Title: Anxiety disorders and age-related changes in physiology

Short title: Physiological changes in anxiety disorders

Authors: Julian Mutz1*, Thole H. Hoppen2, Chiara Fabbri1,3 and Cathryn M. Lewis1,4

Affiliations:
1. Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom.
2. Institute of Psychology, University of Münster, Münster, Germany.
3. Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
4. Department of Medical and Molecular Genetics, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom.

*Corresponding author:
Julian Mutz; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, Memory Lane, London SE5 8AF, United Kingdom. Email: julian.mutz@gmail.com.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objective: Anxiety disorders are leading contributors to the global disease burden, highly prevalent across the lifespan, and associated with substantially increased morbidity and early mortality. The aim of this study was to examine age-related changes across a wide range of physiological measures in middle-aged and older adults with a lifetime history of anxiety disorders compared to healthy controls.

Methods: The UK Biobank study recruited >500,000 adults, aged 37-73, between 2006–2010. We used generalised additive models to estimate non-linear associations between age and hand-grip strength, cardiovascular function, body composition, lung function and heel bone mineral density in cases vs. controls.

Results: The main dataset included 332,078 adults (mean age = 56.37 years; 52.65% females). In both sexes, individuals with anxiety disorders had lower hand-grip strength and blood pressure, while their pulse rate and body composition measures were higher than in healthy controls. Case-control differences were larger when considering individuals with chronic and/or severe anxiety disorders, and differences in body composition were modulated by depression comorbidity status. Differences in age-related physiological changes between female anxiety disorder cases and healthy controls were most evident for blood pressure, pulse rate and body composition, while in males for hand-grip strength, blood pressure and body composition. Most differences in physiological measures between cases and controls tended to decrease with age increase.

Conclusions: Individuals with a lifetime history of anxiety disorders differed from healthy controls across multiple physiological measures, with some evidence of case-control differences by age. The differences observed varied by chronicity/severity and depression comorbidity.

Keywords: Ageing; Body composition; Cardiovascular function; Anxiety; Physiology
Introduction

Anxiety disorders are leading contributors to the global disease burden, highly prevalent across the lifespan and across nations, and associated with substantially increased morbidity and early mortality.\(^1\) A population-based study from Denmark reported that individuals with anxiety disorders had a 39% higher risk of premature death due to natural causes than the general population.\(^5\) The excess mortality observed in anxiety disorders does not result only from unnatural causes of death such as suicide, but also from increased rates of dementia, cardiovascular events, and other medical illnesses.\(^10,11\) Individuals with anxiety disorders also show signs of accelerated biological ageing such as earlier neurodegeneration\(^12,13\) and shorter telomeres,\(^14,15\) and an increased risk of disability in old age, especially if they have comorbid depression.\(^16,17\)

However, less is known about physiological differences between individuals with anxiety disorders and healthy controls, and whether such differences vary by age. A Dutch longitudinal study reported that individuals with anxiety disorders had poorer lung function than healthy controls, and that men with anxiety disorders showed a greater decline in lung function over time.\(^18\) Women, but not men with anxiety disorders also had lower hand-grip strength. More severe anxiety disorders were associated with greater physiological abnormalities. Most studies that investigated anxiety disorder-related changes in physiology have focussed on one or two physiological measures.\(^18-20\) Studies that include a broad range of physiological measures are lacking.

To the best of our knowledge, this is the first study that examined age-related changes across a wide range of physiological measures in middle-aged and older adults with anxiety disorders. Physiological measures such as hand-grip strength can be assessed non-invasively, fast and at low cost, while providing reliable information on functional decline.\(^21,22\) Importantly, variation in physiological functioning predicts future morbidity and mortality.\(^23,24\) A greater understanding of age-related changes in physiology in individuals with anxiety disorders may inform strategies for prevention and intervention to foster healthy ageing.

The aim of the present cross-sectional study was to examine associations between age and 15 physiological markers in individuals with a lifetime history of anxiety disorders compared to healthy controls. Since both the epidemiology of anxiety disorders\(^2\) and human physiology\(^25\) differ by sex, we conducted separate analyses in males and females. Given that a dose-response relationship between anxiety disorder severity and differences in physiology has been reported before,\(^18\) we also examined chronic and/or severe anxiety disorders. Finally, depression has been associated with age-related changes in physiology\(^26\) and is highly comorbid with anxiety disorders,\(^2,4,18\) hence we also examined...
physiological differences between individuals with anxiety disorders without comorbid depression and healthy controls.

