Towards the global equilibrium of COVID-19: statistical analysis of country–level data

Mark Last1,†

1Ben–Gurion University of the Negev

Abstract

Objectives: The time-varying effect of COVID-19 on a population of a given country or territory can be measured by the Reproduction Number (R) and the Case Fatality Rate (CFR). In our study, we explore the dynamics of these two measures to test whether the virus has reached its equilibrium point and to identify the main factors explaining R and CFR variability across countries.

Design: A retrospective study of publicly available country-level data.

Setting: Fifty countries having the highest number of confirmed COVID–19 cases at the end of July 2021.

Participants: Aggregated data including 182 085 182 COVID-19 cases confirmed in the selected fifty countries from the start of the epidemic to July 31, 2021.

Primary and secondary outcome measures: The daily values of COVID-19 R and CFR measures were estimated using country-level data from the Our World in Data website.

Results: The mean values of country–level moving averages of R and CFR went down from 1.114 and 5.51%, respectively, on July 31, 2020 to 1.059 and 2.35% on January 31, 2021 and to 1.010 and 2.17% by July 31, 2021. In parallel, the cross–country variance of R and CFR moving averages decreased from 0.015 and 0.19%, respectively, on July 31, 2020, to 0.004 and 0.02% on January 31, 2021, and stayed on a similar level by July 31, 2021.

Conclusions: The continuous decrease in the country-level moving averages of R, down to the level of 1.0, accompanied by repeated outbreaks ("waves") in various countries, may indicate that COVID-19 has reached its point of a stable endemic equilibrium. Only a prohibitively high level of herd immunity (about 70%) can stop the endemic by reaching a stable disease-free equilibrium. Also, the average percentage of fully vaccinated population appears to be the only statistically significant factor associated with country-specific CFR, bringing it close to the level of a seasonal flu (about 0.1%) after vaccinating more than a half of a country’s population. Thus, while the currently available vaccines prove to be effective in reducing the mortality from the existing COVID-19 variants, they are unlikely to stop the spread of the virus in the foreseeable future. It is noteworthy that no statistically significant effects of government measures restricting the people’s behavior (such as lockdowns) were found in the analyzed data.

Keywords: COVID-19; Reproduction Number; Case Fatality Rate; Herd Immunity; Endemic Stability

Strengths and limitations of this study

- This is the first study that explored the long–term trends in country–level Reproduction Number and the Case Fatality Rate of COVID-19.
- Our study also investigated the long–term statistical dependence of the COVID-19 Reproduction Number and the Case Fatality Rate on epidemiological, demographic, economic, immunization, and government policy factors in each country.
- The findings of this study may have important implications for the health policy-makers worldwide.
- The officially reported numbers of daily COVID-19 confirmed cases depend on the local testing policy and usually underestimate the true number of carriers in the population.
- The officially reported numbers of daily COVID-19 deaths in some countries may include all deceased individuals who tested positive for COVID-19, disregarding their actual cause of death, and exclude victims who were not tested for COVID-19.

Introduction

The first case of COVID-19 was reported in the Chinese city of Wuhan in December 2019. According to the Humanitarian Data Exchange website (HDX 2020), on January 22, 2020 there were 557 confirmed cases of COVID-19 in 29 different countries. On the same date, the global number of reported COVID-19 victims has reached 17, all of them from the Hubei province in China. Due to the extensive international travel, the virus has spread quickly around the world, exceeding one million cases in 254 countries and territories by the end of March 2020 and 100,000 deaths 8 days later. The continuous response of national and regional authorities to the pandemic varied significantly from the near-absolute closure of international borders (e.g., Australia and New Zealand) and repeated lockdowns (e.g., New York City and Israel) to focusing on the protection of high–risk population only (e.g., Sweden). As the pandemic continued to
spread, each period of a steady increase in either local or global amount of COVID-19 cases and deaths was always followed by an opposite, decreasing trend, frequently assumed to be a result of various intervention measures. However, in many cases, another, often a deadlier “wave” took place some time later. Starting from December 2020, many countries, in the hope of “winning the pandemic”, have launched massive vaccination campaigns, which continue at the time of writing this article. By the end of July 2021, 1.14 billion people (14.6% of the world population) were fully vaccinated, while the global number of confirmed COVID-19 cases approached 200 million with about 4.2 million victims in 251 different countries and territories.

