Agent-based modeling of DFNB1A prevalence with regard to intensity of selection pressure in isolated human population: will cochlear implantation increase the cases of hereditary deafness?

Georgii P. Romanov1,2, Anna A. Smirnova3, Vladimir I. Zamyatin3, Aleksey M. Mukhin3, Fedor V. Kazantsev3,5, Vera G. Pshennikova2, Fedor M. Teryutin1,2, Aisen V. Solovyev1, Sardana A. Fedorova1,2, Olga L. Posukh4,5, Sergey A. Lashin3,5, Nikolay A. Barashkov1,2*

1 Laboratory of Molecular Biology, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677010, Yakutsk, Russia;

2 Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia;

3 Sector for Computer Analysis and Modeling of Biological Systems, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva 10, 630090, Novosibirsk, Russia;

4 Laboratory of Human Molecular Genetics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva 10, 630090, Novosibirsk, Russia;

5 Novosibirsk State University, Pirogova 1, 630090, Novosibirsk, Russia.

* Corresponding author: NAB – barashkov2004@mail.ru

Authors ORCID:
ABSTRACT

It was evidenced, that the increase in the prevalence of autosomal recessive deafness 1A (DFNB1A) in populations of European descent was promoted by assortative marriages among deaf people. Assortative marriages become possible with a widespread introduction of sign language resulting in increased the genetic fitness of deaf individuals, thus relaxing selection against deafness. Currently, cochlear implantation is becoming a common method of rehabilitation for deaf patients, restoring their hearing ability and promoting the acquirement of spoken language. Whether the mass cochlear implantation could affect the spread of hereditary deafness is unknown. We have developed an agent-based computer model for analysis of the spread of DFNB1A. Using the model, we tested impact of different intensity of selection pressure
on an isolated human population for 400 years. The modeling of the “purifying” selection pressure on deafness resulted in decrease of the proportion of deaf individuals and the pathogenic allele frequency. The modeling of relaxed selection resulted in increase of the proportion of deaf individuals and the decrease of the pathogenic allele frequency. The results of neutral selection pressure modeling showed no significant changes in both the proportion of deaf individuals and the pathogenic allele frequency after 400 years. Thus, initially low genetic fitness of deaf people can be significantly increased in the presence of assortative mating by deafness, resulting in a higher prevalence of DFNB1A. Contrary, frequency of pathogenic allele and the incidence of hereditary hearing loss will not increase in a population where all deaf individuals undergo cochlear implantation.

Keywords: hereditary deafness, *GJB2*, genetic fitness, assortative mating, sign language, cochlear implantation, agent-based computer modeling

INTRODUCTION

Hearing loss (HL), caused by both environmental and genetic factors, affects more than 10% of the world's population, leads to disability and significantly reduces the quality of life of deaf individuals. On average, one per 1000 newborns are born deaf, and in 50-60% of cases, the pathology has a genetic cause [1, 2]. Hereditary HL cases are subdivided in non-syndromic (isolated HL) and syndromic (HL and other clinical traits) forms. Currently, more than 400 HL-associated syndromes are described, comprising ~ 30% of all HL cases and ~ 70% are accounted to non-syndromic HL [3]. Hereditary non-syndromic HL is a monogenic disease with unique high genetic heterogeneity. To date, about 160 genetic loci associated with non-syndromic HL are
known, and about 123 genes have been identified, mutations in which lead to hearing impairment [4]. The autosomal recessive deafness 1A (DFNB1A) caused by mutations in the \textit{GJB2} gene (MIM 121011, 13q12.11), encoding the protein connexin 26 (Cx26), is the most prevalent in many populations [5]. The proportion of DFNB1A among hereditary forms of HL is 17.3% worldwide, and reaches up to 27.1% in populations of European descent [5]. In total, about 400 mutations in the \textit{GJB2} gene are known and the majority of them are recessively inherited [6]. Varying prevalence of different \textit{GJB2} mutations has been shown for populations worldwide that can be explained by the high scale population history events [7-13]. The unique \textit{GJB2} mutational spectrum and the accumulation of certain \textit{GJB2} mutations in different ethnic groups can be attributed to founder effect [14-22].