Drawing on data from the UK Biobank that included more than 332,000 participants aged 37-73, we investigated the following questions in females and males:

- Are there differences in physiology between individuals with anxiety disorders and healthy controls?
- Do changes in physiology across age differ between individuals with anxiety disorders and healthy controls?
- Are differences in physiology more pronounced in individuals with chronic and/or severe anxiety disorders?
- Do results differ when individuals with comorbid depression are excluded?
Methods

Study population
The UK Biobank is a prospective study of >500,000 UK residents aged 37–73 at baseline, recruited between 2006–2010. Details of the study rationale and design have been reported elsewhere. Briefly, individuals registered with the UK National Health Service (NHS) and living within a 25-mile (~40 km) radius of one of 22 assessment centres were invited to participate (9,238,453 postal invitations sent). Participants provided information on their sociodemographic characteristics, lifestyle and medical history. They also underwent physical examination including, for example, height, weight and blood pressure measurements. Linked hospital inpatient records are available for most participants and primary care records are currently available for half of participants. A subset of 157,366 out of 339,092 invited participants (46%) completed an online follow-up mental health questionnaire (MHQ) between 2016 and 2017, covering 31% of all participants.

Exposures
Age at baseline assessment was the primary explanatory variable.

We used a transdiagnostic phenotype for lifetime anxiety disorders and identified cases from multiple sources: the MHQ which included the anxiety disorder module of the Composite International Diagnostic Interview Short Form (CIDI-SF) and assessed generalised anxiety disorder according to DSM-5 criteria (Supplement 1); individuals with a Generalised Anxiety Disorder Assessment (GAD-7) sum score of ≥10, which was assessed as part of the MHQ; individuals who had reported “anxiety/panic attacks” during the nurse-led interview at baseline (field 20002), or “anxiety, nerves or generalized anxiety disorder”, “social anxiety or social phobia”, “any other phobia”, “panic attacks” or “agoraphobia” in response to a single-item question on the MHQ (field 20544); participants with a hospital inpatient record containing an ICD-10 code for anxiety disorders (F40-F41; Supplement 2); participants with at least two primary care records containing a Read v2 or CTV3 code for anxiety disorders (for data extraction procedures, see (Supplement 3). We excluded individuals with any record of bipolar disorder or psychosis, as these disorders are strongly associated with the risk of physical multimorbidity.

Healthy controls did not meet our criteria for anxiety disorders and had no record of other mental disorders: (i) had not reported “schizophrenia”, “mania/bipolar disorder/manic depression”, “depression”, “obsessive compulsive disorder”, “anorexia/bulimia/other eating disorder”, “post-traumatic stress disorder” during the nurse-led interview at baseline (field 20002); (ii) reported no mental disorders in response to the single-item question on the MHQ (field 20544); (iii) had self-
reported no current psychotropic medication use at baseline (field 20003; Supplement 4); (iv) had no linked hospital inpatient record that contained any ICD-10 Chapter V code except organic causes or substance use (F20-F99); (v) had no primary care record containing diagnostic codes for mental disorders; (vi) were not classified as individuals with probable mood disorder according to Smith et al. based on additional questions that were introduced during the later stages of the baseline assessment (Supplement 5); (vii) had no Patient Health Questionnaire-9 (PHQ-9) sum score of ≥5, which was assessed as part of the MHQ; (viii) had no GAD-7 sum score of ≥5; (ix) did not report that they ever felt worried, tense, or anxious for most of a month or longer (field 20421); (x) were not identified as depression or bipolar disorder cases based on the CIDI-SF depression module and questions on (hypo)manic symptoms.

Physiological measures

We examined 15 continuous physiological measures obtained at the baseline assessment, including maximal hand-grip strength, systolic and diastolic blood pressure, pulse rate, body mass index (BMI), waist-hip ratio, fat mass, fat-free mass, body fat percentage, peak expiratory flow, forced vital capacity (FVC), forced expiratory volume in one second (FEV1), FVC/FEV1 ratio, heel bone mineral density and arterial stiffness. Details on these measures that have previously been reported in our study on age-related physiological changes in depression are presented in Supplement 6.

