fig. 2 e & f). Among them, pectin has shown beneficial effects such as SCFA production,\(^\text{170}\) reduction of ammonia,\(^\text{171}\) and improve glucose tolerance.\(^\text{172}\) Pectin is the fundamental metabolite of plant walls, and its fermentation serves as a source of energy for numerous microorganisms, producing metabolites with beneficial functions for our organism.\(^\text{131, 173}\) Furthermore, pectin is currently used in numerous food additives, so its study is of great interest.\(^\text{131, 174}\) In fact, it has been observed that pectin can be beneficial against several types of tumors such as CRC, breast and prostate cancer by halting tumor development.\(^\text{174}\) Its effect seems to be mediated through the increase of different SCFA-producing bacteria and in particular acetate, and the enhancement of the immune response through IFN-\(\gamma\)-producing TCD8+. In addition, a transplantation of fecal microbiota from PD-1 refractory patients showed enhanced anti-tumor response in PD-1 and pectin-treated mice.\(^\text{131}\)

Galacto-oligosaccharides derived from lactulose, and mainly lactose, have been tested in preclinical models with promising results in terms of reducing tumor development and modulating the microbiota.\(^\text{140}\) Other well-studied oligosaccharides include fructo-oligosaccharides/inulin and mucin.\(^\text{66, 132, 164}\) Inulin has been shown to significantly reduce the volume of subcutaneously transplanted colon tumors, while mucin did not cause any significant change.\(^\text{132}\) In another study, inulin was reported to strongly inhibit tumor development through modification of the microbiota and butyrate production.\(^\text{66}\) This paper dissects the pathways leading to this effect, finding that butyrate is absorbed, but not oxidized due to the Warburg effect of cancer cells.\(^\text{175}\) However, healthy colonocytes do use butyrate as a major source of energy.\(^\text{176}\) In tumor cells, butyrate accumulates in the cell interior where it inhibits histone deacetylase activity, thus decreasing proliferation and increasing apoptosis.\(^\text{66}\)

Studies with compounds derived from citrus peel, such as polymethoxyflavones, have shown positive effects in preventing the development of CRC. However, mechanisms such as autophagy, which the authors highlight as possible effector pathways for these compounds, are poorly analyzed and higher quality studies are needed to draw valid conclusions.\(^\text{142}\) Other prebiotics, such as green tea extract
(EGCG), have been shown to reduce colonic tumors, but these studies are of low scientific quality (grading = 1 and 2) for the reasons mentioned above. In a rat model of colitis-associated cancer using EGCG and resistant starch, EGCG was shown to have no effect. Only resistant starch was able to decrease colonic tumor formation through a change in the microbial flora, increasing SCFA production, and decreasing inflammation.\(^{154}\)

There is great interest among scientists in Asia, but particularly in China, in demonstrating the effects of different therapeutic approaches to traditional medicine through the microbiota.\(^ {135,148}\) For example, the Canmei formula contains herbs called *Mume sieb* and *Marci Hieronymi*, whose more than 41 active ingredients include DL-arginine, L-tyrosine, L(-)-carnitine, adenine, guanine or ambrosic acid. This formulation was shown to decrease the incidence of colonic tumors by reducing inflammation and improving dysbiosis.\(^{137}\) Another study using a *Boswellia serrata* resin extract has also demonstrated, in preclinical models, its ability to reduce colonic tumor formation.\(^{144}\) Many of these studies present positive results for the inhibition of CRC development. However, in general, they are of low quality (grading = 1 and 2) due to a lack of mechanistic and statistically robust data and therefore do not allow for reliable conclusions to be drawn.

Symbiotics

One of the most interesting proposals in the literature is the possibility of using symbiotics as therapeutic options to increase the efficacy of available treatments. It has been observed that the use of *C. butyricum*, surrounded by dextran and bound to capecitabine or diclofenac, can increase the efficacy of these chemotherapeutics by >500%. This symbiotic decreases tumor invasiveness and also promotes a healthier and more diverse microbiota coupled with increased production of SCFA.\(^{96}\) This work is interesting for clinical studies as both dextran and *C. butyricum* are approved for use in food applications and showed no notable side effects.\(^{96}\) Another symbiotic studied is the combination of *Lactobacillus gasseri* 505 and *Cudrania tricuspidata* leaf extract in fermented milk. This symbiotic was shown to reduce tumor incidence and malignancy in a model of CRC-associated colitis.\(^{146}\)

Therefore, the use of symbiotics for improving gut microbiota in patients with CRC seems promising, although more studies are needed to clearly define which symbiotic should be used, the dose, the timing, and in which specific CRC patients.
Healthy nutrition as a source of pre- and probiotics

Most, if not all pro-, pre- and symbiotics can be obtained naturally through a healthy diet. Prebiotics have been isolated from mushrooms,138 fruits,142, 151 dairy,140 rice,161 and green tea138 and probiotics from fruit skins,117 dairy,122 and fermented products.146

From infancy, a balanced, non-processed plant-based nutrition is the best way to have a proper gut microbiota. In fact, it has been shown that a diet high in soluble fiber is not able to reverse the erosion of intestinal mucus caused by a diet without fiber. However, the same diet, but high in intact plant fiber decreased mucus degradation, strengthening the intestinal barrier.67

Anthocyanins, compounds with a positive impact on the health of patients with CRC, are present in many foods such as tea, coffee, cocoa and red fruits.177 In this regard, it has been shown that anthocyanins in blackberries can reduce the incidence of CRC, through diminished local inflammation and improved microbiota.151

Another food with interesting results is the marine extract of certain shellfish that may have anticarcinogenic effects. Using metabolomic analysis techniques, one can discern which compounds are toxic to tumor cells, opening the door to precision nutrition.147, 178 Algae-derived products such as fucoxanthin, a carotenoid present in high levels in wakame (\textit{Undaria pinnatifida}), have also shown to decrease the number of adenocarcinomas and total tumors. This effect was also associated with an increase in the number of \textit{Lachnospiraceae}.134 Spices have similarly attracted a great deal of interest for their health-promoting properties. For example, nutmeg can decrease the development of APC genetically engineered tumors by modulating the metabolism of the microbial flora and improving lipid metabolism.150 Numerous food extracts are also used in traditional Chinese medicine, including American ginseng. The use of this compound in a murine model prevented tumors and ameliorated dysbiosis induced by different murine models of CRC and high-fat diet.153, 155