In addition, Nance et al. (2000, 2004) suggested that the certain social factors could be a strong driving force behind the increased incidence of DFNB1A in developed countries due to relaxed selection against deafness which occurred after the introduction of sign language 400 years ago in many Western countries and the subsequent establishment of residential schools for the deaf [23, 24]. Sign language is the main type of communication of people with congenital HL. Linguistic homogamy (the ability to communicate in sign language) promoted the assortative marriages between deaf partners, improved living conditions (social, educational, and economic circumstances) of deaf individuals and led to significantly increased genetic fitness (reproductive capabilities) of them. Using computer modeling, it was showed that the joint effect of high rate of assortative marriages and relaxed selection against deafness could have doubled the frequency of DFNB1A in the United States during the past 200 years [24]. The computer modeling results were later supported by the comparative
analysis of modern and retrospective demographic parameters of deaf population of USA [25, 26]. Thus, it was evidenced, both theoretically and practically, that the increase in the HL prevalence in the USA was a consequence of the increased genetic fitness of deaf individuals which was caused by linguistic homogamy among them.

Currently, the rate of assortative mating among deaf people in different countries is reaching up to 90% [26, 27], however, the increasing availability of cochlear implantation can certainly affect the mating structure of deaf people. Theoretically, deaf people with genetic forms of HL, including those caused by biallelic recessive \textit{GJB2} mutations, who undergo cochlear implantation, acquire the ability to hear, that is, they become phenotypically hearing individuals, despite their pathogenic genotypes. Thus, it is highly possible that such individuals will be directed into hearing mating pool and, consequently, alter the prevalence of hereditary HL. Moreover, whether relaxed selection will have similar effect in a population with genetic structure different to the demonstrated one? One of potential approaches to address these issues is a computer modeling. Computer modeling provides excellent opportunities of analyzing a large scale population-genetics dynamics in real-time. Among different modeling approaches, the agent-based modeling is the most flexible way to simulate genetic data, as they allow one to simulate very specific behavior of individuals depending on the environment. However, for purposes of correct modeling of spread of DFNB1A, an isolate population with known data on prevalence of \textit{GJB2} gene mutations causing hereditary HL, and data on proportion of assortative mating among deaf people and their reproductive capabilities in comparison with their hearing siblings is needed.
Thus, the aim of this study is a computer modeling of the DFNB1A prevalence in an isolated human population with known demographic parameters with regard to genetic fitness of deaf individuals.

MATERIALS AND METHODS

The computer model

To assess the prevalence of a congenital recessive HL under reduced or absent selection pressure for deafness, we developed an agent based model which simulates the population dynamics. We have used C++ programming language and Microsoft Visual Studio 2019 development environment. The key element of the model is a decentralized agent which is an individual with a given pattern of behavior depending on his phenotype and “environmental factors”. The environment for an individual agent is a whole population consisting of other agents. Agents do not have age and “live” for only one generation (1 generation = 20 years). The generations in the model are non-overlapping. In each generation (cycle), the main algorithm runs the processes of selection of marital partners for agents based on the phenotype (deaf / hearing, knowledge of sign language) and birth of children, depending on the genotypes of parents (Figure 1). The algorithm of the program is specified in the Supplementary Materials. For batch operation of the program and statistical processing of the output data, we developed a service script which controls the number of simulation runs, sets the starting parameters for the model, performs statistical calculations and generates summary plots. The script is written in the Python programming language using the pandas and matplotlib libraries.

We carried out the simulations with three different sets of combinations of initial parameters of the model population (Supplementary Table 1). In the first scenario, the
agents (individuals) did not know sign language and there was no deaf community
(parameters sign_lang_d = 0; deaf_community_model = 0). In the second
scenario, deaf individuals used sign language and formed a community
(sign_lang_d = 1; deaf_community_model = 1). In the third scenario, all
agents were phenotypically hearing regardless of their genotype (sign_lang_d=1;
sign_lang_h = 1; deaf_community_model = 0), representing the mass
introduction of cochlear implantation in the population. The parameters for each
scenario are presented in Supplementary Table 1. To generate reliable statistical data,
the simulation of each scenario was performed 1,000 times. Statistical processing was
carried out by calculating 99% confidence intervals for each set of values (n = 1,000) of
the variables produced by the program.

Verification of the model

To confirm the validity of the data produced by the model, we conducted
additional simulations. In this scenario, the initial allele frequencies, genotypes, deaf
reproductive capacity, and proportion of assortative marriages were consistent with
previously published data on the US deaf population [24-26]. When simulated with
these parameters, the model produced data corresponding to the dynamics of hereditary
HL in the U.S. over 200 years (Supplementary Table 5, Supplementary Figure 5) [24-
26].