Considering the widespread travel restrictions at the time of the pandemic, the COVID-19-related death toll in a given country depends mainly on the following two factors: the average value of the effective (time–varying) reproduction number R_{eff}, or R_t, which represents the average number of an infected person has generated in the country’s population, and the average Case Fatality Rate (CFR), calculated as a percentage of death outcomes out of all cases confirmed during a specific period. Thus, we focus our study on the comparative analysis of these two parameters at the country level.

In a completely susceptible population, the effective reproduction number R_{eff} equals to the basic reproduction number R_0, defined as the average number of secondary infections an infected person will cause in an “immunologically naive” population before he or she is effectively removed from that population as a result of recovery, hospitalization, quarantine, etc. (Maier and Brockmann 2020). The population is expected to reach “herd immunity” when the proportion of non-susceptible (“immunologically experienced”) individuals exceeds 1 − 1/R_0 (Kadkhoda 2021). A direct measurement of R_0 requires identifying the exact source of each infection case, which is rarely possible. However, the basic reproduction number can be estimated from the epidemiological data using a mathematical model such as SEIR (susceptible–exposed–infected–recovered) (Anderson and May 1992). The authors of (Linka et al. 2020) used the SEIR model and reported COVID-19 cases in each one of the 27 the European Union countries for projecting the effective reproduction number $R(t)$ and predicting the epidemic evolution from May 10 to June 20, 2020. They evaluated three possible scenarios for their prediction period: a constant value of the effective reproduction number $R(t)$, a slow return to the basic reproduction number R_0 within three months, and a fast return to R_0 within one month. Their study shows that the severe mobility restrictions on air travel, driving, walking and transit, which were implemented across Europe during March - May 2020, were highly correlated with R_0 in most countries, resulting in a drastic reduction of the population weighted mean of the basic reproduction number from 4.22 (CI 2.53 – 5.91) to 0.67 (CI 0.49 – 0.85). The study did not explore additional factors, which could contribute to the R_0 decrease during the same period, such as public health measures, a reduced amount of social interaction (also known as “social distancing”), and natural immunity acquired by the recovered individuals.

In our previous work (Last 2020), we have explored the overall evolution of the basic reproduction number in Israel, Greece, Italy, and Sweden between March and July 2020 using the relationship between the daily reproduction numbers R_t, the basic reproduction number $R_0(t)$, and the cumulative percentage of confirmed cases p_t, which is shown in Eq. 1.

$$R_t = R_0(t)(1 − p_t)$$ (1)

On each day, R_t was estimated under the assumption that the number of deaths on day t represents the actual number of new infections on day $t − 16$, which is likely to exceed the number of cases detected through testing. We have shown that some intervention measures taken by the Israeli government, such as mandating mask–wearing in public (April 1) and Passover lockdown (April 7) were actually introduced after the value of $R_0(t)$ has already decreased from its starting level of 1.20 to less than the critical level of 1.0, a trend which continued for the succeeding weeks despite a fast relaxation of most restrictions enforced in March and April. After reaching an extremely low level of 0.30 around May 17 and shortly after reopening of all schools in the country (which stayed open until the end of the school year on June 20), the basic reproduction number in the Israeli population started another continuous climb as part of the COVID-19 “second wave”. However, we could not reveal in (Last 2020) a consistent effect of any specific measures on the actual infection rate dynamics.

A systematic review of 108 R_0 estimates reported in 45 articles published between January 1 and August 31, 2020 is presented by (Ahamed et al. 2021). The pooled value of R_0 was found to be 2.69 (CI 2.40, 2.98), with statistically insignificant differences between Asian, European, and North-American countries. The review found only a few studies covering Africa and South America. The authors indicate that in the initial stages of a new epidemic, the calculated R_0 values may be overestimated due to insufficient amount of available data. They also explored 158 estimates of CFR presented in 34 articles. The pooled value of the CFR was 2.67% (2.25%, 3.13%), with higher mean CFR values observed for the countries with lower tests (3.15% vs 2.16%) and greater median population age (3.13% vs 2.27%).

