Reduced serum neutralization capacity against SARS-CoV-2 variants in a multiplex ACE2 RBD competition assay

Daniel Junker¹, Alex Dulovic¹, Matthias Becker¹, Teresa R. Wagner¹,², Philipp D. Kaiser¹, Bjoern Traenkle¹, Ulrich Rothbauer¹,², Katharina Kienzle³, Stefanie Bunk³, Carlotta Strümper³, Helene Häberle³, Kristina Schmauder⁴,⁵, Nisar Malek³,⁶ Karina Althaus⁷, Michael Koeppen⁸, Michael Bitzer³,⁶, Siri Göpel³,⁵*, Nicole Schneiderhan-Marra¹*

Author Affiliations

¹ NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
² Pharmaceutical Biotechnology, Eberhard Karls University, Tübingen, Germany
³ Department Internal Medicine I, Eberhard Karls University, Tübingen, Germany
⁴ Institute for medical microbiology and hygiene, University Hospital Tübingen, Germany
⁵ German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
⁶ Center for Personalized Medicine, Eberhard-Karls University, Tübingen, Germany
⁷ Institute for Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
⁸ Department of Anaesthesiology and Intensive Care Medicine, University Hospital Tübingen, Tübingen, Germany

* Denotes shared senior authorship and corresponding authors.

Contact Information

Nicole Schneiderhan-Marra – Phone number +49 (0)7121 51530 815. Email Address Nicole.schneiderhan@nmi.de Postal Address – Markwiesenstrasse 55, 72770 Reutlingen, Germany.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Siri Göpel – Phone number +49 (0)7071 29 85415. Email Address siri.goepel@med.uni-tuebingen.de Postal Address – Otfried-Müller-Strasse 10, 72076 Tübingen, Germany.
Abstract

As global vaccination campaigns against SARS-CoV-2 proceed, there is emerging interest in the longevity of immune protection, especially with regard to increasingly infectious virus variants. Neutralizing antibodies (Nabs) targeting the receptor binding domain (RBD) of SARS-CoV-2 are promising correlates of protective immunity and have been successfully used for prevention and therapy. To assess neutralizing capacity, we developed a bead-based multiplex ACE2 RBD competition assay as a large scalable, time-, cost-, and material-saving alternative to infectious live-virus neutralization tests. By mimicking the interaction between ACE2 and RBD, this assay detects the presence of Nabs against SARS-CoV2 in serum. Using this multiplex approach allows the simultaneous analysis of Nabs against all SARS-CoV-2 variants of concern and variants of interest in a single well. Following validation, we analyzed 325 serum samples from 186 COVID-19 patients of varying severity. Neutralization capacity was reduced for all variants examined compared to wild-type, especially for those displaying the E484K mutation. The neutralizing immune response itself, while highly individualistic, positively correlates with IgG levels. Neutralization capacity also correlated with disease severity up to WHO grade 7, after which it reduced.
Introduction

Neutralizing antibodies (Nabs) prevent infection of the cell with pathogens or foreign particles by neutralizing them, eliminating a potential threat and rendering the pathogen or particle harmless (1). The longevity of a Nab response has important implications for immune protection and vaccination strategies. In SARS-CoV-2, Nabs interfere with the cell entry mechanism primarily by blocking the interaction of the receptor binding domain (RBD) with the human cell receptor angiotensin converting enzyme 2 (ACE2) (2, 3). The RBD of SARS-CoV-2 is the target of approximately 90% of the neutralizing activity present in immune sera (4), with a lack of Nabs correlating with risk of fatal outcome (5, 6). Passive transfer of Nabs has been shown to provide protection from infection (7-9), with several Nabs drugs granted emergency use authorization by the U.S. Food and Drug Administration (10-13).

Since the first documented infections in Wuhan China (14), SARS-CoV-2 has continually evolved, with the emergence of global variants of concern (VOC) being of particular importance. As of this moment, the WHO currently lists the alpha (B.1.1.7)(15), beta (B.1.351)(16), gamma (P.1)(17) and delta (B.1.617.2)(18) strains as VOCs (19), in addition to further variants of interest (VOI) such as lambda (C.37)(20). The emergence and disappearance of variants and continual mutation of SARS-CoV-2 is of particular relevance for vaccine development, as all currently licensed vaccines (21-24) only elicit an immune response against the original B1 isolate (hereon referred to as “wild-type”) spike protein (25). Several studies have already found that both convalescent and post-vaccinated sera have lower neutralization capacities against beta and gamma VOCs (26-28). Of particular concern are mutations on amino acid residue (aa) 484 (e.g. E484K), which seem to confer escape from vaccine control, with an additional mutation on aa 501 (e.g. N501Y) increasing this effect (29).

In order to lead development of new vaccines and safely lift social restrictions, definitive correlates of protective immunity are necessary (30). The gold standard for Nabs assessment are virus neutralization tests (VNT), however these require live infectious virions which must be handled in biosafety level 3 (BSL3) laboratories, as well as access to different variants of
SARS-CoV-2. In this study we developed and applied a multiplex ACE2 RBD competition assay based upon the antibody-mediated inhibition of RBD-ACE2 binding. This automatable assay enables simultaneous screening of serum samples for the presence of Nabs against an unlimited number of VOCs/VOIs in a single well, making it a time-, material- and cost-effective alternative to live VNTs or classical ELISAs. Following in-depth validation of the assay, we analyzed the IgG antibody response and neutralizing capacity of 325 serum samples from 186 COVID-19 patients with mild to severe disease progression towards eleven different SARS-CoV-2 variant RBDs including the alpha, beta, gamma and delta VOCs.
Results

ACE2 RBD competition assay validation

To investigate neutralizing capacity of serum from COVID-19 convalescent individuals, we developed and established a high-throughput bead-based multiplex ACE2 RBD competition assay. This assay mimics the ACE2 RBD interaction, detecting the presence of Nabs against SARS-CoV-2. For this, we expressed RBDs of SARS-CoV-2 wild-type and 11 different variants (alpha, beta, gamma, epsilon, eta, theta, kappa, delta, lambda, Cluster 5 and A.23.1) and coupled them on spectrally distinct beads (see methods for details). All beads were then pooled to produce a bead mix, which was incubated with patient serum diluted in assay buffer containing biotinylated ACE2. RBD-bound ACE2 was then detected using phycoerythrin-labeled streptavidin and MFI values were normalized to a control consisting of biotinylated ACE2 without added serum.