Moving from specific foods to dietary patterns, the Mediterranean diet has been shown to have beneficial effects on multiple levels, specifically in the prevention of certain types of cancer.179 In the case of CRC, epidemiological studies show that adherence to a Mediterranean diet reduces the incidence of CRC by up to 11%.180 Likewise, the effect of mixing a Mediterranean diet with other types of diet (low-fat or high-fat Western-type diet) has been studied in models of cancer associated with...
colitis. This study showed that consumption of the Mediterranean diet, regardless of the diet with which it was mixed, decreased tumor incidence, and improved the microbiota, especially when accompanying a high-fat diet.

Randomized clinical trials

At the highest level of scientific evidence are randomized clinical trials. Within this group, those conducted with lactic acid strains stand out. Among them, a study conducted with 78 patients analyzed the role of probiotics in reducing side effects after CRC surgery. Inclusion criteria were a diagnosis of stage III adenomatous CRC and that the patients were to undergo surgery. The probiotic group received post-operative treatment with a mixture of different strains of *Lactobacillus*, *Bifidobacterium*, and *Streptococcus thermophilus* for almost one year. The most important conclusion of this study was that probiotic treatment decreased the most frequent side effects of surgery, specifically paralytic ileus. However, limitations of this study include the low number of subjects included, the apparent lack of double-blinding, active placebo, and a weak statistical analysis. In another clinical trial, a probiotic consisting of *Bifidobacterium longum*, *Lactobacillus acidophilus* and *Enterococcus faecalis* was tested in CRC patients undergoing surgery. It was shown that, in addition to improving the diversity of the microbial flora, the probiotic mixture was able to decrease the levels of *Fusobacterium*, a bacterium associated with the development of CRC, by >500%. In addition, its use decreased post-operative infections. Another similar probiotic mixture consisting of *Lactobacillus plantarum*, *Lactobacillus acidophilus* and *Bifidobacterium longum* reduced the risk of postoperative infection and improved the intestinal epithelial barrier, resulting in a lower incidence of diarrhea, abdominal pain, and fever. A study using a mixture of *Bifidobacterium longum* (BB536) and *Lactobacillus johnsonii* (La1) showed that only the latter (La1) colonized the gut, reducing the number of pathogenic microorganisms and reducing colonic inflammation in CRC patients undergoing surgery. This result shows that adding more probiotics will not have a greater effect and it is important to study each strain individually and its combination before it can be recommended to patients.

In another clinical trial, a probiotic mixture consisting of *Enterococcus*, *Clostridium* and *Bacillus* was used in patients undergoing CRC surgery to discern whether their consumption could ameliorate the adverse effects of surgery. It was found that peri-
surgical use of this mixture significantly reduced incisional infections and decreased the acute inflammatory response to surgery. However, in this study, no randomization was performed, and patients were included in one group (control) or the other (probiotic) according to the date of surgery, with the control group (2009-2011) prior to the probiotic group (2011-2013). This does not allow for a clear conclusion on the effect of the probiotic, because multiple factors may have changed during those two years, including greater experience of the surgical team or better technical means. In this regard, the authors describe that a higher number of laparotomies were performed in the probiotic group, and that performing or not performing laparotomy is a key factor related to the outcome of the surgery.

As far as prebiotics are concerned, rice bran is of great interest due to its large commercial use. Numerous studies show the benefit of whole grain consumption in the prevention of CRC. In the case of rice bran, various phytochemicals in its composition have been associated with a decrease in the risk of cancer development, in particular CRC. Its consumption increases levels of Firmicutes and Lactobacillus and produces numerous metabolic modifications that could be related to a decrease in the risk of developing CRC.

In another clinical trial with prebiotics in CRC patients, a mixture of different nondigestible oligosaccharides was used for 7 days before patients underwent radical surgery to remove the tumor. Both groups received the same nutrition (provided by the hospital) in the 7 days before and after surgery (parenteral nutrition). Surgery decreased the diversity of the microbiota in both groups, underlining the impact of these interventions on gut health. Interestingly, a principal component analysis of microbiome diversity was able to unequivocally identify samples from postoperative patients who had received prebiotics. Furthermore, the use of these prebiotics improved systemic immune function, confirming the positive effect that microbiota can have on immune response. An important limitation of this study is that the randomization did not specify the stage or type of tumor.

Symbiotics have also been tested in randomized clinical trials. A commercially named symbiotic, simbioflora®, containing fructooligosaccharides, 3 strains of Lactobacillus, and Bifidobacterium lactis showed promising results in CRC patients undergoing surgery. The use of this symbiotic significantly reduced inflammation and postoperative infections. However, this is a small study of patients with cancer at different stages, so the data should be analyzed with caution. In another study, a
mixture of *Bifidobacterium*, *Lactobacillus* and inulin strains was used in stage I-III patients undergoing surgery. This treatment resulted in an improvement in the composition of the microbial community, especially the SCFA-producing bacterium. However, this study does not define blind randomization of patients and there is no placebo, so the data should be also analyzed with caution.164 Finally, a randomized clinical study was conducted in 20 healthy subjects with backcrossed arms with the aim of preventing CRC. This study of 4 weeks duration per intervention (switching every 4 weeks to another arm until each group completed all 4) was done with 4 different arms: placebo, *Bifidobacterium lactis*, resistant starch and their combination (*Bifidobacterium lactis* and resistant starch). It was shown that in healthy subjects the combination of *Bifidobacterium lactis* and resistant starch increased the levels of *Lachnospiraceae* spp. However, the other parameters analyzed, such as stool mass, pH or ammonium, SCFA, circulating cytokines, and markers of colonic epithelial health, did not change.165

The use of pomegranate extract in patients undergoing surgical tumor resection has also been investigated. Pomegranate extract was shown to produce significant changes in the expression of numerous genes and microRNAs related to tumor development. These results underline the crucial role of diet in modifying gene expression and, therefore, in the etiology of disease.167, 168

5. Conclusion

We can summarize the conclusions of this work regarding the modification of the microbiota in the CRC patient as follows:

1) **Antibiotic use** is one of the *major deleterious factors* for the prognosis of treatment efficacy, due to its *harmful effect on the microbiota*.