Briefly, hand-grip strength in whole kilogram force units was measured using a Jamar J00105 hydraulic hand dynamometer. Seated systolic and diastolic resting blood pressure in millimetres of mercury (mmHg) was measured twice using an Omron 705 IT digital blood pressure monitor. Resting pulse rate in beats per minute was recorded during the blood pressure measurements using the Omron 705 IT device or, exceptionally, a manual sphygmomanometer. Weight and body composition measurements were obtained with a Tanita BC-418 MA body composition analyser or, in limited cases, using a manual scale. Standing height was measured using a Seca 202 height measure. Waist and hip circumference in cm were measured using a Wessex non-stretchable sprung tape. Other body composition measures were derived from these variables. Volumetric measures of lung function were quantified using breath spirometry with a Vitalograph Pneumotrac 6800. Heel bone mineral density was estimated by quantitative ultrasound assessment of the calcaneus using a Sahara Clinical Bone Sonometer. Resting pulse wave velocity, used to derive an index of arterial stiffness, was measured using finger photoplethysmography with a PulseTrace PCA2 infra-red sensor.

Exclusion criteria

Participants whose genetic sex did not match their self-reported sex were excluded. Participants with missing data or who responded “do not know” or “prefer not to answer” to any covariates were also excluded.
Covariates

Covariates were identified from previous studies and included ethnicity (White, Asian, Black, Chinese, Mixed-race or other), highest educational/professional qualification (four categories, reflecting similar years of education: (1) College/University Degree; (2) Education to age 18 or above, but not reaching degree level (“A levels”/“AS levels” or equivalent, NVQ/HND/HNC or equivalent, other professional qualifications; (3) Education to age 16 qualifications (“GCSEs”/“O levels” or equivalent, “CSEs” or equivalent); (4) No qualifications), physical activity (number of days per week spent walking, engaging in moderate-intensity physical activity or engaging in vigorous-intensity physical activity for ≥10 minutes continuously), smoking status (never, former or current), alcohol intake frequency (never, special occasions only, one to three times a month, once or twice a week, three or four times a week or daily or almost daily), sleep duration (hours per day) and, for cardiovascular measures, antihypertensive medication use (yes/no, derived from self-reported medication use; fields 6153 and 6177). A detailed description of the sociodemographic and lifestyle factors is available in our previous publication.37

Statistical analyses

Analyses were prespecified prior to inspection of the data (preregistration: osf.io/rjvqt) and algorithms were tested on simulated data. Statistical analyses were conducted using R (version 3.6.0).

Sample characteristics were summarised using means and standard deviations or counts and percentages. We also present the number of individuals who met our criteria for anxiety disorders and healthy controls. Differences between cases and controls were estimated using standardised mean differences (± 95% confidence intervals).

We examined the relationship between each physiological measure and age using generalised additive models (GAMs) with the ‘mgcv’ package in R.38 GAMs are flexible modelling approaches that allow for the relationship between an outcome variable and a continuous exposure to be represented by a non-linear smooth curve while adjusting for covariates. This approach is particularly useful if a linear model does not capture key aspects of the relationship between variables and attempts to achieve maximum goodness-of-fit while maintaining parsimony of the fitted curve to minimize overfitting. Smoothing parameters were selected using the restricted maximum likelihood method and we used the default option of ten basis functions to represent smooth terms in each model. Each measure was modelled against a penalised regression spline function of age with separate smooths for individuals with anxiety disorders and healthy controls.

In the main analysis, two models were fitted for each physiological measure in males and females separately:
• Unadjusted model: physiological measure \sim anxiety disorder + s(age, by anxiety disorder).

• Adjusted model: physiological measure \sim anxiety disorder + s(age, by anxiety disorder) + covariates (see previous paragraph).

where s(age, by anxiety disorder) represents the smooth function for age, stratified by anxiety disorder status.

To formally test whether the relationships between physiological measures and age differed between individuals with anxiety disorders and healthy controls, we also fitted models that included reference smooths for healthy controls and difference smooths for individuals with anxiety disorders compared to healthy controls. For these analyses, anxiety disorder status was coded as an ordered factor in R. If the difference smooth differs from zero, the physiological measure follows a different trend with age in individuals with anxiety disorders and healthy controls.

Adjusted p-values were calculated using the p.adjust function in R to account for multiple testing across each set of analyses of the 15 physiological measures. Two methods were used: (1) Bonferroni and (2) Benjamini & Hochberg,\(^\text{39}\) two-tailed with $\alpha = .05$ and false discovery rate of 5%, respectively. We have opted for this approach because the standard Bonferroni correction is usually too conservative, potentially leading to a high number of false negatives.