Initially, we validated the ACE2 RBD competition assay to standard FDA bioanalytical guidelines. To ensure reagent stability and confirm high assay precision, we measured a sample set of five sera from vaccinated individuals across five independent experiments, identifying that the results of the assay were highly reproducible with minimal variation (as determined by coefficients of variation (%CVs)) (Figure 1, Supplementary Table 3). Intra-assay precision was determined using 12 replicates of four samples on a single plate (Figure 1A), with %CVs not exceeding 5% for all RBDs (mean range 1.76 - 2.72%). Inter-assay precision (Figure 1B) was tested with five samples measured in triplicates in four independent experiments and did not exceed 7% for any RBD (mean range 2.62 – 4.72%). Short-term temperature stability of the ACE2 buffer was confirmed by incubation for three different durations (2h, 4h, 24h) at two temperatures (4°C and 21 °C) (Figure 1C). As a control, freshly prepared buffer was also analyzed. 98% of %CVs were under 10% indicating short-term stability of the ready-to-use ACE2 buffer. We examined the stability of the biotinylated human ACE2 stock solution in a freeze-thaw stability experiment (Figure 1D), finding no adverse results (all %CVs under 20). Lastly, to investigate the effect of changes in ACE2 concentration
on the assay readout, we measured the sample set with a range of ACE2 concentrations (150-
350 ng/mL, Figure 1E), with no change in neutralization capacity between different
concentrations (mean range 3.54 – 6.49%).

To evaluate assay performance against commercially available products, we compared the
ACE2 RBD competition assay with the FDA-approved and CE-certified NeutraLISA
(Euroimmun) (Figure 2). Results between the assays were highly comparable (Pearson’s
correlation coefficient of 0.7954) (Figure 2A). When classifying samples as being either
positive or negative, samples with a percentage reduction under 20% are considered negative
for the NeutraLISA (31). As both assays detect bound ACE2, we implemented a similar cut-off
for the ACE2 RBD competition assay. Overall, 31.7% of samples (59/186) were considered
negative in both assays, while a further 54.3% (101/186) were considered positive in both
(Figure 2B). Of the remaining samples, six (3.2 %) exceeded 20 % neutralization percentage
only in the ACE2 RBD competition assay, while 20 (10.8 %) exceeded 20 % neutralization
percentage in the NeutraLISA only.

Neutralization capacities are reduced for all investigated variant RBDs

Following validation, we analyzed neutralization capacities of 325 serum samples from 186
COVID-19 patients, including longitudinal samples from 44 donors against RBD wild-type and
11 variants (hereafter referred to as “RBD mutants”) of SARS-CoV-2.

Variant-specific decreases in neutralization capacity compared to wild-type were seen for all
RBD mutants (1.1-fold (A.23.1) to 19.7-fold (beta), Figure 3). Median neutralization
percentage (57 %) was highest in wild-type and lowest (2.9 %) in beta. Among VOC RBD
mutants, alpha had the lowest reduction in neutralization capacity (1.25-fold), followed by delta
(1.82-fold) and gamma (7.64-fold). Beta had the largest reduction in neutralizing capacity of all
variants analyzed (19.71-fold). For the VOIs, lambda had the lowest reduction (3.5 fold),
followed by kappa (5.0 fold), eta (6.3 fold) and theta (10.0 fold). The former VOIs Cluster 5
(1.3 fold) and epsilon (1.7 fold) had minimal reductions.
Neutralization capacity and IgG antibody responses were positively correlated (all Pearson's correlation coefficients above 0.70, Figure 4) with variant-specific differences still present. The percentage of samples considered to be negative (<20% neutralization), followed the same variant-specific order as Figure 3. For all RBD mutants, the increase in neutralization capacity most commonly occurred once IgG RBD MFI levels exceeded 10,000. Notably, there was individual variation among the samples, with some having high neutralizing capacity but relatively low IgG responses. This was especially true for the RBD wild type and similar performing RBD mutants such as A.23.1, alpha and Cluster 5. For RBD mutants eta, gamma, theta and beta more than 75% of all samples were considered negative, compared to 42.5% for wild-type (Figure 4).

Neutralization capacity decreases over time

We then examined longitudinal changes on neutralizing capacity and IgG responses using samples from 44 study participants, ranging from 1 to 290 days after the first positive SARS-CoV-2 PCR. For a subset of six individuals with similar sample collection points, both IgG antibody response and neutralization capacity against wild-type (Figure 5A, B) remained initially low following infection, with an increase no later than 10 days after the first positive PCR test result, although one individual (Donor3) peaked 6 days after the first positive PCR test and then declined. Neutralization capacity for most individuals (Donors1, 4, 5 and 6) declined no later than 19 days post PCR. Generally, neutralization capacity and IgG levels peaked at similar time points (Donors 1, 2 and 6), although for some individuals (Donors 4 and 5) neutralization capacity peaked before IgG titers. Among all longitudinal samples, while neutralization and antibody titers followed a similar pattern (Figure 5C, D), responses were highly individualistic with large variances at all time points.

As delta represents the current dominant global strain, we then examined how neutralization capacity and antibody binding compared for this variant to wild-type. Neutralizing capacity and IgG binding against delta was reduced for all samples (Figure 5E and F). Overall, neutralizing capacity and IgG response followed the same pattern for all samples as for wild-type. When
examining all RBD mutants, mean neutralization capacity and IgG antibody responses (Figure 5G, H) clustered as before. Beta, theta and gamma had the largest decrease in neutralizing capacity with eta, kappa and lambda occupying the gap between another cluster of delta, epsilon, Cluster5 and alpha. As expected, all RBD mutants showed reduced neutralization capacity compared to wild-type. Mean neutralization capacity was highly individualistic, peaking for all RBD mutants 22 days post-positive PCR before decreasing below 20% at approximately 92 days post PCR.