2) **Prebiotics** such as inulin and resistant starch can support the development of a healthy microbiota.

3) **Probiotics**, mainly based on **SCFA-producing lactic acid strains**, show a *favorable profile* in preclinical and clinical studies. However, not all strains are equally favorable and are therefore *not recommended for use in patients without individualized study of the patient and the probiotic*.

4) A *healthy* and varied *nutrition*, consisting mainly of unprocessed *plant-based foods*, seems to be one of the *best sources* to maintain a *homeostatic microbiota*.
Finally, after a detailed analysis of the literature, in a healthy person, there is no need to recommend the use of pre-, pro- or symbiotics in addition to a healthy diet. However, CRC patients often have severe dysbiosis due to their own disease, and broad-spectrum antibiotic use. In these patients, apart from a healthy diet, or if a healthy diet cannot be established, carefully chosen pre-, pro- and/or symbiotics may be beneficial to restore a beneficial microbiota and support the efficacy of hospital treatments more effectively.

Acknowledgements

We thank Dr. Alberto Canfran-Duque and Noemi Rotllan for their for critical reading of the manuscript. We apologize to those whose work could not be cited owing to space limitations.

Authors Contributions

JMM designed and performed the systematic search, wrote and edited the manuscript. SBE contributed to the editing and interpretation of the manuscript. All authors read and edited the final draft of the manuscript.

Competing Financial Interest

The authors declare no conflicts of interest

Correspondence and requests for materials should be addressed to: madrigal-matute@ibions.com.

Data availability

There are not restrictions on data availability in this manuscript.
6. Bibliography

82. Paolillo, R., Romano Carratelli, C., Sorrentino, S., Mazzola, N. & Rizzo, A. Immunomodulatory effects of Lactobacillus plantarum on human colon cancer cells. *Int Immunopharmacol* 9, 1265-1271 (2009).

Figure legends

Figure 1. Flow chart of the search and selection process.

Figure 2. Distribution of the studies analyzed. a. Preclinical and clinical studies. b and c. Pre-, pro-, symbiotics and food in b. preclinical and c. clinical studies. d. Strains used as probiotics in preclinical studies. e. Prebiotics used in preclinical studies. f. Strains used as probiotics in clinical studies. g. Prebiotics used in clinical studies. * More than 1 pro- and prebiotic is used in some studies.
Table 1. Details of the search strategy used.

<table>
<thead>
<tr>
<th>Field</th>
<th>Key words</th>
<th>Boolean Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>(Cancer* OR carcino* OR tumor* OR onco*)</td>
<td>AND</td>
</tr>
<tr>
<td>Title/Abstract</td>
<td>(colon* OR colorect*)</td>
<td>AND</td>
</tr>
<tr>
<td>Title/Abstract</td>
<td>(microbi* OR dysbi*)</td>
<td>AND</td>
</tr>
<tr>
<td>Title/Abstract</td>
<td>(chemo* OR immuno* OR car-t* OR radium* OR surgery* OR therapy*)</td>
<td>AND</td>
</tr>
<tr>
<td>Type of publication</td>
<td>(Biography OR Comment OR Duplicate publication OR Editorial OR Guideline OR Interview OR News OR Personal Narrative OR Published Erratum OR Retracted Publication OR Retraction of Publication OR Meta-Analysis OR Review OR Systematic Review)</td>
<td></td>
</tr>
</tbody>
</table>

Using words/prefixes with an asterisk opens the search to more results based on plurals and varying suffixes.
Table 2. Summary of the results of the articles analyzed.

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Type of cancer</th>
<th>Type of study</th>
<th>Impact on microbiota</th>
<th>Mechanism</th>
<th>Effect on the tumor</th>
<th>Ref</th>
<th>Scientific quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preclinical studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probiotics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probiotic: Akkermansia muciniphila</td>
<td>Subcutaneous, syngeneic model of colon cancer</td>
<td>Female BALB/c mice injected subcutaneously with CT26 cells in combination or not with IL-2</td>
<td>↑ diversity and Akkermansia, Allstipes and Lactobacillus</td>
<td>↑ necrosis, ↓ proliferation, and ↑ tumor apoptosis. ↑ CTL and ↓ Treg recruitment. ↑ IFN-γ and IL-2 in the tumor and ↑ TNF-α in serum, together with ↓ TGF-β. The Amuc protein effects through TLR2.</td>
<td>↓ tumor volume and weight and ↑ survival time</td>
<td>115</td>
<td>4</td>
</tr>
<tr>
<td>Probiotic: VSL#3, is composed of: Lactobacillus plantarum, Lactobacillus delbrueckii subsp. Bulgaricus, Lactobacillus paracasei, Lactobacillus acidophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis and Streptococcus salivarius subsp. Thermophilus.</td>
<td>Gnotobiotic model of CRC associated with colitis and inflammation</td>
<td>129/SvEv deficient in IL10 treated with AOM</td>
<td>↓ Verrucomicrobia and ↑ Proteobacteria in the mucosa. ↓ Bacteroidetes in feces</td>
<td>↓ Clostridium in the mucous membrane</td>
<td>↑ penetrance, invasiveness, histological grade, tumor volume and number of tumors</td>
<td>114</td>
<td>4</td>
</tr>
<tr>
<td>Inactivated</td>
<td>CRC</td>
<td>Syngeneic</td>
<td>↓ Proteobacteria</td>
<td>↓ of tumors</td>
<td>76</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Probiotic: *Lactobacillus acidophilus* lysates (Phylum *Firmicutes*)
- **Associated with colitis:** Male BALB/C treated with AOM and DSS
- **Early colon carcinogenesis:** Male Wistar rats treated with DHM
- **Upregulated:** Th1 lymphocytes (CD3+ CD4+ IFN-γ+), M1 macrophages (CD11b + F4/80 + CD86+), Treg (CD4+ CD25 + Foxp3+) and M2 macrophages (F4/80 + CD206+) in the tumor microenvironment. In addition to ↑ IL-2 in nodules and plasma and trend towards ↑ survival in combination with CTLA-4 inhibitors
- **Downregulated:** Weight loss, fecal pH, liver transaminases and fecal enzyme normalization, aberrant intestinal crypts, especially with *L. rhamnosus*.