In a secondary analysis, we examined individuals with chronic and/or severe anxiety disorders, defined as (i) individuals with a hospital inpatient record of anxiety disorders as the primary diagnosis, (ii) individuals with recurrent or chronic anxiety (E2004 or E2005) in their primary care record and (iii) individuals with generalised anxiety disorder according to the CIDI-SF with maximum level of impairment (“Impact on normal roles during worst period of anxiety” (field 20418) = A lot) and duration (“Longest period spent worried or anxious” (field 20420) = All my life / as long as I can remember or at least 24 months).

In a sensitivity analysis, we excluded individuals with any record of depression comorbidity from anxiety disorder cases.\(^\text{26}\)

We conducted two additional sensitivity analyses that were not pre-registered: (i) we additionally adjusted analyses of cardiovascular measures for BMI and (ii) we excluded anxiety disorder cases who reported current use of antidepressants at baseline from the analyses of blood pressure.
Results

Study population
A subset of 444,690 (88.49%) of the 502,521 UK Biobank participants had complete data on all covariates. After excluding participants with missing physiological data, unclear anxiety disorder status (n = 93) and those who did not meet our inclusion criteria, we retained 332,078 participants in the main dataset. Subsets of 123,597, 228,321 and 107,958 participants were included in the analyses of lung function, heel bone mineral density and arterial stiffness, respectively (Figure 1).

![Figure 1. Study population. Physiological measures included in the main dataset were hand-grip strength, blood pressure, pulse rate and measures of body composition.](image)

Sample characteristics
The average age of participants in our main dataset was 56.3 years (SD = 8.11) and 52.65% of participants were female. Overall, 44,722 (13.47%) participants in this sample had a lifetime history of anxiety disorders, 65.92% (n = 29,482) of whom were female. Descriptive statistics for the full UK Biobank and for the analytical samples stratified by sex and anxiety disorder status are presented in Table 1 (physiological measures) and Supplement Table 4 (covariates).

<table>
<thead>
<tr>
<th>Table 1. Physiological measures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hand-grip strength</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
</tr>
<tr>
<td>Diastolic blood pressure</td>
</tr>
<tr>
<td>Pulse rate</td>
</tr>
<tr>
<td>Body mass index</td>
</tr>
<tr>
<td>Body fat percentage</td>
</tr>
<tr>
<td>Fat mass</td>
</tr>
<tr>
<td>Fat-free mass</td>
</tr>
</tbody>
</table>
Case-control differences

Case-control differences by sex are presented in Table 2. Females with anxiety disorders had lower hand-grip strength and blood pressure than healthy controls. Their pulse rate was elevated, and they had higher values for all body composition measures and most lung function measures than controls. We did not find evidence of differences in the FEV1/FVC ratio, heel bone mineral density or arterial stiffness. Male anxiety disorder cases had lower hand-grip strength, blood pressure and heel bone mineral density than healthy controls. Their pulse rate and all body composition measures were higher than in controls, although the difference in fat-free mass did not survive multiple testing correction. We did not find evidence of differences in lung function or arterial stiffness. The largest case-control difference was observed for systolic blood pressure (SMD = -0.129, 95% CI -0.142 to -0.117, pBonf. < 0.001 in females and SMD = -0.091, 95% CI -0.111 to -0.078, pBonf. = 0.013 in males).

Table 2. Differences in physiological measures between individuals with anxiety disorders and healthy controls

<table>
<thead>
<tr>
<th>Variable</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SMD</td>
<td>95% CI</td>
</tr>
<tr>
<td>Hand-grip strength</td>
<td>-0.032</td>
<td>-0.044</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>-0.129</td>
<td>-0.142</td>
</tr>
<tr>
<td>Diastolic blood pressure</td>
<td>-0.041</td>
<td>-0.053</td>
</tr>
<tr>
<td>Pulse rate</td>
<td>0.045</td>
<td>0.032</td>
</tr>
<tr>
<td>Body mass index</td>
<td>0.047</td>
<td>0.035</td>
</tr>
<tr>
<td>Body fat percentage</td>
<td>0.050</td>
<td>0.038</td>
</tr>
<tr>
<td>Fat mass</td>
<td>0.071</td>
<td>0.059</td>
</tr>
<tr>
<td>Fat-free mass</td>
<td>0.058</td>
<td>0.046</td>
</tr>
<tr>
<td>Waist-hip ratio</td>
<td>0.044</td>
<td>0.031</td>
</tr>
<tr>
<td>Peak expiratory flow</td>
<td>0.057</td>
<td>0.035</td>
</tr>
<tr>
<td>Forced expiratory volume 1s</td>
<td>0.064</td>
<td>0.042</td>
</tr>
<tr>
<td>Forced vital capacity</td>
<td>0.067</td>
<td>0.045</td>
</tr>
<tr>
<td>FEV1/FVC</td>
<td>0.011</td>
<td>-0.010</td>
</tr>
<tr>
<td>Heel bone mineral density</td>
<td>-0.005</td>
<td>-0.021</td>
</tr>
<tr>
<td>Arterial stiffness</td>
<td>-0.003</td>
<td>-0.025</td>
</tr>
</tbody>
</table>