RESULTS

We have developed an agent-based computer model for analysis of the spread of
hereditary congenital recessive HL in an isolated human population (Supplementary
Materials). The agent in this model is a single decentralized individual. Each agent is
characterized by phenotype and genotype. Main phenotypic parameters are: sex (male/female), hearing status (deaf/hearing) and sign language (knowledge/ignorance). The genotype is represented by one locus / gene in which a recessive allele is pathogenic. The main algorithm of the program represents life cycle of one generation (which considered equal to 20 years) of the model population. One cycle of the program includes: choice of marital partners based on phenotype; creation of a new population consisting of a progeny of agents of the current generation; modeling of consolidated communities of deaf people. We run the model in three different scenarios (combinations of initial parameters of the model population) in order to simulate the DFNB1A prevalence under different intensity of selection pressure (Supplementary Table 1). For each generation, the program registers data on the total population number, the number of deaf individuals, calculates the proportion of recessive mutant homozygotes and the frequency of recessive mutant allele, and compiles these parameters into the tables.

As a reference population for the developed model, we applied data on the Yakut population. The Yakuts (originally named as Sakha) are the largest indigenous people of Siberia (466,492 according to the Russian Census, 2010) living in the Sakha Republic (Eastern Siberia, Russia). The Yakuts are characterized by specific anthropological, demographic, linguistic and historical features indicated to their relationships to nomadic Turkic tribes of South Siberia and Central Asia. The genetic data revealed a relatively small size of Yakut ancestor population and the strong bottleneck effect in the Yakut paternal lineages (~ 80% of Y chromosomes of Yakuts belong to one haplogroup - N3) [28]. Marriage traditions and geographical isolation had a significant role in genetic and demographic history of the Yakut population. High
frequency of some Mendelian disorders in the Yakut population was found to be a result of the founder effect. For example, the high prevalence of HL in Yakuts is caused by the founder c.-23+1G>A mutation in the \textit{GJB2} gene (92.2\% of all mutant \textit{GJB2} alleles found in deaf patients) and which was found with extremely high carrier frequency among hearing Yakut individuals (10.3\% in total population) [17, 29]. Moreover, the data on marriage structure and reproduction of deaf people living in the Sakha Republic were presented in comparison with contribution of the \textit{GJB2} gene mutations to the etiology of HL. The relative fertility of deaf people compared to their hearing siblings was 0.78 (mean number of children 1.76 and 2.24 to deaf and their hearing siblings, respectively). The rate of assortative marriages among deaf people was 77.1\% [27]. The known genetic structure of hereditary HL in Yakuts and available data on reproductive capabilities and marital structure of deaf people make this population suitable for computer simulations of the distribution of DFNB1A.

The first scenario, “No deaf community”, was a model of population where deaf individuals did not mate and had no progeny, hence representing full pressure of “purifying” selection against deafness. The simulation results showed an increase in the population size from the initial 200,000 to 1,604,123 individuals in the 19th generation, and the number of deaf individuals increased from the initial 530 to resulting 2,271 (Supplementary Table 2, Supplementary Figure 2). Accordingly, the frequency of recessive mutant allele decreased from 0.0542 to 0.0376 (Figure 1A, Supplementary Table 2) after 20 generations. The proportion of deaf individuals (recessive mutant homozygotes) slightly increased from 0.0027 to 0.0028 on the 1st generation, and then continuously decreased to 0.0014 by the 19th generation (Figure 2B, Supplementary Table 2).
The second scenario, “Assortative mating”, was a model of population where all deaf individuals used sign language for communication, and all marriages among them were assortative. This scenario represented relaxed selection due to the presence of linguistic homogamy among deaf individuals. The simulation results showed that the population number increased from initial 200,000 to 1,568,752 individuals in the 19th generation, and the number of deaf individuals increased from initial 530 to resulting 5,320 (Supplementary Table 3, Supplementary Figure 3). Accordingly, the frequency of recessive mutant allele decreased from 0.0542 to 0.0337 after 20 generations (Figure 2A, Supplementary Table 3). The proportion of recessive mutant homozygotes increased up to the 6th generation from 0.0027 to 0.0056, and then decreased to 0.0034 by the 19th generation (Figure 1B, Supplementary Table 3).