The authors of (Cao et al. 2020) tried to identify the main factors affecting the case fatality rates in 209 countries and territories based on the COVID-19 data downloaded from the Our World in Data website (Ritchie et al. 2020) on 2 July 2020 (including 10,445,656 confirmed COVID-19 cases and 511,030 deaths). They found the average value of CFR to be about 2%–3% worldwide. The factors directly associated with country-level CFR included the population size and the proportion of female smokers, whereas the open testing policies, cardiovascular disease death rate and diabetes prevalence had an inverse association with CFR. The association of CFR with the strictness of anti-COVID-19 measures was not found statistically significant, except for higher-income countries with active testing policies.

These and many other studies focused on analyzing the data that was available during the first months of the pandemic, also known as the COVID-19 “first wave”. At the end of 2020, several COVID-19 vaccines became available for the adult population. Massive vaccination campaigns were launched across the Globe in the hope of reaching “disease-free equilibrium”, where the majority of the population is immunized by a vaccine providing a long-term immunity with high efficacy, while providing “herd immunity” protection to those who cannot be immunized. Given the actual values of R_0 and vaccine efficacy VE, one can calculate the herd immunity threshold of vaccinated individuals f_v using Eq. 2 (Gumel et al. 2021):

$$f_v = \frac{1}{VE}(1 − \frac{1}{R_0})$$ (2)

According to (Gumel et al. 2021) forecast, eliminating COVID-19 in the US using vaccination alone would require immunizing at least 70% of the US population by a vaccine of nearly 70% efficacy against infection. Otherwise, the epidemic will persist
in the state of endemic equilibrium. The goal of our study is to explore the actual situation of COVID-19 dynamics up to July 31, 2021 in 50 countries having the highest absolute number of confirmed COVID-19 cases.

Materials and methods

Country-level data extraction

With respect to our period of interest (February - July 2021), we have extracted the following country-level variables from the Our World in Data COVID-19 dataset (Ritchie et al. 2020):

- `people_fully_vaccinated_per_hundred (30/04)`: Total number of people who received all doses prescribed by the original vaccination protocol on or before April 30, 2021 per 100 people in the country’s population. The date of April 30, 2021 was chosen as the representative mid-point of our period of interest.
- `Average of people_fully_vaccinated_per_hundred`: Average daily percentage of fully vaccinated population.
- `average_stringency_index`: The average daily value of the Government Response Stringency Index, a composite measure based on 9 response indicators including school closures, workplace closures, and travel bans.
- `population_density`: Number of people divided by country’s area in square kilometers.
- `median_age`: Median age of the country’s population.
- `aged_65_older`: Share of the population that is 65 years and older.
- `aged_70_older`: Share of the population that is 70 years and older.
- `gdp_per_capita`: Gross domestic product at purchasing power parity.
- `cardiovasc_death_rate`: Annual number of deaths from cardiovascular disease per 100,000 people.
- `diabetes_prevalence`: Diabetes prevalence among people aged 20 to 79.
- `female_smokers`: Share of female smokers.
- `male_smokers`: Share of male smokers.
- `hospital_beds_per_thousand`: Hospital beds per 1,000 people.
- `human_development_index`: A composite index measuring three basic aspects of human development—a long and healthy life, knowledge and a reasonable standard of living.
- `Delta 31/07`: proportion of COVID-19 sequences that were positive from July 31.
- `Average of people_fully_vaccinated_per_hundred`: Total number of people who received all doses prescribed by the original vaccination protocol on or before April 30, 2021 per 100 people in the country’s population. The date of April 30, 2021 was chosen as the representative mid-point of our period of interest.
- `daily_estimated_R`: The daily estimate of reproduction number R on day t is calculated using Eq. 3.
- `CFR`: The daily estimate of CFR on day t is calculated using Eq. 4.

\[
R = \frac{\text{Cum}_Ct - \text{Cum}_{Ct-w}}{\text{Cum}_{Ct-g} - \text{Cum}_{Ct-g-w}} \quad (3)
\]

\[
CFR = \frac{\text{Cum}_{D_1} - \text{Cum}_{D_1-w}}{\text{Cum}_{C_{1-d}} - \text{Cum}_{C_{1-d-w}}} \quad (4)
\]

where `Cum_Ct` is the cumulative number of confirmed cases on day `t`, `w = 7 days` is the size of the sliding window, and `g = 4 days` stands for the average duration of the COVID-19 generation period (Last 2020).