Note: SMD = standardised mean difference; CI = confidence interval; Bonf. = Bonferroni; BH = Benjamini & Hochberg; FEV1 = forced expiratory volume in one second; FVC = forced vital capacity. P-values for Welch’s t-test. Negative values correspond to lower values in anxiety disorder cases.

Chronic and/or severe anxiety

Between 8.37% to 9.46% of females and 9.47% to 9.99% of males with anxiety disorders had chronic and/or severe anxiety disorders (Supplement Table 5). In females with chronic and/or severe anxiety disorders, we observed the same overall pattern of results as in the main analysis, although all observed
differences were larger in magnitude. For example, the case-control difference in body fat percentage was SMD = 0.113 (95% CI 0.074-0.151, \(p_{\text{Bonf.}} < 0.001\)) (Supplement Table 6), compared to SMD = 0.050 (95% CI 0.038-0.063, \(p_{\text{Bonf.}} < 0.001\)) in the main analysis (Table 2). In males with chronic and/or severe anxiety disorders, we did not find evidence of a difference in diastolic blood pressure compared to healthy controls (SMD = -0.013, 95% CI -0.064 to 0.038, \(p_{\text{BH}} = 0.713\)), and the difference in body fat percentage was not statistically significant after multiple testing correction. For most other physiological measures, we observed larger case-control differences than in the main analysis (Supplement Table 6). For example, the case-control difference in systolic blood pressure was SMD = -0.095 (95% CI -0.111 to -0.078, \(p_{\text{Bonf.}} < 0.001\)) in the main analysis and SMD = -0.153 (95% CI -0.204 to -0.102, \(p_{\text{Bonf.}} < 0.001\)) in this analysis.

Anxiety without depression comorbidity

After excluding individuals with depression comorbidity from anxiety disorder cases, we retained between 25.91% to 37.67% of female and 31.45% to 44.69% of male cases (Supplementary Table 5).

In female cases without depression comorbidity, differences in hand-grip strength, blood pressure, pulse rate and arterial stiffness remained statistically significant but were smaller in magnitude than in the main analysis (Supplement Table 7). Body mass index, fat mass and fat-free mass, which were higher in anxiety disorder cases than in healthy controls in the main analysis, were lower in cases without depression comorbidity (SMDs between -0.026 and -0.049). We did not find evidence of case-control differences in body fat percentage or waist-hip ratio in this analysis. In addition, there was no longer evidence of differences in lung function, except that the FEV\(_1\)/FVC ratio was lower in cases without comorbid depression than in controls (SMD = -0.048, 95% CI -0.082 to -0.013, \(p_{\text{BH}} = 0.019\)).

Finally, heel bone mineral density was lower in female cases without comorbid depression (SMD = -0.036, 95% CI -0.060 to -0.012, \(p_{\text{Bonf.}} = 0.043\)). In male cases without comorbid depression, differences in hand-grip strength, blood pressure, pulse rate, waist-hip ratio, lung function, heel bone mineral density and arterial stiffness were similar to the main analysis. Body mass index and fat-free mass were lower in cases than in controls (SMD = -0.058, 95% CI -0.084 to -0.033, \(p_{\text{Bonf.}} < 0.001\) and SMD = -0.066, 95% CI -0.092 to -0.041, \(p_{\text{Bonf.}} < 0.001\), respectively) and we did not find evidence of case-control differences in body fat percentage or fat mass, which were elevated in cases in the main analysis.

Case-control differences by age

We found some evidence that age-related changes in blood pressure, pulse rate, body composition and heel bone mineral density differed between female anxiety disorder cases and controls (Figure 2). Systolic blood pressure was -0.9 mmHg lower in cases at age 45 and this difference widened to -2.2 mmHg at age 65. For diastolic blood pressure we did not find evidence of case-control differences below age 52, and slightly lower diastolic blood pressure in cases than in controls above age 52. Case-
control differences in pulse rate and body composition narrowed with age (Supplement Figure 1). Heel bone mineral density was slightly lower in cases than in controls below age 55, and there was no evidence of differences between older cases and controls.