Neutralization correlates with disease severity

We then examined correlations between neutralization capacity and COVID-19 disease severity. Neutralizing capacities for wild-type and RBD delta within 7-49 days post-positive PCR increased steadily with disease severity up to grade 7 (WHO grading scale, hospitalized patients needing intubation and mechanical ventilation), before decreasing for patients of grade 8 (fatal disease course) (Figure 6A and B). Mean neutralization capacities at WHO grade 7 were 72.0% for wild-type and 58.7% for delta. From 49 days post positive PCR, neutralization capacities correlated with disease severity (Figure 6C and D), however there was an overall reduction for grades 4 to 7 compared to the first timeframe for both wild-type and delta (Figure 6C and D). Within this timeframe, mean neutralization capacity for both WT (43.56%) and delta (30.08%) decreased. Anti-RBD IgG levels also correlated with disease severity 7 – 49 days post PCR (Figure 6E, F) as well as later than 49 days post PCR (Figure 6G, H) for both wild-type and delta. Peak IgG levels were at grade 7 severity for both wild-type and delta 7 – 49 days post PCR. Post 49 days, mean IgG levels peaked for patients with grade 6 severity.

Neutralization correlated with both age and BMI from 49 days post-PCR onwards

Finally, to check for confounding variables, samples taken either 7 to 49 days or more than 49 days post-positive PCR were analyzed by their age, gender and BMI (Supplementary Figure 1). Whereas no correlation was observed between neutralization capacity and gender for both timeframes, we found correlations between neutralization capacity and donor age (p = 0.001).
along with BMI ($p = 0.0179$) for samples drawn more than 49 days after the first positive PCR test (Supplementary Figure 1D, F).
Discussion

With vaccination campaigns beginning to take effect and result in reduced case numbers in certain countries, interest in the serological response to SARS-CoV-2 is increasingly changing from quantitative to qualitative in nature. Whereas in the early-phase of the pandemic SARS-CoV-2 antibody assays were helpful in determining seroprevalence and support vaccine development, now a reliable correlate of immune protection is needed to securely lift social restrictions and guide future vaccine developments.

While cell-culture based virus neutralization tests (VNTs) (e.g. plaque reduction neutralization test) are the gold standard for neutralization assays, they have many disadvantages over conventional protein-based surrogate assays. Such assays require rapid access to continually changing virus variants and as such special biosafety level 3 laboratories are necessary. Additionally, VNTs are cell-culture based and therefore it takes multiple days to conduct an experiment with reproducibility potentially affected by either the cells or their long culture conditions. Consequently, highly reproducible assays under substantially faster and safer working conditions (e.g. BSL 1) would be highly beneficial. Our newly developed protein-based ACE2 RBD competition assay is finished in under 4 hours and only requires 5 µL of patient sample to measure neutralizing capacities simultaneously against multiple SARS-CoV-2 VOCs and VOIs. As a protein-based assay, it does not require enhanced safety protocols to be followed and can be completed safely in a BSL1 laboratory. Due to the bead-based nature and plate format, it is automatable, suitable for high-throughput, standardized and highly reproducible. The protein-based nature also allows for the rapid inclusion of emerging variants or single mutations.

As shown in our technical validation, assay components and as such the results are highly stable. Neutralization percentages correlate with FDA-approved in vitro diagnostic tests such as NeutraLISA (Euroimmun). The lower than 20% reduction cut-off used in the NeutraLISA to identify negative samples is also suitable for the ACE2 RBD competition assay as both measure the steric inhibition of ACE2. Direct comparison between the two assays shows that
the ACE2 RBD competition assay has a resolution range more suited to highly neutralizing samples, while the NeutraLISA has increased resolution for samples with weak neutralization at the cost of early saturation of neutralization percentage. Samples which had different classifications between the two assays had a median MFI of 9056, which explains the low neutralization capacities in the ACE2 RBD competition assay, as high neutralization capacities are generally achieved at an MFI > 10,000.

Similarly to other authors (32, 33), we identified a significant positive correlation between anti-RBD IgG levels and neutralization capacity. This suggests that neutralizing antibodies represent a consistent portion of all antibodies produced. Overall, our results also show there is a high degree of individualism in responses, with some samples having low titers yet high neutralization capacity for specific RBD mutants. Neutralization itself followed a typical pattern for acute infections with an initial rapid increase which peaks and then declines (34). Notably, neutralizing capacity increased and decreased in parallel to IgG responses, which could have important implications on the immune protection induced by prior infection or vaccination, and should be considered when organizing booster vaccination campaigns. Like other authors (6, 35) we identified a correlation between disease severity and neutralizing capacity, however the decrease in IgG levels and neutralizing capacity of patients with WHO disease grade 8 (death) has not to our knowledge been reported before. This decrease requires further investigation to determine its cause given its likely role in patient mortality.

As expected, neutralizing capacity towards VOCs was highly variable. The strongest reductions in neutralizing capacities were all from variants (eta, gamma, theta and beta) with a E484K mutation. This specific mutation has been reported in multiple studies as an escape mutation that enhances the RBD-ACE2 affinity (36). Neutralizing capacity was further reduced among these variants for those which additionally had a N501Y mutation (gamma, theta and beta), which is known to further enhance RBD-ACE2 binding (37). These results are in-line with previous findings that have reported significant reductions in neutralization for gamma and beta (38-40). The gamma and beta RBDs in our assays are only separated by a single K417N
mutation, which is known to significantly reduce both the RBD-ACE2 binding affinity as well as the binding affinity to monoclonal therapeutic antibodies or other human antibodies (41). This reduction in binding affinity could explain why beta neutralizing capacity was lower than gamma. Among recently emerged variants (delta, kappa and lambda), neutralizing capacity compared to wild-type was reduced for all. The reduction in neutralizing capacity seen for kappa and delta are comparable to recent findings (42), although we could not confirm the reduction seen by other authors for Lambda (43). This is likely due to the 7-amino acid deletion in the N-terminal domain of lambda’s spike protein, which is not present in the RBD and is thought to contribute to its immune evading properties (44). Overall the decrease in neutralization capacity against RBDs of all analyzed variants compared to wild-type has important implications for the design of second generation vaccines.