Probiotic: *Enterococcus faecalis*, *Bifidobacterium longum* and *Lactobacillus acidophilus* (Bifico)
- **Early colon carcinogenesis:** C57BL/6 male WT treated with AOM and DSS
- **Upregulated:** Lactobacillus, Desulfovibrio, Mucispirillum, and Odoribacter
- **Colon size:** ↑ IL-1β, IL-6, COX-2 and TNF-α, in addition to PGE2 production. ↓ Cxcl1, Cxcl2, Cxcl5 and Cxcl7. ↓ number and volume of tumors.

Probiotic: *Akkermansia muciniphila* or its specific membrane protein Amuc_1100
- **Early colon carcinogenesis:** C57BL/6 male WT treated with AOM and DSS
- **Upregulated:** Cytotoxic TCD8 in mesenteric nodules. ↑ TCD8-TNF-α+ and ↓ TCD8-PD-1+. ↓ TCD8 and Ki67 in colon.
- **Downregulated:** Malignancy score, tumor formation and area

Probiotic: *Lactobacillus rhamnosus* M9
- **Early colon carcinogenesis:** Male 6- C57BL/6NCrSlc mice treated with AOM and DSS
- **Upregulated:** Diversity of the flora and ↑ of Blautia, *Akkermansia*, *Lactobacillus* and *Bifidobacterium*
- **Downregulated:** PCNA, pSTAT3, pAKT, CD68+ and CD163+ in subserosa. ↓ number and size of tumors. ↓ inflammatory and fibrotic score.

Probiotic: *Butyricicoccus pullicaecorum*
- **Early colon carcinogenesis:** Male BALB/cByIbar treated with DHM
- **Upregulated:** SLCSA8 and GPR43
- **Downregulated:** Infiltration, anal bleeding, and CEA levels
<table>
<thead>
<tr>
<th>Probiotic</th>
<th>Lactobacillus plantarum</th>
<th>Early colon carcinogenesis</th>
<th>Male Wistar rats treated with DHM</th>
<th>NR</th>
<th>↑ IL-18 ↓ proliferation, volume and total number of tumors. ↓ colon length (non-significant results)</th>
<th>121</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probiotic</td>
<td>Lactobacillus bulgaricus</td>
<td>CRC associated with colitis</td>
<td>C57BL/6 male WT treated with AOM and DSS</td>
<td>NR</td>
<td>↓ IL-6, TNF-α, IL-17, IL-23 and IL-1β and ↑ IFN-γ in healthy and tumor intestinal tissue</td>
<td>↓ mean tumor volume and size, ↓ pathological severity score and ↑ colon length.</td>
<td>122</td>
</tr>
<tr>
<td>Probiotic</td>
<td>Bifidobacterium and Lactobacillus</td>
<td>Subcutaneous, syngeneic model of colon cancer</td>
<td>Female BALB/c mice injected subcutaneously with CT26 cells</td>
<td>↑ Alloprebotella, Citrobacter, Prevotellaceae_UCG-001, Roseburia, Thalassospira, Erysipelotrichaceae and Lachnospiraceae_UCG-009, ↓ Desulfovibrio, Anaerotruncus, Mucispirillum, Odoribacter, and Escherichia-Shigella. ↑ Bacteroides_chinensis_lae and Helicobacter_Ganmani. ↓ Escherichia coli, Lachnospiraceae_, bacterium_COE1, Bacteroides_vulgatus and Lachnospiraceae_.bacterium_10-1</td>
<td>NR</td>
<td>No change in tumor volume</td>
<td>123</td>
</tr>
<tr>
<td>Probiotic</td>
<td>Lactobacillus casei variety rhamnosus (Lcr35)</td>
<td>Subcutaneous, syngeneic model of colon cancer</td>
<td>Male BALB/c mice injected subcutaneously with CT26 cells and treated with FOLFOX (5-fluorouracil, leucovorin, and Lactobacillus casei oxaliplatin).</td>
<td>↑ Firmicutes and Bacteroidetes</td>
<td>↓ severe diarrhea and mucositis, apoptotic cells, NF-κB and BAX, ↓ TNF-α and IL6.</td>
<td>Unchanged</td>
<td>124</td>
</tr>
<tr>
<td>Probiotic</td>
<td>Faecalibacterium prausnitzii</td>
<td>Subcutaneous, colon cancer with cachexia</td>
<td>Male CD2F1 mice injected subcutaneously with C26 (I understand this refers to CT26, although it is</td>
<td>NR</td>
<td>Improvement of various parameters related to the intestinal barrier, but not significant</td>
<td>↓ tumor mass, not significant</td>
<td>125</td>
</tr>
<tr>
<td>Probiotic</td>
<td>CRC associated with colitis</td>
<td>Prob.#6</td>
<td>Lactobacillus zeae</td>
<td>↑ Ki67, ↑ Bik</td>
<td>↓ tumor volume, number of tumors and histological malignancy</td>
<td>126</td>
<td>2</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
<td>----------</td>
<td>------------------</td>
<td>-------------</td>
<td>---</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Probiotic</td>
<td>Lactobacillus reuteri</td>
<td>CRC</td>
<td>C57BL/6 WT females treated with AOM and DSS</td>
<td>↑ Lactobacillus zeae</td>
<td>↓ Ki67, ↑ Bik</td>
<td>↓ tumor zone KC, IL22, IL6, TNF-α, IL-1α, ↓ serum KC, IL22, IL6, ↓ CD11b+Gr-1+</td>
<td>127</td>
</tr>
<tr>
<td>Probiotic</td>
<td>VSL#3, is composed of: Lactobacillus plantarum, Lactobacillus delbrueckii subsp. Bulgaricus, Lactobacillus paracasei, Lactobacillus acidophilus, Biﬁdobacterium breve, Biﬁdobacterium longum, Biﬁdobacterium infantis and Streptococcus salivarius subsp. Thermophilus.</td>
<td>CRC</td>
<td>C57BL/6 male BALB/c treated with AOM and DSS</td>
<td>↑ Ruminoclostridium and ↑ fecal acetic acid* and short-chain short acids* (*poorly performed comparator groups)</td>
<td>↓ IL-6, IL-17, and PCNA in colonic homogenates</td>
<td>Metformin + VSL#3 = ↓ Ki67, F4/80</td>
<td>Metformin and metformin+VSL#3 = ↓ number of tumors</td>
</tr>
<tr>
<td>Probiotic</td>
<td>Lactobacillus paracasei DTA81</td>
<td>Early colon carcinogenesis</td>
<td>C57BL/6 male BALB/c treated with DHM</td>
<td>↑ Ruminoclostridium and ↑ fecal acetic acid* and short-chain short acids* (*poorly performed comparator groups)</td>
<td>↓ IL-6, IL-17, and PCNA in colonic homogenates</td>
<td>Show no change</td>
<td>Show no change</td>
</tr>
<tr>
<td>Probiotic</td>
<td>Lactobacillus rhamnosus</td>
<td>Early colon carcinogenesis</td>
<td>C57BL/6 male BALB/c treated with DHM</td>
<td>↑ Romboutsia and Turicibacter</td>
<td>↑ IL4, IL-10 IL-6, IL-17, TNF-α, IFN-γ, c-MYC and P-53 in colonic homogenates</td>
<td>Show no change</td>
<td>Show no change</td>
</tr>
<tr>
<td>Probiotics: Lactobacillus acidophilus, Lactobacillus rhamnosus and Biﬁdobacterium longum</td>
<td>CRC associated with colitis</td>
<td>C57BL/6 male BALB/c treated with AOM and DSS</td>
<td>↑ Lactobacillus, Biﬁdobacterium, Allobaculum, Clostridium XI, and Clostridium X III</td>
<td>↓ colitis, ↓ circulating levels of RANTES and eotaxin; ↓ p- IKK and TNF-α with ↑ IL-10</td>
<td>↓ incidence and number of tumors</td>
<td>131</td>
<td>1</td>
</tr>
</tbody>
</table>