The daily estimate of CFR on day `t` is calculated by Eq. 4.

For each country, we have calculated the daily moving averages of the reproduction number R using the pandas.DataFrame.rolling.mean() function with window = 180 days and min_periods (minimum number of observations in window required to have a value) = 1. The daily values of R were estimated from the first date when the total number of confirmed COVID-19 cases in the country has reached 1,000 until July 31, 2021. The daily moving averages of the case fatality rate CFR were calculated using Eq. 4, where the sliding window `w` was taken as the minimum between 180 days and the number of days since the date when the total number of COVID-19-related deaths in the country has reached 100.

Results

Descriptive statistics

The descriptive statistics of all data variables is shown in Fig. 1. Fig. 2 shows Pearson’s correlation coefficients of all pairs of potentially predictive factors. No pairs of highly correlated variables (Pearson’s `r ≥ 0.50, p < 0.001`) were excluded from further regression analysis. For the remaining variables, we have applied the forward-backward feature selection procedure based on p-value from the statsmodels.api.OLS function, which builds a multivariate linear regression model using the ordinary least squares (OLS) method. This stepwise variable selection procedure has two thresholds: threshold_in < threshold_out. It starts with only the intercept and at each step, it adds the most significant variable to the model. The selected variable should have the lowest p-value, which does not exceed threshold_in. The procedure stops when no variable meets the threshold_in criterion. In addition, at each step, the algorithm re-calculates the p-values of all existing model terms and removes the variables if their p-values exceed threshold_out. In our analysis, we set threshold_in to 0.05 and threshold_out to 0.10.

- `people_fully_vaccinated_per_hundred (30/04)`: (highly correlated with average of people_fully_vaccinated_per_hundred)
- `aged_65_older`, `aged_70_older`, `gdp_per_capita`, `female_smokers`, `hospital_beds_per_thousand`, `life_expectancy`, and `human_development_index`: (highly correlated with median_age)
Towards the global equilibrium of COVID-19

Figure 1 Descriptive statistics

<table>
<thead>
<tr>
<th>countries</th>
<th>mean</th>
<th>std</th>
<th>min</th>
<th>median</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>1.010</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1.085</td>
<td>0.986</td>
<td>0.38</td>
<td>0.986</td>
<td>0.986</td>
</tr>
<tr>
<td>Japan</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Brazil</td>
<td>2.548</td>
<td>2.935</td>
<td>2.15</td>
<td>2.935</td>
<td>2.935</td>
</tr>
<tr>
<td>Mexico</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>France</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Germany</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>China</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Russia</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Portugal</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Italy</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Spain</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Belgium</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Sweden</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Austria</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Greece</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Denmark</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>France</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Italy</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Spain</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Greece</td>
<td>1.000</td>
<td>0.965</td>
<td>0.58</td>
<td>0.965</td>
<td>0.965</td>
</tr>
</tbody>
</table>

Figure 2 Pearson’s correlation coefficient

- male_smokers (highly correlated with cardiovasc_death_rate)
- Protected_per_100 (highly correlated with Cases_per_100)

R and CFR evolution over time

Figures 3 and 4 show the evolution of the 180-day moving averages for the country-level values of R and CFR, respectively. While both these parameters were highly unstable during the first months of the pandemic, their average values declined to much lower levels around July - October 2020 and remained stable since then. The differences between various countries, in terms of both parameters, have decreased over time as well. The mean values of country-level moving averages of R and CFR went down from 1.114 and 5.51% on July 31, 2020 to 1.059 and 2.35% on January 31, 2021 and to 1.010 and 2.17% by July 31, 2021. In parallel, the cross-country variance of R and CFR moving averages decreased from 0.015 and 0.19% on July 31, 2020, to 0.004 and 0.02% on January 31, 2021, and stayed on a similar level around July 31, 2021.