Figure 2. Generalised additive models of age-related changes in physiological measures in females with anxiety disorder and healthy controls. The solid lines represent physiological measures against smoothing functions of age. The shaded areas correspond to approximate 95% confidence intervals (± 2 × standard error). FEV₁ = forced expiratory volume in one second; FVC = forced vital capacity.

In males, case-control differences in hand-grip strength, pulse rate, waist-hip ratio and heel bone mineral density narrowed with age (Figure 4 and Supplement Figure 2). There was some evidence that diastolic blood pressure was lower in cases than in controls above age 50, although the formal statistical
test did not survive multiple testing correction. We found little evidence of case-control differences by age for the other physiological measures.

Figure 4. Generalised additive models of age-related changes in physiological measures in males with anxiety disorder and healthy controls. The solid lines represent physiological measures against smoothing functions of age. The shaded areas correspond to approximate 95% confidence intervals ($\pm 2 \times$ standard error). FEV$_1$ = forced expiratory volume in one second; FVC = forced vital capacity.

In females, we observed similar results across all physiological measures after adjustment for covariates (Supplement Figures 3 and 4). The formal statistical tests suggested that there was no evidence of case-control differences in age-related changes in heel bone mineral density, however, the overall pattern of results was comparable to the unadjusted model. In males, we also observed similar results in the adjusted model (Supplement Figures 5 and 6). Although the trajectories were similar to the unadjusted
analysis, the formal statistical tests suggested that there was no evidence of case-control differences in age-related changes in waist-hip ratio. The same was true for diastolic blood pressure and heel bone mineral density after multiple testing correction.

Chronic and/or severe anxiety

In females with chronic and/or severe anxiety disorders, we observed similar results for age-related changes in blood pressure and body composition, except that there was no evidence of case-control differences in fat-free mass below age 45 (Supplement Figures 7 and 8). As noted above, case-control differences tended to be larger. As in the main analysis, we observed no evidence of case-control differences in age-related changes in lung function or arterial stiffness. Differences in results were most evident for hand-grip strength and pulse rate, and to a lesser extent for heel bone mineral density. The formal statistical tests provided some evidence of case-control differences in age-related changes in blood pressure, body mass index, fat mass and fat-free mass, although none survived multiple testing correction. For males with chronic and/or severe anxiety disorders, we found some evidence that case-control differences in hand-grip strength and pulse rate narrowed with age, similar to the results from the main analysis, although none of the formal statistical tests survived multiple testing correction. There was less evidence of case-control differences in age-related changes in systolic blood pressure and no evidence of case-control differences in age-related changes in diastolic blood pressure. Across all other physiology measures, none of the formal statistical tests were statistically significant (Supplement Figures 9 and 10).

Anxiety without depression comorbidity

In female cases without depression comorbidity, none of the formal statistical tests provided evidence of case-control differences in age-related changes in physiology. When examining trajectories by age, we observed less evidence of differences in blood pressure or pulse rate. There was some evidence that several body composition and lung function measures were lower in cases than in controls between ages 45 to 65 (Supplement Figures 11 and 12). In male cases without depression comorbidity, the formal statistical test provided some evidence of case-control differences in age-related changes in pulse rate, although it did not survive multiple testing correction. None of the other formal statistical tests were statistically significant and there was less evidence of case-control differences in age-related changes in physiology beyond the average differences observed (Supplement Figures 13 and 14).

Additional sensitivity analyses

Case-control differences in cardiovascular function by age were similar to the results of our main analysis after additional adjustment for BMI (Supplement Figures 15 and 16). Excluding anxiety disorder cases who reported current use of antidepressants (n = 6517 females and n = 2700 males) had a negligible effect on case-control differences in blood pressure (Supplement Table 7).
Discussion

Middle-aged and older adults with a lifetime history of anxiety disorders show modest differences from healthy controls across a wide range of physiological measures. Our study is the first to provide some evidence of case-control differences in physiology by age. Observed differences were greater in chronic and/or severe cases and were modified by depression comorbidity.

Principal findings

We observed case-control differences in hand-grip strength, blood pressure, pulse rate and body composition in both sexes, while case-control differences in lung function and heel bone mineral density were specific to females and males, respectively. We found no evidence of case-control differences in arterial stiffness.

Most of the observed differences were larger when we examined individuals with chronic and/or severe anxiety disorders. However, in males, differences in diastolic blood pressure were smaller and not statistically significant, and differences in body fat percentage and heel bone mineral density, while similar in magnitude, were no longer statistically significant.