Prebiotics

<p>| Prebiotic | CRC associated with colitis | Prob.#6 | ↑ histone 3 and ↓ HDAC activity, ↑ levels of Fas and active caspase 3, ↓ of p21, p27 and Ki-67. | ↓ histological grade, volume and number of tumors | 132 | 5 |
| Prebiotic: | Subcutaneous, syngeneic model of colon cancer | Female C57BL/6 WT mice injected with MC38 cells. With humanized microbiota from healthy humans or patients, anti-PD-1 treatment. | ↑ diversity, ↑ Lactobacillaceae, Bilobobacteriaceae, Erysipelotrichaceae, Ruminococcaceae, Faecalibacterium, and Holdemania. ↑ percentage Firmicutes/Bacteroidetes. ↑ acetate and butyrate. | ↓ tumor volume and size | 131 | 4 | |
| Prebiotic: | Subcutaneous, transplant colon cancer (MC-38) | Syngeneic C57BL/6 mice | ↑ Clostridium cluster XIVa | ↑ of MHC class I and MHC class II expression in CD | Inulin causes ↓ tumor volume. No change in tumor volume with Mucin | 132 | 4 |
| Prebiotic: | CRC associated with colitis | C57BL/6 WT treated with HFD, AOM and DSS | ↑ Campylobacter, Bilobobacterium and Lactobacillus. ↓ E. faecalis and E. coli | ↓ IL-1, IL-6 and circulating TNF-α and in colonic tissue ↓ p-STAT3 and p-P65 | ↑ survival, ↓ tumor diameter and percentage weight/length of intestine, ↓ pathological score and proliferation, ↑ apoptosis. | 133 | 3 |
| Prebiotic: | CRC associated with colitis | ICR WT male treated with AOM and DSS | ↑ Lachnospiraceae and ↓ Bacteroidales and Rikenellaceae | ↑ caspase 3 | ↓ size and number of colorectal adenomas and total tumors | 134 | 3 |
| Prebiotic: | CRC associated with colitis | C57BL/6 male WT treated with AOM and DSS | ↑ in butyrate-producing bacteria (Allobaculum, Roseburia and Intestinimonas) and fecal ↑ butyrate | ↓ expression of β-catenin, Ki67, IL-6, TNF-α and MPO. ↓ infiltration of immune cells in the spleen, ↓ IL10 in the distal colon | ↓ the number of 1-3 mm adenomas in a dose-dependent manner and damage scales. | 135 | 2 |
| Prebiotic: | Subcutaneous, transplant colon cancer (MC-38) | Female C57BL/6 mice | ↑ Lachnospiraceae (Clostridiales) and diversity | They suggest a ↑ of SCFA and TCD4+ and TCD8+ infiltration of the tumor, but are not significant. | ↓ tumor volume in combination with PD-L1 inhibitors. | 136 | 2 |
| Prebiotic: | CRC associated with colitis | C57BL/6 WT females treated with AOM and DSS and HFD | ↑ Turicibacter, Bacteroides, Bacteroidaceae, Erysipelactobacillium and Staphylococcus | ↓ serum levels of IL-17 and NF-κB | ↓ tumor incidence | 137 | 2 |</p>
<table>
<thead>
<tr>
<th>Prebiotic</th>
<th>CRC/associated with colitis</th>
<th>C57BL/6 WT females treated with AOM and DSS</th>
<th>↑ diversity, ↑ Akkermansia, Butyricicoccus, Clostridium and Ruminococcus, ↓ Escherichia and Enterococcus.</th>
<th>↓ IL-6, IL-22, TNF-α, and IL-1β</th>
<th>↓ tumor frequency, size, and stage.</th>
<th>139</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prebiotic: Lactulose-derived galacto-oligosaccharides</td>
<td>CRC/associated with colitis</td>
<td>Male Rattus norvegicus F344 rats treated with AOM and DSS</td>
<td>↑ propionate, ↑ diversity of flora, anti-inflammatory; Bilobobacterium, Bacteroidaceae, Prevotellaceae, Acidaminococcaceae, Bilobobacterium, Peptococcaceae, Oscillospiraceae and ↓ of pro-inflammatory; Lachnospiraceae, Eubacteriaceae, Acholeplasmataceae and Firmicutes/Bacteroidetes %.</td>
<td>↑ cecum length</td>
<td>↓ number and volume of polyps</td>
<td>140</td>
<td>2</td>
</tr>
<tr>
<td>Prebiotic: Anthocyanidins wrapped or not in exosomes.</td>
<td>CRC/associated with dysbiosis</td>
<td>ApoMin-/- Mice inoculated with Bacteroides fragilis</td>
<td>NR</td>
<td></td>
<td>↓ number of tumors</td>
<td>141</td>
<td>1</td>
</tr>
<tr>
<td>Prebiotic: polymethoxyflavones</td>
<td>CRC/associated with colitis</td>
<td>ICR WT males treated with benzo[a]pyrene and DSS</td>
<td>↑ Sphingobacteriacea, Gammaproteobacteria, Ruminococcaceae, Blautia, Bacilli, Parabacteroides, Lactobacillus, Ruminis (without statistical analysis)</td>
<td>↑ colon size, ↓ hepatic and renal toxicity, ↓ BaP-7,8-dihydrodiol-9,10-epoxide-DNA binding, ↓ genes for inflammation, metastasis and ↑ antioxidants.</td>
<td>↓ hyperplasias, adenoma and adenocarcinomas</td>
<td>142</td>
<td>1</td>
</tr>
<tr>
<td>Prebiotic: Epigallocatechin in gallate (EGGG)</td>
<td>CRC/associated with colitis</td>
<td>FVB/N WT female treated with benzo[a]pyrene and DSS</td>
<td>↑ Lactobacillus, Fusobacterium, Ruminococcus, ↓ Bacteroides, Anaerotruncus</td>
<td>NR</td>
<td>↓ volume and number of tumors and pre-cancerous lesions</td>
<td>143</td>
<td>1</td>
</tr>
<tr>
<td>Prebiotic: Boswellia</td>
<td>CRC/associated with colitis</td>
<td>ICR WT male treated with Clostridiales spp and ↓ Bacteroidales</td>
<td></td>
<td>↓ NF-, p, PCNA, ↑</td>
<td>↓ number of tumors</td>
<td>144</td>
<td>1</td>
</tr>
</tbody>
</table>
Microbiota in CRC