Our ACE2 RBD competition assay has limitations similar to other protein-based in vitro neutralization assays, such as only accounting for the Nabs that block the RBD-ACE2 interaction site through steric hindrance, and not for Nabs that interfere with cell entry mechanisms as would be analyzed in a VNT. Furthermore, the binding assay is also more prone to non-specific binding events. However, a major advantage of the multiplex ACE2 RBD competition assay over VNTs is the speed of response toward viral evolution such as emerging variants of concern. The bead-based format of the assay is also highly reproducible and not susceptible to changes in experimental conditions, as is the case for cell culture based VNTs. The plate format of the assay also enables automation and high-throughput screening. Our ACE2 RBD competition assay only requires recombinant expressed RBD proteins which can be quickly and easily produced. Additionally, this assay has the possibility of introducing artificial mutants to screen for possible escape variants that could arise in the future. Similar to other neutralization studies, our study is limited by the availability of appropriate control samples. Additionally, as the majority of this study population were admitted to the intensive care unit, the more serious grades of COVID-19 infection are heavily overrepresented in our population. Our samples are also highly variable in their longitudinal nature, with no consistent
time points. However, this large variation is also beneficial as it clearly demonstrates the
individual variability in neutralizing capacity.

In conclusion, we have developed and validated an ACE2 RBD competition assay that
analyzes neutralizing antibodies in serum for all current variants of concern and interest of
SARS-CoV-2. Using this assay, we have identified differing responses in serum from infected
individuals, indicating that neutralizing antibody production is directly proportional to total
antibody production. Neutralization capacity was highly variable among all variants examined,
with the 484 residue appearing to be critical in reducing capacity. Overall, the speed and ease
of incorporating new variants into the assay makes it ideal for screening how neutralization
capacity changes in emerging variants.
Methods

Sample collection and ethics statement

325 serum samples were collected from 186 patients hospitalized at the University Hospital Tübingen, Germany between April 17, 2020 and May 12, 2021. Longitudinal samples were available from 44 of the 186 patients ranging from 2 to 13 samples per patient. All individuals were tested positive by SARS-CoV-2 PCR. Sample collection and execution of this study was approved by the Ethics committee of the Eberhard Karls University Tübingen and the University Hospital Tübingen under the ethical approval numbers 188/2020A and 764/2020BO2 to Prof. Dr. Michael Bitzer. All participants signed the broad consent of the Medical Faculty Tübingen for sample collection.

For serum collection, blood was extracted by venipuncture, with the serum blood collection tube rotated 180° two to three times to extract possible air bubbles in the sample. After a minimum coagulation time of 30 minutes at room temperature, serum was extracted by centrifugation for 15 minutes at 2000 x g (RT) and then stored at -80 °C until analysis. Time between blood sampling and centrifugation did not exceed 2 hours.

For assay validation, negative pre-pandemic serum samples were purchased from Central BioHub and four previously collected vaccinated samples from healthcare workers vaccinated with the Pfizer BNT-162b2 vaccine (28) were used. The sample collection was approved by the Ethics committee of the Eberhard Karls University Tübingen and the University Hospital Tübingen under the ethical approval number 222/2020BO2 to Dr. Karina Althaus. For all assay validation samples, written informed consent was obtained. Sample characteristics are summarized in Supplementary Table 2.

Expression and Purification of SARS-CoV-2 RBD mutants

The expression plasmid pCAGGS, encoding the receptor-binding domain (RBD) of SARS-CoV-2 spike protein (amino acids 319-541), was kindly provided by F. Krammer (45).
Expression and purification of VOCs alpha, beta and epsilon was carried out as previously described (28). RBDs of SARS-CoV-2 VOCs gamma, delta, eta, theta, kappa and VOI A.23.1 were generated by PCR amplification of fragments from wild type or cognate DNA templates and subsequent fusion PCR by overlap extension to introduce described mutations. Based on RBD wild type sequence, primer pairs RBDfor (ATATCTAGAGCCACCATGTTCTGTTTCTGG), E484Krev (GCAGTTGAAGCCTTTCACGCCGTTACAAGGGGT) and E484Kfor, RBDrev (AAGATCTGCTAGCTCGAGTCGC) for VOC eta and RBDfor, V367Frev (AAGATCTGCTAGCTCGAGTCGC) and V367Ffor, RBDrev for VOI A.23.1 were used. VOC lambda was generated based on RBD wild type sequence using primer pairs L452Q-for (GGCAACTACAATTTACCAGTACCAGGTCTGTTCCGGAAG) and L452Q-rev (CGGTACTGGTAAATGTTGCGCGCCG), and F490S-for (TCAACTGCTACTCCACCAGTGCAGTCTACGCCG) and Lambda-F490S-rev (CTGCAGTGGGGAGTAGCAGTTGAAAGCCTCCAC). VOC delta was generated based on VOC epsilon using primer pairs RBDfor, T478Krev (CGTTACAAGGctTGCTGCCGCTAGA) and T478Kfor, RBDrev (GACAGACAGGCACCATCGCCGACTACAACTACAAG), RBDrev. Based on VOC alpha sequence, VOC theta was generated using primer pairs RBDfor, E484Krev and E484Kfor, RBDrev. VOC kappa was generated based on VOC eta sequence using primer pairs RBDfor, L452Rrev (GGCAACTACAATTACCAGTACCAGGTCTGTTCCGGAAG) and L452Rfor (GGCAACTACAATTACCAGTACCAGGTCTGTTCCGGAAG), RBDrev. VOC gamma was generated based on VOC theta sequence using primer pairs RBDfor, K417Trev (GGCAACTACAATTACCAGTACCAGGTCTGTTCCGGAAG) and K417Tfor (GGCAACTACAATTACCAGTACCAGGTCTGTTCCGGAAG), RBDrev. Amplificates were inserted into the pCDNA3.4 expression vector using XbaI and NotI restriction sites. The integrity of all expression constructs was confirmed by standard sequencing analysis. Confirmed constructs were expressed in Expi293 cells (28, 46). Briefly, cells were cultivated (37 °C, 125 rpm, 8% (v/v) CO₂) to a density of 5.5 × 10⁶ cells/mL, diluted with Expi293F
expression medium and transfection of the corresponding plasmids (1 µg/mL) with expifectamine was performed as per the manufacturer’s instructions. 20 h post transfection, enhancers were added as per the manufacturer’s instructions. Cell suspensions were then cultivated for 2–5 days (37 °C, 125 rpm, 8 % (v/v) CO$_2$) and then centrifuged (4 °C, 23,900×g, 20 min) to clarify the supernatant. Supernatants were then filtered with a 0.22-µm membrane (Millipore, Darmstadt, Germany) and supplemented with His-A buffer stock solution (20 mM Na$_2$HPO$_4$, 300 mM NaCl, 20 mM imidazole, pH 7.4). The solution was then applied to a HisTrap FF crude column on an Äkta pure system (GE Healthcare, Freiburg, Germany), extensively washed with His-A buffer, and eluted with an imidazole gradient (50–400 mM). Buffer exchange to PBS and concentration of eluted proteins were carried out using Amicon 10K centrifugal filter units (Millipore, Darmstadt, Germany).