After excluding cases with comorbid depression, most differences remained statistically significant but were smaller in magnitude. However, body composition measures in both sexes were either lower in cases, or we did not find evidence of case-control differences. We found some evidence that heel bone mineral density was lower in female cases without comorbid depression. Most case-control differences in lung function, however, were no longer statistically significant. We also did not find evidence of case-control differences in diastolic blood pressure in males without comorbid depression.

Differences in age-related physiological changes between female anxiety disorder cases and healthy controls were most evident for blood pressure, pulse rate and body composition, with some evidence of differences in heel bone mineral density. Most case-control differences narrowed with age, except that we found a larger difference in blood pressure in older participants. In males, case-control differences in hand-grip strength, pulse rate, and to a lesser extent in waist-hip ratio and heel bone mineral density narrowed with age. Diastolic blood pressure was lower in older cases than in controls.

The overall pattern of results was comparable in females with chronic and/or severe anxiety disorders, but there was generally less evidence of differences between trajectories in males. Except for body composition, there was limited evidence of case-control differences in age-related physiological changes after excluding individuals with comorbid depression.
Findings in context

Consistent with findings from the Netherland Study of Depression and Anxiety (NESDA), females with anxiety disorders had lower hand-grip strength. Hand-grip strength was also lower in male cases, which had not been observed in the NESDA.

Previous findings on the association between anxiety disorders and blood pressure have been mixed and studies have often examined hypertension instead of blood pressure. While a recent meta-analysis reported increased rates of hypertension in anxiety disorders, several studies found no statistically significant associations with hypertension or blood pressure, and some studies observed lower blood pressure in anxiety disorders. It is worth noting that antidepressant medication and benzodiazepine use may affect blood pressure, and that some population-based studies have observed lower blood pressure in depression. The high degree of comorbidity between anxiety disorders and depression and differences in medication use might partially explain these mixed results.

We observed lower blood pressure in anxiety disorders, except for diastolic blood pressure in males, irrespective of depressive comorbidity. Excluding individuals who reported antidepressant use at baseline resulted in a negligible decrease in the case-control difference in systolic blood pressure and a negligible increase in the difference in diastolic blood pressure. Case-control differences in blood pressure were larger in chronic and/or severe anxiety disorders. A more robust association has been found between anxiety disorders and cardiovascular events such as coronary heart disease and heart failure.

Consistent with previous research, we observed a higher pulse rate in individuals with anxiety disorder. Noteworthy, reductions in anxiety disorder severity following cognitive behavioural therapy have been associated with a decrease in resting pulse rate.

Previous research has found higher rates of obesity and poor diet in anxiety disorders, consistent with our observation that cases had elevated measures of body composition. However, our analyses suggested that these differences may be modified by depression comorbidity. Depression has been associated with increased metabolic risk factors and elevated body composition measures. One study found that depression, but not anxiety disorders, was associated with an increased risk of metabolic syndrome, although a large Finnish birth cohort study found no evidence that either depression or anxiety disorders were associated with metabolic syndrome.

Our results for lung function contradict previous research. A cross-sectional analysis of the NESDA found poorer lung function in females with anxiety disorders and/or depression compared to healthy controls and better lung function in male cases than in controls. A 6-year longitudinal assessment of...
these participants suggested a greater decline in lung function in both females and males with anxiety and/or depression compared to healthy controls. We observed better lung function in female cases and found no statistically significant case-control differences in males. However, we observed no evidence of differences after excluding individuals with comorbid depression. Noteworthy, the NESDA studies did not report results separately for anxiety disorders and depression.

Our results confirm previous research that found lower bone mineral density in males with anxiety disorders and limited evidence of a case-control difference in females.

We did not observe any differences in arterial stiffness between individuals with anxiety disorders and healthy controls. This finding is surprising given that previous studies have reported increased arterial stiffness in anxiety disorders.

To our knowledge, we report the first study of age-related changes in the physiology of individuals with anxiety disorders with age as a continuous rather than a categorical variable. Previous studies have, for instance, dichotomized age (e.g., middle-aged vs. others), which makes comparisons difficult.

Mechanisms

Several mechanisms could explain the physiological differences between individuals with anxiety disorders and healthy controls. Anxiety disorders are sometimes associated with less healthy lifestyle behaviours which could affect a wide range of physiological makers. Others have suggested that physiological differences could reflect the cumulative effects of anxiety-related overactivation of the hypothalamic-pituitary-adrenal axis and sympathetic nervous system as well as increased inflammation and oxidative stress. It is also possible that the reciprocal relationship between late-life anxiety and associated cognitive impairment may be a driver of poor physiological function. A potential explanation for the observation that case-control differences tended to decrease with increasing age is that the prevalence of medical comorbidities increases with age and may dilute any effects that having anxiety disorders may have.