<table>
<thead>
<tr>
<th>serrata resin extract</th>
<th>with colitis</th>
<th>AOM and DSS</th>
<th>colon length</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prebiotic: Germinated barley extract</th>
<th>CRC associated with colitis</th>
<th>AOM-treated male Fisher 344 rats</th>
<th>NR</th>
<th>↓ TLR4 and COX2</th>
<th>↓ aberrant crypts</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Symbiotics</th>
<th>Subcutaneous and orthotopic model of colon cancer</th>
<th>CT26Luc and ApcMin+/-</th>
<th>↑ Muribaculaceae, Bacteroides, Bacteroides, Alloprevotella, Lachnospiraceae, and Ruminococcaceae</th>
<th>↑ isobutyrate, butyrate, isovalerate, propionate, valerate, iso-hexanoate, and hexanoate, ↓ dysbiosis</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Symbiotic: Clostridium butyricum and prebiotic dextran</th>
<th>CRC associated with colitis</th>
<th>C57BL/6 male WT treated with AOM and DSS</th>
<th>↑ Lactobacillus, Biobacterium, and Akkermansia associated with ↑ SCFA and ↓ Staphylococcus</th>
<th>↓ TNF-α, IFN-γ, IL-1β, IL-6, iNOS and COX-2; ↑ IL-4 and IL-10; ↑ MUC2, TFF3 and ZO-1; ↑ p53, p21, and Bax. ↓ Bcl-2 and Bcl-xL. ↓ β-Catenin, NF-kB and ↑ IκB-α</th>
</tr>
</thead>
</table>

| Model of CRC recurrence after surgery | Male BALB/c mice inoculated with CT26 after resection and anastomosis | Western diet = ↑ E. faecalis. Western diet associated with tumors ↑ Proteus, Akkermansia and Trabulsiella. ↑ in Bacteroides, Roseburia and Ruminococcus. Inoculation with E. faecalis = ↑ Proteus, Enterococcus, Trabulsiella Akkermansia and Clostridium and ↓ Rosebunda. | NR | ↑ tumor formation with Western diet and E. faecalis. ↑ distant metastasis with Western diet (not significant). |
|--------------------------------------|----------------------|---------------------------------|----|-----------------|------------------|