Country-level factors associated with R

After removing highly correlated variables, we have applied the forward-backward feature selection procedure with threshold_in = 0.05 and threshold_out = 0.10 in order to find a minimal set of factors significantly associated with the 180-day moving average of the reproduction number R calculated for each country on July 31, 2021.

In the first step, the following variables had the lowest p-values (below 0.10):
- Cases_per_100 (p-value = 3.8e-05, slope = -0.007869)
- median_age (p-value = 0.003, slope = -0.002431)
- population_density (p-value = 0.064 > 0.05, slope = 0.000057)
- Average of people_fully_vaccinated_per_hundred (p-value = 0.051 > 0.05, slope = -0.001026)

Consequently, Cases_per_100 was selected as the first variable to be added to the regression model. According to this model, an increase of 1% in the total percentage of confirmed COVID-19 cases per country’s population is associated with a decrease of 0.0079 (95% CI 0.004 to 0.011) in the average Reproduction Number R. A model based on the second significant factor (median_age) indicates that an increase of one year in the median age of a country’s population is associated with a decrease of 0.0024 (95% CI 0.001 to 0.004) in the average R. The effect of confirmed cases and median age on R is shown in Figures 5 and 6, respectively.

With a lower statistical significance, it appears that a density increase of 100 people per square kilometer is associated with an increase of 0.0057 in R, while each additional percent of fully vaccinated population is associated with a decrease of 0.0010 in R. In the second step, only population_density had p-value below 0.10 (0.080 > 0.05, slope = 0.000046) and thus no further variables were added to the model. The complete output of the resulting regression model is shown in Figure 7.

Country-level factors associated with CFR

We have also applied the forward-backward feature selection procedure with threshold_in = 0.05 and threshold_out = 0.10 to find a minimal set of factors significantly associated with the
180-day moving average of the case fatality rate CFR calculated for each country on July 31, 2021. In the first step, the following variables had the lowest p-values (below 0.10):

- Cases_per_100 (p-value = 0.097 > 0.05, slope = -0.001327)
- Delta 31/07 (p-value = 0.056 > 0.05, slope = -0.000133)
- Average of people_fully_vaccinated_per_hundred (p-value = 0.020, slope = -0.000472)

Consequently, Average of people_fully_vaccinated_per_hundred was selected as the first variable to be added to the regression model. According to this model, an increase of 1% in the total percentage of fully vaccinated people per country’s population is associated with a decrease of 0.047% (95% CI 0.008% to 0.10%) in the average CFR. The effect of vaccination percentage on CFR is shown in Figure 8.

With a lower statistical significance, it appears that an increase of 1% in the total percentage of confirmed COVID-19 cases per country’s population is associated with a decrease of 0.13% in CFR, while each additional percent in proportion of Delta sequences is associated with a decrease of 0.013% in CFR. In the second step, only Delta 31/07 had p-value below 0.10 (0.099 > 0.05, slope = -0.000111) and thus no further variables were added to the model. The complete output of the resulting regression model is shown in Figure 9.

Discussion

Global COVID-19 equilibrium

The increasingly low levels of the cross-country variance of R and CFR (see Figures 3 and 4), along with the average value of R approaching the value of 1.0, may indicate that the COVID-19 pandemic has reached its point of a stable endemic equilibrium (Ashby and Best 2021). According to the mathematical model of COVID-19 presented in (Ahmed et al. 2021), a stable endemic equilibrium is maintained as long as the basic reproduction number R_0 is greater than 1. In contrast, a stable disease-free equilibrium is achieved only when $R_0 < 1$. Though we do not have a direct way of estimating the current value of R_0 in each country, we may assume it to be close to the most recent peak in the effective reproduction number R. Considering the mean difference of 0.50 between the average and the maximum country-level values of R during our period of interest (February - July 2021), we should be able to reach a stable disease-free equilibrium of COVID-19 only after the average R will go globally below $1.0 - 0.5 = 0.5$.