Limitations

Our study provides limited insights into the mechanisms underpinning these results, although our findings inform future studies. A limitation of this work is the cross-sectional design, which presents uncertainty about whether case-control differences by age represent changes due to ageing or potential cohort effects. Future work should examine physiological function in individuals with anxiety disorders longitudinally. Although we found that all physiological measures varied by age, selection bias resulting in healthier older adults participating at higher rates relative to their age group could result in the underestimation of age-related changes. To achieve maximum cohort coverage, we identified cases...
from multiple data sources, which have strengths and limitations that have been discussed elsewhere.33,75,76 For the primary care records, we included the additional quality control criterion that cases needed to have at least two mentions of anxiety in their records. Anxiety disorder cases in this study also included individuals with a single episode. This likely results in an underestimation of case-control differences. A small number of individuals with subthreshold disorders could be included in our definition of healthy controls, which could have attenuated the observed differences. Excluding individuals from healthy controls based on medication use is imperfect, as the available data did not allow for differentiation between use for the treatment of psychiatric disorders or their potential use for other indications such as sleep problems. Although we found that the differences between individuals with chronic and/or severe anxiety disorders and controls were larger, these differences could at least partly reflect higher levels of medical comorbidities in addition to the effects of chronicity and/or severity. Finally, some caution is warranted in interpreting the findings of the sensitivity analyses due to the smaller sample size and lower statistical power.

Generalisability

UK Biobank participants are not fully representative of the UK population. MHQ respondents, who represented a considerable number of anxiety disorder cases, were also more educated, of higher socioeconomic status and had fewer long-standing illnesses than participants who did not complete the MHQ. Similar patterns of disease prevalence were present in the MHQ and hospital inpatient records, although anxiety was reported more frequently in the MHQ.28 Wider issues of generalisability of findings from the UK Biobank have been discussed elsewhere.77,78 Our findings do not generalise to younger and older populations and there was greater uncertainty near the lower and upper extremes of the age range in this study. Additional studies that include younger participants and the elderly are needed.

Implications

Individuals with a lifetime history of anxiety disorders differed from healthy controls across multiple physiological measures, with some evidence of case-control differences by age. The differences observed varied by chronicity/severity and depression comorbidity. Monitoring of physiological function in individuals with anxiety disorders should be adapted depending on depression comorbidity status.
Authorship contributions

JM conceived the idea of the study, acquired the data, carried out the statistical analysis, interpreted the findings, wrote the manuscript and revised the manuscript for final submission. THH contributed to the study design, interpreted the findings and contributed to the writing of the manuscript. CF interpreted the findings and critically reviewed the manuscript. CML acquired the studentship funding, interpreted the findings and critically reviewed the manuscript. All authors read and approved the final manuscript.

JM had full access to all data used in this study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Conflicts of interest

JM receives studentship funding from the Biotechnology and Biological Sciences Research Council (BBSRC) and Eli Lilly and Company Limited. CML is a member of the Scientific Advisory Board of Myriad Neuroscience. CF and THH declare no relevant conflict of interest.

Funding

JM receives studentship funding from the Biotechnology and Biological Sciences Research Council (BBSRC) (ref: 2050702) and Eli Lilly and Company Limited. CF was supported by Fondazione Umberto Veronesi (https://www.fondazioneveronesi.it). CML is part-funded by the National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

Acknowledgments

This research has been conducted using data from UK Biobank, a major biomedical database. This project made use of time on Rosalind HPC, funded by Guy’s & St Thomas’ Hospital NHS Trust Biomedical Research Centre (GSTT-BRC), South London & Maudsley NHS Trust Biomedical Research Centre (SLAM-BRC), and Faculty of Natural Mathematics & Science (NMS) at King’s College London.

Ethics

Ethical approval for the UK Biobank study has been granted by the National Information Governance Board for Health and Social Care and the NHS North West Multicentre Research Ethics Committee (11/NW/0382). No project-specific ethical approval is needed. Data access permission has been granted under UK Biobank application 45514.

Data sharing statement

The data used are available to all bona fide researchers for health-related research that is in the public interest, subject to an application process and approval criteria. Study materials are publicly available online at http://www.ukbiobank.ac.uk.
References