<table>
<thead>
<tr>
<th>Food extract: selfish Muricidae: 1. marine extract (NE) 2. metabolite of the extract 6-bromoisatin (6-Br)</th>
<th>CRC genotoxic</th>
<th>AOM-treated male C57BL/6 WT</th>
<th>6-Br = ↓ tumor proliferation. NE = ↓ proliferation and ↑ apoptosis in crypts.</th>
<th>6-Br = ↓ number of aberrant crypts and tumors. NE = ↓ number of tumors</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Functional food: extract of 55 different foodstuffs mixed</th>
<th>CRC associated with colitis</th>
<th>AOM- and DSS-treated male BALB/c mice</th>
<th>↑ Desulfovibrio and Ruminococcaceae and ↑ from Bacteroides, Ruminoclostridium_6, Holmenella, Clostridium_sensu_</th>
<th>Improved intestinal barrier and body weight maintenance. ↓ IL-6 and TNF-α. ↓ in number and size of tumors. ↑ survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet:</td>
<td>CRC genotoxic</td>
<td>Food extract: Nutmeg</td>
<td>Food extract: Anthocyanin extract from blackberries.</td>
<td>Food extract: Anthocyanins extracted from strawberries and blackberries</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>- low fat (LFD)</td>
<td>A/J WT male treated with AOM</td>
<td>C57BL/6J WT and ApcMin+/- Male Mice</td>
<td>C57BL/6 male WT treated with AOM and DSS</td>
<td>Male Rattus norvegicus F344 rats treated with AOM and DSS</td>
</tr>
<tr>
<td>- high fat (HFD)</td>
<td>MD improves dysbiosis with an HFD, but worsens it with an LFD.</td>
<td>MD † apoptosis in HFD, and especially in LFD. MD † eicosapentaenonic acid (EPA), especially in LFD.</td>
<td>↑ in urine of cresol sulphate and glucuronide, indoxyl sulphate and phenyl sulphate, ↓ colon and liver IL6, ↓ ALT and amylase, ↑ LPE 18:0, LPC 18:0, azelaic acid, sebacic acid, palmitolcarnitine and oleocarnitine. ↑ lipid metabolism gene expression in the colon and liver</td>
<td>↓ tumor volume and number of tumors</td>
</tr>
<tr>
<td>- a mixture of one of them with Mediterranean (MD). This being a mixture of ω-3 polyunsaturated fatty acids (PUFA), eicosapentanoic acid and polyphenols.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food extract: Anthocyanin extract from blackberries.</td>
<td>Eubacterium rectale, Faecalibacterium prausnitzii and Lactobacillus, Desulfovibrio and Enterococcus spp.</td>
<td>↑ SFRP2 triggers the ↓ of DNMT1 and p-STAT3. In addition to ↓ IL-1β, IL-6, IL-10, COX-2 and TNF-α.</td>
<td>↓ number of tumors</td>
<td>↑ Bilophila wadsworthia</td>
</tr>
<tr>
<td>Food extract: Anthocyanins extracted from strawberries and blackberries</td>
<td>Bilophila wadsworthia</td>
<td>Improved plasma reducing capacity</td>
<td>↓ number of tumors</td>
<td></td>
</tr>
<tr>
<td>Food extract: American</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

stricto, Allobaculum and Parasutterella. ↓ of deuteroporphyrin IX, citrulline, and diferuloylputrescine, and ↑ -acid acetic, ascorbic, palmitic, quinic, urscholic, branched amino acids, rosmaridiphenol and scillirosidine.
Ginseng with colitis

<table>
<thead>
<tr>
<th>Food extract and prebiotic</th>
<th>AOM and DSS and HFD</th>
<th>histological malignancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green tea extract (EGCG) and resistant starch</td>
<td>CRC associated with colitis</td>
<td>↑ Parabacteroides, Barnesiella, Ruminococcus, Marvinbryantia and Bifidobacterium. ↑ acetate, butyrate and propionate.</td>
</tr>
<tr>
<td>American Ginseng</td>
<td>Prevention of colon cancer of genetic origin with a Western diet</td>
<td>↑ IL-1α, IL-1β, IL6, TNF-α, G-CSF and GM-CSF</td>
</tr>
<tr>
<td>Male Sprague-Dawley rats treated with AOM and DSS</td>
<td>↑ GPR43, ↓ COX-2, NF-κB, TNF-α and IL-1β.</td>
<td></td>
</tr>
<tr>
<td>Male ApcMin/+ mice on high-fat diet</td>
<td>Resistant starch = ↓ number of tumors and adenocarcinoma formation</td>
<td></td>
</tr>
</tbody>
</table>

Clinical studies

Probiotics

<table>
<thead>
<tr>
<th>Probiotic: Bifidobacterium longum, Lactobacillus acidophilus and Enterococcus faecalis</th>
<th>Patients with CRC who have previously undergone radical surgery and who are about to undergo further surgery.</th>
<th>Randomized clinical trial Peri-surgery placebo (n=11), probiotic (n=11). Healthy control patients (n=11).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with CRC who could be removed by surgery and who are scheduled for surgery</td>
<td>↑ Enterococcus and Peptostreptococcus, Comamonas, Fusobacterium</td>
<td></td>
</tr>
<tr>
<td>Randomized clinical study Placebo (n=30), preoperative probiotic (n=30)</td>
<td>↑ IgG and sIga in serum, ↓ endotoxins, D-lactic acid, IL-6 and CRP</td>
<td></td>
</tr>
<tr>
<td>Clinical study Control (n=81), Probiotic (n=75)</td>
<td>↓ incidence of post-surgery infections</td>
<td></td>
</tr>
<tr>
<td>Randomized double-blind clinical study. Placebo (n=50), perioperative probiotic (n=50).</td>
<td>↑ diversity, ↑ Bifidobacterium and Lactobacilli. ↓ Enterobacteriaceae, Pseudomonas and Candida</td>
<td></td>
</tr>
<tr>
<td>Randomized double-blind clinical study. Placebo (n=10), probiotic</td>
<td>↑ claudin1, JAM1 and occludin</td>
<td></td>
</tr>
<tr>
<td>CRC patients whose tumor could be removed by surgery and who are scheduled for surgery</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>CRC patients whose tumor could be removed by surgery and who are scheduled for surgery</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>CRC patients whose tumor could be removed by surgery and who are scheduled for surgery</td>
<td>↑ CD3, CD4, CD8 and naive and memory lymphocytes, ↓ CD83-123 markers,</td>
<td></td>
</tr>
<tr>
<td>Clinical study Control (n=50), Placebo (n=50), perioperative probiotic (n=50).</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Randomized double-blind clinical study. Placebo (n=10), probiotic</td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>

All rights reserved. No reuse allowed without permission.

medRxiv preprint doi: https://doi.org/10.1101/2021.09.01.21262956; this version posted September 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
Microbiota in CRC