What is the required percentage of infected and/or vaccinated population to make such an equilibrium possible? Ac-
We have shown that the median age and the average density which are based on the data available at the end of July 2021, we have found no statistically significant effects of government measures restricting the people’s behavior (such as lockdowns) on COVID-19 dynamics. The economic development factors (gdp_per_capita, hospital_beds_per_thousand, life_expectancy, and human_development_index) were removed from the analysis due to their high correlation with the median age.

Delta variant

According to our stepwise feature selection procedure, each additional percent in proportion of Delta sequences is associated with a decrease of 0.013% in a country’s CFR (p-value = 0.056). However, we have found no statistically significant association of the Delta variant prevalence with R, which is inconsistent with the initial studies of this new variant (Liu and Rocklöv 2021). Further analysis of additionally accumulated data is needed.

Strengths and limitations

As opposed to numerous works analyzing the data accumulated during the first months of the pandemic, this is the first study that explores the long-term trends in country-level Reproduction Number and the Case Fatality Rate of COVID-19 from the beginning of the pandemic until July 31, 2021. We also investigate the long-term statistical dependence of the COVID-19 Reproduction Number and the Case Fatality Rate on epidemiological, demographic, economic, immunization, and government policy factors in each country. The findings of this study may have important implications for the health authorities worldwide in considering their vaccination policies, non-pharmaceutical intervention measures, and resource allocation decisions.

This retrospective study suffers from several limitations. First, the officially reported numbers of daily COVID-19 confirmed cases depend on the local testing policy and usually underestimate the true number of carriers in the population. As daily virus testing of the entire population is not possible, this reporting rate is usually unknown. Second, the officially reported numbers of daily COVID-19 deaths in some countries may include deceased individuals who tested positive for COVID-19 (people who “died with coronavirus”), disregarding their actual cause of death, and exclude some victims (people who “died from coronavirus”), because they were not tested for COVID-19 before their death. The reported numbers depend on the time-changing policy of each country, which is not always made explicit to the public. Last but not least, the future dynamics of COVID-19 depends on the unknown characteristics of new mutants, short and long term efficacy of currently developed vaccines, government decisions, public behavior, and other uncertainty factors. Drastic changes in some of these factors may render the models based on the past data completely useless.

Conclusion

The continuous decrease in the country-level moving averages of R, down to the level of 1.0, accompanied by repeated outbreaks (“waves”) in various countries, may indicate that COVID-19 has reached its point of a stable endemic equilibrium. The total percentage of confirmed cases and the median age of a country’s population appear to be the only statistically significant factors associated with the average values of R in different countries. According to the regression model shown in Figure 7, only a prohibitively high level of herd immunity (about 70%), associated with a tremendous cost in terms of human life, can naturally not found statistically significant. Apparently, there are no statistically significant effects of government measures restricting the people’s behavior (such as lockdowns) on COVID-19 dynamics. The economic development factors (gdp_per_capita, hospital_beds_per_thousand, life_expectancy, and human_development_index) were removed from the analysis due to their high correlation with the median age.
stop the endemic by reaching a stable disease-free equilibrium. On the other hand, the average percentage of fully vaccinated population, which appears to be the only statistically significant factor associated with country-specific CFR, can bring it close to the level of a seasonal flu (about 0.1%) after vaccinating more than a half of a country’s population. Thus, while the currently available vaccines prove to be effective in reducing mortality from the existing COVID-19 variants, they are unlikely to stop the spread of the virus in the foreseeable future. It is also noteworthy that the performed data analysis revealed no statistically significant effects of government measures restricting the people’s behavior (such as lockdowns) on either R, nor the CFR.

Funding This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Data sharing All data used in this study is publicly available at https://ourworldindata.org/ and cited in the article.

Literature cited

Liu Y, Rocklöv J. 2021. The reproductive number of the delta variant of sars-cov-2 is far higher compared to the ancestral sars-cov-2 virus. Journal of Travel Medicine. .