Bead coupling

The in-house expressed RBD mutants were immobilized on magnetic MagPlex beads (Luminex) using the AMG Activation Kit for Multiplex Microspheres (# A-LMPAKMM-400, Anteo Technologies). In brief, 1 mL of spectrally distinct MagPlex beads (1.25 ×10^7 beads) were activated in 1 mL of AnteoBind Activation Reagent for 1 hour at room temperature. The beads were washed twice with 1 mL of Conjugation buffer using a magnetic separator, before being resuspended in 1 mL of antigen solution diluted to 25 µg/mL in Conjugation buffer. After 1 h incubation at room temperature the beads were washed twice with 1 mL Conjugation buffer and incubated for 1 h in 0.1 % (w/v) BSA in Conjugation buffer for blocking. Following this, the beads were washed twice with 1 mL storage buffer. Finally, the beads were resuspended in 1 mL storage buffer and stored at 4°C until further use.

ACE2 RBD competition assay
MULTICOV-AB Assay buffer (1:4 Low Cross Buffer (Candor Bioscience GmbH) in CBS (1x PBS + 1% BSA) + 0.05 % Tween20) was supplemented with biotinylated human ACE2 (Sino Biological, # 10108-H08H-B) to a final concentration of 571.4 ng/mL (ACE2 buffer). Working inside a sterile laminar flow cabinet, serum samples were thawed and diluted 1:25 in assay buffer before being further diluted 1:8 in ACE2 buffer resulting in a final concentration of 500 ng/mL ACE2 in all 1:200 diluted samples. Spectrally distinct populations of MagPlex beads (Luminex) coupled with RBD proteins of SARS-CoV-2 wild type and variants alpha, beta, gamma, epsilon, eta, theta, kappa, delta, lambda, Cluster 5 and A.23.1 were pooled in assay buffer (1:4 Low Cross Buffer (Candor Bioscience GmbH) in CBS (1x PBS + 1% BSA) + 0.05% Tween20) to create a 1x bead mix (40 beads/µL per bead population). 25 µL of diluted serum was added to 25 µL of bead mix in each well of a 96-well plate (Corning, #3642). As normalization control, 500 ng/mL ACE2 was used and triplicates of one quality control sample were analyzed on every plate. Samples were incubated for 2h at 21°C while shaking at 750 rpm on a thermomixer. Following incubation, the beads were washed three times with 100 µL wash buffer (1x PBS + 0.05 Tween20) using a microplate washer (Biotek 405TS, Biotek Instruments GmbH). For detection of bound biotinylated ACE2, 30 µL of 2 µg/mL RPE-Streptavidin was added to each well and incubated for 45 min at 21 °C while shaking at 750 rpm on a thermomixer. Afterwards, the beads were washed again thrice with 100 µL wash buffer. The 96-well plate was placed for 3 min on the thermomixer at 1000 rpm to resuspend the beads before analysis using a FLEXMAP 3D instrument with the following settings: 80 µL (no timeout), 50 events, Gate: 7,500 – 15,000, Reporter Gain: Standard PMT. MFI values of each sample were divided by the mean of the ACE2 normalization control. The normalized values were converted into percent and subtracted from 100 resulting in the percentage of neutralization. Negative neutralization percentages were set to zero.
MULTICOV-AB (46), an in-house produced SARS-CoV-2 antibody assay, was performed with all serum samples to measure RBD-specific IgG levels. The antigen panel was expanded to include RBD proteins from 11 different SARS-CoV-2 variants from which all, except the Cluster 5 variant from Sino Biological (# 40592-V08H80), were produced in-house. Briefly, spectrally distinct populations of MagPlex beads (Luminex) coupled with RBD proteins of SARS-CoV-2 wild type and variants were pooled in assay buffer (1:4 Low Cross Buffer (Candor Bioscience GmbH) in CBS (1x PBS + 1% BSA) + 0.05% Tween20) to create a bead mix (40 beads/µL per bead population). Samples were diluted 1:200 in assay buffer, working inside a sterile laminar flow cabinet. 25 µL of diluted sample were added to 25 µL of bead mix in a 96-well plate (Corning, #3642) resulting in a total dilution of 1:400. Samples incubated for 2 h at 21°C while shaking at 750 rpm on a thermomixer. After incubation, the beads were washed three times with 100 µL wash buffer (1x PBS + 0.05 % Tween20) using a microplate washer (Biotek 405TS, Biotek Instruments GmbH). Detection of bound antibodies was performed by incubating the beads with 3 µg/mL RPE-huIgG (Dianova, # 109-116-098) for 45 min at 21 °C and 750 rpm on a thermomixer. Following three more washing cycles with 100 µL wash buffer, the beads were resuspended for 3 min at 21°C and 1000 rpm. For readout, a FLEXMAP 3D instrument (Luminex) was used with the following settings: 80 µL (no timeout), 50 events, Gate: 7,500 – 15,000, Reporter Gain: Standard PMT.