Madrigal-Matute & Banon-Escandell

Probiotics

<table>
<thead>
<tr>
<th>Probiotic:</th>
<th>Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus rhamnosus, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium breve, Streptococcus thermophilus</th>
<th>Stage III colorectal adenocarcinoma</th>
<th>Randomized clinical study of 78 patients with colorectal carcinoma with surgery</th>
<th>CD83-HLADR, and CD83-11c</th>
</tr>
</thead>
<tbody>
<tr>
<td>mixture at a dose of 10^7 (n=11) and probiotic mixture at a dose of 10^9 (n=11). Peri-surgery treatment</td>
<td>\downarrow number of complications associated with surgery</td>
<td>74</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Prebiotics

| Prebiotic: | food extract: evodiamine | CRC patients undergoing colonoscopies vs. healthy patients without any colorectal disease | \uparrow E. faecalis and E. coli \downarrow Campylobacter, Bifidobacterium and Lactobacillus in CRC. \downarrow Endotoxin and D-lactic acid in CRC. | \downarrow proliferation, p-STAT3 and p-P65 after incubation with evodiamine in colon cancer cell lines HCT-116 and SW-480 | 133 | 3 |
| --- | --- | --- | --- | --- | --- |
| Patients at high risk of developing CRC | Randomized, double-blind, placebo-controlled trial (placebo = 19, treatment = 20). Placebo = rice powder, rice bran treatment. 30 g every 24h, for 24 weeks. | \uparrow Firmicutes and Lactobacillus | NR | NR | 161 | 2 |

Symbiotics

| Symbiotic: | Maltodextrin as placebo | CRC patients requiring radical surgery (peri-surgery: pre- and post-surgery are analyzed). | Randomized double-blind clinical study with 140 CRC patients (control = 70; prebiotics = 70) | Pre-surgery = \uparrow IgG, IgM and transferrin, Post-surgery = \uparrow IgG, TCD3+CD8+ (cytotoxic/suppresssive T lymphocytes) and CD19+ (B lymphocytes). | NR | 162 | 2 |
| --- | --- | --- | --- | --- | --- | --- |
Microbiota in CRC

<table>
<thead>
<tr>
<th>with surgery. Stages I-III</th>
<th>placebo-controlled clinical study (placebo; n = 36. Treatment; n = 37).</th>
<th>surgery infections, antibiotic use and hospital stay.</th>
<th>none in the treatment group.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simbioflora® (6g fructooligosaccharide, plus Lactobacillus acidophilus NCFM, Lactobacillus rhamnosus HN001, Lactobacillus casei LPC-37 and Bifidobacterium lactis HN019).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbiotic: Bifidobacterium lactis Bl-04, Lactobacillus acidophilus NCFM and inulin</td>
<td>Clinical trial 21 healthy controls (colonoscopy), 15 CRC patients (8 non-intervention, 7 probiotic)</td>
<td>↑ Firmicutes, Clostridiales spp and Faecalibacterium NR</td>
<td>NR</td>
</tr>
<tr>
<td>Stage I-III CRCs undergoing surgery</td>
<td></td>
<td>Symbiotic = ↑ Lachnospiraceae spp.</td>
<td>164</td>
</tr>
<tr>
<td>Pre-, pro- and symbiotic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prebiotic (resistant starch) probiotic (Bifidobacterium lactis lactis) or combination of both (symbiotic)</td>
<td>Study in healthy subjects for CRC prevention</td>
<td>Randomized double-blind clinical study with crossover treatments. Healthy subjects, n = 17, for 18 weeks, 4 weeks per arm (placebo, probiotic, probiotic and symbiotic).</td>
<td>No changes in fecal ammonium, SCFA or circulating cytokines. No epithelial changes.</td>
</tr>
<tr>
<td>Food extract: Rice bran</td>
<td>CRC patients who have undergone surgery.</td>
<td>Randomized clinical study (control; n = 10, 30g/day rice bran; n = 9)</td>
<td>↑ carbohydrate, lipid, amino acid, cofactor and vitamin metabolism</td>
</tr>
<tr>
<td>Food extract: Pomegranate extract with high ellagitannin content</td>
<td>CRC patients whose tumor could be removed by surgery</td>
<td>Randomized clinical study. Control (n=10), PE (n=36)</td>
<td>↓ CD44 and CTNNB1 in adjacent healthy tissue and tumor. ↓ CDKN1A, EGFR and TYMS in tumor.</td>
</tr>
<tr>
<td>Food extract: Pomegranate extract with high ellagitannin content</td>
<td>CRC patients whose tumor could be removed by surgery and who are scheduled for surgery</td>
<td>Randomized double-blind clinical study Control (n=11), pomegranate extract #1 (n=19) and #2 (n=16)</td>
<td>Modulation of miRNAs</td>
</tr>
</tbody>
</table>

Food

- Rice bran: CRC patients who have undergone surgery. Randomized clinical study (control; n = 10, 30g/day rice bran; n = 9).

- Pomegranate extract with high ellagitannin content: CRC patients whose tumor could be removed by surgery. Randomized clinical study. Control (n=10), PE (n=36).

- Pomegranate extract with high ellagitannin content: CRC patients whose tumor could be removed by surgery and who are scheduled for surgery. Randomized double-blind clinical study Control (n=11), pomegranate extract #1 (n=19) and #2 (n=16).

All rights reserved. No reuse allowed without permission. (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
Increase/activation has been indicated as (↑) and reduction/inhibition as (↓). NR - Not reported. Ref = References
Records identified from Pubmed (n = 202)

- Records screened (n = 108)
 - Records excluded (n = 96)
 - Excluded through automatic selection: biographies, commentaries, duplicates, editorials, guidelines, interviews, news, narratives, erratum, retractions, meta-analysis, reviews and systematic reviews.

- Records assessed (n = 62)
 - Records excluded (n = 46)
 - Excluded after abstract analysis due to:
 - Review article = 12
 - Another type of cancer = 9
 - Only in vitro results = 13
 - Other languages = 4
 - Conference results = 2
 - Subject did not match the criteria = 6

Studies included for analysis (n = 62)

- Clinical trials (n = 15)