Assay validation

Intra- and inter-assay precision

To determine the intra-assay precision of the ACE2 RBD competition assay, 12 replicates of four serum samples (Vac1 – Vac4) were measured on a 96-well plate (Corning, #3642). Additionally, 15 replicates of the 500 ng/mL ACE2 control and 12 replicates of a blank control containing only assay buffer without sample or ACE2 were measured. For analysis, the mean, standard deviation and coefficient of variation in percent of all replicates were calculated.
For inter-assay precision, four serum samples (Vac1 – Vac4) were measured in triplicates in four independent experiments. Additionally, the quality control, the ACE2 normalization control and blank were also processed in triplicates in the same four experiments. For analysis, the mean, standard deviation and coefficient of variation in percent of all replicates were calculated.

Freeze-thaw stability

Freeze-thaw stability of the biotinylated ACE2 stocks was determined by analyzing five serum samples (Vac1 – Vac4 (vaccinated) and pre-pandemic) in triplicates, with ACE2 stocks undergoing 1 to 6 freeze-thaw cycles. In addition to that, every sample was also processed with ACE2 not re-frozen once thawed (fresh). The MFI values of every sample were normalized to the values of the respective ACE2 control. For analysis, the mean, standard deviation and coefficient of variation in percent of all replicates were calculated.

Short-term stability

Short-term stability was determined by storing ACE2 buffer under six different conditions before proceeding with the assay protocol. The prepared ACE2 buffer was stored 2 h, 4 h and 24 h at both 4°C and room temperature and compared to ACE2 buffer without storage (fresh). Replicate MFI values of every sample (Vac1 – Vac4 (vaccinated) and pre-pandemic) were normalized to the values of the respective ACE2 control. For analysis, the mean, standard deviation and coefficient of variation in percent of all replicates were calculated.

Parallelism

To investigate the stability of the ACE2 RBD competition assay against variations of the used ACE2 concentration, five samples (Vac1 – Vac4 (vaccinated) and pre-pandemic) were analyzed with ACE2 concentrations ranging from 150 ng/mL to 350 ng/mL. Replicate MFI values of every sample were normalized to the values of the respective ACE2 control. For analysis, the mean, standard deviation and coefficient of variation in percent of all replicates were calculated.
Commercial assay formats

For further validation, one sample from each individual (n=186) were analyzed with the commercially available in-vitro diagnostic test SARS-CoV-2 NeutraLISA (Euroimmun). The assay was performed according to the manufacturer’s instructions. For longitudinal donors with more than one sample available, the sample closest to 20 days after positive PCR diagnosis was picked. Negative neutralization percentages were set to zero.

Data analysis

Data collection and assignment to metadata was performed with Microsoft Excel 2016. Data analysis and visualization was performed with Graphpad Prism (version 9.1.2). Longitudinal curves were fitted using a one-site total binding equation. Correlations were analyzed using Pearson’s correlation coefficient. Figures were edited with Inkscape (version 0.92.4). Data generated for this manuscript is available from the authors upon request.
References

Competing interests

NSM was a speaker at Luminex user meetings in the past. The Natural and Medical Sciences Institute at the University of Tübingen is involved in applied research projects as a fee for services with the Luminex Corporation. The other authors declare no competing interest.

Funding

This work was financially supported by the State Ministry of Baden-Württemberg for Economic Affairs, Labour and Housing Construction (grant number FKZ 3-4332.62-NMI-68).

Acknowledgements

We thank Johanna Griesbaum, Jennifer Jüngling and Christine Geisler for excellent technical assistance.

Author Contributions

DJ and AD conceived the study and designed the experiments. NSM supervised the study. DJ and MaB performed the experiments. DJ, AD, MaB produced components for the multiplex ACE2 RBD competition assay. KK, SB, CS, HH, KS, NM, KA, MK, MB and SG
collected samples or organized their collection and provided clinical metadata. PDK, BT, TW and UR produced and designed recombinant assay proteins. MB, SG and NSM procured funding. DJ performed data analysis and generated the figures. DJ and AD wrote the manuscript. All authors critically reviewed and approved the final manuscript.
Figures

Figure 1 | ACE2 RBD competition assay: Technical validation results. Results of intra-assay precision (A), inter-assay precision (B), short-term stability (C), freeze-thaw stability (D) and parallelism (E) experiments analyzing neutralization capacity (displayed as %) using wild-type (WT) RBD. Four samples from donors vaccinated with Pfizer BNT-162b2 (n=4, black) and one pre-pandemic sample (n=1, grey) were analyzed. Data points of each sample are illustrated by different shapes according to the figure key. Percent coefficients of variation (%CV) for all included RBD mutants are summarized in Supplementary table 3.
Figure 2 | Correlation between SARS-CoV-2 NeutraLISA and the multiplex ACE2 RBD competition assay. One sample from each individual (n=186) was measured using both assays and analyzed by linear regression. Samples were classified as being negative (non-neutralizing) if they had a value below 20% (red lines). (A) Descriptive statistics of the (B) linear regression, showing the distribution of samples as positive or negative for both assays. Correlation analysis was performed after Pearson and the correlation coefficient r is shown in the table with the 95 % confidence interval (CI).
Figure 3 | Neutralization capacity varies between RBD mutants. Violin plots showing neutralization capacities (%) of individual serum samples from 7 to 49 days post PCR (n=59, depicted as dots) against RBD mutants. Black horizontal lines represent medians. Fold-decrease of neutralization capacity in comparison to wild-type corresponds to the ratio between the medians of wild-type and the respective RBD mutant. RBDs of VOC are shown in blue. An overview of the mutations present in all RBD mutants is shown in Supplementary Table 1.
Figure 4 | Correlation between anti-RBD IgG MFI signals and neutralization capacities of serum samples from COVID-19 patients for wild-type and 11 RBD mutants. Regression analysis comparing neutralizing capacity (%) and IgG responses (MFI) for wild-type and all RBD mutants included in the study. Each circle represents one sample (n=186). For longitudinal donors with more than one sample available, the sample closest to 20 days post positive PCR diagnosis was selected. The percentage next to the bracket indicates the proportion of samples with neutralization capacity ≤ 20% (in orange). Pearson’s correlation coefficient (r) is specified for every correlation.
Figure 5 | Longitudinal analysis of anti-RBD IgG levels and neutralization capacities in Covid-19 patients. Neutralization capacity (%) and IgG responses (MFI) against time post positive PCR test for longitudinal samples of selected donors (n=6) for wild-type (A, B) and RBD delta (E, F). The same analysis is then shown for all individual samples from 1 to 92 days post PCR (n=168) for wild-type (C, D). Black dots indicate mean responses with standard deviation indicated by the error bars. Neutralization capacity (%) and IgG responses (MFI) 1 to 92 days post PCR for all RBD mutants included in the study (G, H). Each variant is illustrated by a different color according to the figure key.
Figure 6 | Correlation of anti-RBD IgG levels and neutralization capacities with SARS-CoV-2 disease severity. Bar charts showing mean neutralization capacities (%) against wild-type and RBD delta are correlated with WHO grades for disease severity for samples 7-49 days post PCR (A, B) and later than 49 days post PCR (C, D). Mean anti-RBD WT IgG and anti-RBD delta IgG levels are shown for samples 7-49 days post PCR (E, F) and later than 49 days post PCR (G, H). Individual samples are displayed as colored dots, bars indicate the mean of the dataset with error bars representing standard deviation. Number of samples is given below the columns (n). If no samples for a group were available, the column is labeled with “n/a”. WHO grade 1 - ambulatory / no limitations of activities, 2 - ambulatory /
limitation of activities, 3 - hospitalized, mild disease / no oxygen therapy, 4 - hospitalized, mild disease / mask or nasal prongs, 6 - hospitalized, severe disease / intubation + mechanical ventilation, 7 - hospitalized, severe disease / ventilation + additional organ support (pressors, RRT, ECMO), 8 – Death. The study did not contain samples of WHO grade 5.
Supplementary Figures and Tables

Supplementary Figure 1 | Relation between neutralization capacity and gender, donor age and Body-mass-index (BMI). Correlation between wild-type neutralization capacities (%) and gender (A, B), age (C, D) and BMI (E, F) for samples 7-49 days post PCR (A,C,E) and later than 49 days post PCR (B,D,F). P-values, when significant, are shown for all panels. Pearson’s r was used to determine correlations.
Supplementary Table 1: Mutations of SARS-CoV-2 RBD proteins of 11 variants used in this study.

<table>
<thead>
<tr>
<th>Variant</th>
<th>RBD mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.23.1 V367F</td>
<td></td>
</tr>
<tr>
<td>Alpha</td>
<td>N501Y</td>
</tr>
<tr>
<td>Cluster 5 Y453F</td>
<td></td>
</tr>
<tr>
<td>Epsilon L452R</td>
<td></td>
</tr>
<tr>
<td>Delta L452R T478K</td>
<td></td>
</tr>
<tr>
<td>Lambda L452Q F490S</td>
<td></td>
</tr>
<tr>
<td>Kappa L452R E484Q</td>
<td></td>
</tr>
<tr>
<td>Eta E484K</td>
<td></td>
</tr>
<tr>
<td>Gamma K417T E484K N501Y</td>
<td></td>
</tr>
<tr>
<td>Theta E484K N501Y</td>
<td></td>
</tr>
<tr>
<td>Beta K417N E484K N501Y</td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Table 2|Characteristics of the analyzed serum sample set.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of donors</td>
<td>186</td>
</tr>
<tr>
<td>Number of samples</td>
<td>325</td>
</tr>
<tr>
<td>Median age (IQR) -years</td>
<td>62 (22)</td>
</tr>
<tr>
<td>Female sex (%)</td>
<td>84 (45.7)</td>
</tr>
<tr>
<td>Median ΔT post first positive PCR test (range)</td>
<td>85 (1-348)</td>
</tr>
<tr>
<td>Median BMI (range)</td>
<td>26.5 (18.4 – 50.2)</td>
</tr>
</tbody>
</table>
Supplementary Table 3 | ACE2 RBD competition assay validation results. Percentage coefficients of variation (%CV) of normalized MFI values for every bead region and RBD studied for every analyzed sample (n=5) and the mean of all samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>RBD WT</th>
<th>alpha</th>
<th>beta</th>
<th>gamma</th>
<th>epsilon</th>
<th>Cluster 5</th>
<th>A.23.1</th>
<th>eta</th>
<th>theta</th>
<th>kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-assay precision (%CV)</td>
<td>Vac1</td>
<td>1.4</td>
<td>1.5</td>
<td>2.6</td>
<td>2.5</td>
<td>1.3</td>
<td>1.5</td>
<td>1.7</td>
<td>1.4</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Vac2</td>
<td>2.2</td>
<td>2.1</td>
<td>1.1</td>
<td>1.6</td>
<td>1.7</td>
<td>1.2</td>
<td>1.5</td>
<td>1.9</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Vac3</td>
<td>2.8</td>
<td>4.0</td>
<td>3.8</td>
<td>2.1</td>
<td>4.2</td>
<td>3.0</td>
<td>3.5</td>
<td>2.1</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Vac4</td>
<td>2.2</td>
<td>2.1</td>
<td>3.4</td>
<td>1.9</td>
<td>2.0</td>
<td>2.0</td>
<td>2.3</td>
<td>1.7</td>
<td>2.1</td>
</tr>
<tr>
<td>Mean</td>
<td>2.1</td>
<td>2.4</td>
<td>2.7</td>
<td>2.0</td>
<td>2.3</td>
<td>1.9</td>
<td>2.3</td>
<td>1.8</td>
<td>1.8</td>
<td>2.5</td>
</tr>
<tr>
<td>Inter-assay precision (%CV)</td>
<td>Vac1</td>
<td>1.9</td>
<td>2.7</td>
<td>3.0</td>
<td>2.9</td>
<td>2.8</td>
<td>2.3</td>
<td>3.5</td>
<td>2.7</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>Vac2</td>
<td>2.6</td>
<td>3.0</td>
<td>3.9</td>
<td>2.8</td>
<td>3.5</td>
<td>2.4</td>
<td>2.7</td>
<td>3.0</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Vac3</td>
<td>5.7</td>
<td>6.9</td>
<td>6.9</td>
<td>3.5</td>
<td>6.4</td>
<td>4.6</td>
<td>5.5</td>
<td>4.9</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>Vac4</td>
<td>4.4</td>
<td>3.5</td>
<td>4.6</td>
<td>2.9</td>
<td>4.3</td>
<td>2.5</td>
<td>1.9</td>
<td>3.0</td>
<td>2.7</td>
</tr>
<tr>
<td>Mean</td>
<td>3.3</td>
<td>3.7</td>
<td>4.3</td>
<td>3.0</td>
<td>4.0</td>
<td>2.9</td>
<td>3.0</td>
<td>3.0</td>
<td>2.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Freeze-thaw stability (%CV)</td>
<td>Vac1</td>
<td>2.7</td>
<td>3.8</td>
<td>4.5</td>
<td>3.1</td>
<td>4.0</td>
<td>2.7</td>
<td>3.3</td>
<td>2.1</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>Vac2</td>
<td>4.0</td>
<td>3.2</td>
<td>2.5</td>
<td>2.5</td>
<td>3.8</td>
<td>2.8</td>
<td>2.9</td>
<td>2.6</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>Vac3</td>
<td>9.3</td>
<td>10.2</td>
<td>4.7</td>
<td>5.8</td>
<td>12.1</td>
<td>8.9</td>
<td>7.3</td>
<td>9.8</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>Vac4</td>
<td>7.6</td>
<td>6.2</td>
<td>6.1</td>
<td>5.3</td>
<td>7.2</td>
<td>5.8</td>
<td>6.6</td>
<td>6.3</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>Pre-pandemic</td>
<td>1.8</td>
<td>1.8</td>
<td>3.2</td>
<td>3.7</td>
<td>1.8</td>
<td>1.4</td>
<td>2.1</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Mean</td>
<td>4.8</td>
<td>4.7</td>
<td>4.2</td>
<td>3.9</td>
<td>5.3</td>
<td>4.1</td>
<td>4.1</td>
<td>4.3</td>
<td>3.5</td>
<td>4.7</td>
</tr>
<tr>
<td>Short-term stability (%CV)</td>
<td>Vac1</td>
<td>2.5</td>
<td>3.9</td>
<td>3.2</td>
<td>2.3</td>
<td>2.5</td>
<td>2.3</td>
<td>2.6</td>
<td>2.1</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>Vac2</td>
<td>2.3</td>
<td>3.1</td>
<td>4.5</td>
<td>2.3</td>
<td>2.3</td>
<td>2.8</td>
<td>2.6</td>
<td>2.0</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>Vac3</td>
<td>8.6</td>
<td>9.3</td>
<td>6.4</td>
<td>3.0</td>
<td>6.9</td>
<td>4.4</td>
<td>4.9</td>
<td>7.1</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>Vac4</td>
<td>11.6</td>
<td>4.9</td>
<td>3.4</td>
<td>3.2</td>
<td>3.0</td>
<td>2.4</td>
<td>3.1</td>
<td>3.2</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>Pre-pandemic</td>
<td>1.6</td>
<td>2.3</td>
<td>3.7</td>
<td>1.9</td>
<td>1.9</td>
<td>1.8</td>
<td>2.2</td>
<td>1.8</td>
<td>2.4</td>
</tr>
<tr>
<td>Mean</td>
<td>4.8</td>
<td>4.7</td>
<td>4.2</td>
<td>3.9</td>
<td>5.3</td>
<td>4.1</td>
<td>4.1</td>
<td>4.3</td>
<td>3.5</td>
<td>4.7</td>
</tr>
<tr>
<td>Parallelism (%CV)</td>
<td>Vac1</td>
<td>4.1</td>
<td>3.9</td>
<td>5.0</td>
<td>4.0</td>
<td>4.5</td>
<td>4.2</td>
<td>4.2</td>
<td>3.2</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>Vac2</td>
<td>4.2</td>
<td>2.5</td>
<td>4.0</td>
<td>3.4</td>
<td>2.7</td>
<td>2.5</td>
<td>4.2</td>
<td>2.6</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>Vac3</td>
<td>12.0</td>
<td>11.7</td>
<td>4.0</td>
<td>5.3</td>
<td>11.9</td>
<td>11.8</td>
<td>9.3</td>
<td>13.6</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Vac4</td>
<td>11.3</td>
<td>9.6</td>
<td>6.5</td>
<td>6.9</td>
<td>10.0</td>
<td>8.7</td>
<td>8.6</td>
<td>9.9</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>Pre-pandemic</td>
<td>2.1</td>
<td>1.2</td>
<td>3.6</td>
<td>2.8</td>
<td>2.3</td>
<td>2.1</td>
<td>2.4</td>
<td>1.9</td>
<td>2.7</td>
</tr>
<tr>
<td>Mean</td>
<td>4.8</td>
<td>4.7</td>
<td>4.2</td>
<td>3.9</td>
<td>5.3</td>
<td>4.1</td>
<td>4.1</td>
<td>4.3</td>
<td>3.5</td>
<td>4.7</td>
</tr>
</tbody>
</table>