The third scenario, “Cochlear implantation”, was a model of population where all deaf individuals acquire the ability to hear despite their pathogenic genotypes. This scenario represented neutral selection pressure due to the seeming lack of deafness phenotype. By this scenario, the population number increased from initial 200,000 to 1,653,731 individuals in the 19th generation and the number of deaf individuals increased from initial 530 to resulting 4,853 (Supplementary Table 4, Supplementary Figure 4). The frequency of recessive mutant allele (0.0542) did not change, from the start to the 19th generation (Figure 2A, Supplementary Table 4). The proportion of recessive mutant homozygotes slightly increased from 0.0027 to 0.0029 on the 1st generation, and then it was constant (0.0029) until the 19th generation (Figure 2B, Supplementary Table 4). Total population number dynamics between all three scenarios were comparable. The number and proportion of deaf individuals (recessive mutant...
homozygotes) and the frequency of recessive allele changed differently in each scenario depending on intensity of modelled selection pressure.

DISCUSSION

In this work, we have developed a computer model for analysis of the spread of hereditary congenital HL in an isolated human population. In order to test the different levels of selection pressure on deafness, we ran the program under three different scenarios (sets of initial parameter combinations of the model population). The developed models’ main algorithm is the mechanism for choosing a marital partner based on mutual assessment of agents depending on their phenotypic parameters – hearing or deaf, knowledge or ignorance of sign language.

The model population of the “No deaf community” scenario showed a decrease of the proportion of deaf individuals (from 0.0027 to 0.0014) and the frequency of pathogenic allele (from 0.0542 to 0.0376) (Figure 2, Supplementary Table 2). This scenario assumed that deaf people cannot marry unless they use sign language to communicate (linguistic homogamy) and therefore cannot have offspring. Thus, the genetic fitness of deaf individuals is close to zero, which indicates a high selection pressure against deafness. According to this scenario, deaf children can be born (with a 25% probability) only from hearing parents who are both heterozygous carriers of a recessive pathogenic allele. Consequently, the observed continuous decrease of mutant allele frequency may be the result of a decreasing proportion of recessive mutant homozygotes in a population.

When assortative marriages are present, the proportion of deaf individuals (recessive mutant homozygotes) practically doubled (from 0.27% to 0.56%) during the first 6 generations (120 years), and then decreased to 0.34% in the 19th generation (380
years), which is 2.42 times higher compared to the population without a deaf community (0.14%) (Figure 2, Supplementary Tables 2 and 3). The frequency of recessive mutant allele decreased from 0.0542 to 0.0337 (Figure 1A, Supplementary Table 3). These data suggest that the assortative marriages between deaf people based on linguistic homogamy (sign language) lead to an increase in the frequency of hereditary HL, as previously shown in other studies of the influence of social factors on hereditary HL (Figure 2) [24-26]. A decrease in the proportion of recessive mutant homozygotes after the 6th generation, shown in a population with the assortative marriages among deaf individuals, is associated with a reduced fertility of deaf individuals relative to hearing people by 22%. Such difference in fertility was set in the initial parameters of scenarios to represent actual data on the reproduction of deaf people in Yakutia [27]. Nevertheless, even with reduced reproductive capabilities, the proportion of the deaf individuals on the 19th generation (after 380 years) is higher than in the absence of assortative marriages.

Of interest is a prolonged decrease of mutant allele frequency in a total population in both “No deaf community” and “Assortative mating” scenarios, from initial 0.0542 to 0.0376 and 0.0337, respectively, observed in this work (Figure 2A, Supplementary Tables 2 and 3). Regarding the “No deaf community” scenario, the frequency of mutant allele declined due to the absence of marriages between deaf individuals. Although, on the last generation, “assortative mating” scenario presented even lower frequency of mutant allele, which was 0.39% less than in “no deaf community” scenario. In a population in which HL is only due to recessive single-locus deafness (there are no other causes of HL), a couple of married deaf individuals will be able to have only deaf children, thereby making an increased contribution of the
recessive mutant homozygotes to the next generation. A similar effect was observed in the study by Braun et al. (2020), where the proportion of homozygotes increased by 23% (from 0.017% to 0.022%) while the frequency of recessive pathogenic allele did not change (an increase of only 0.002%) [30].

The modeling according to the “Cochlear implantation” scenario showed that the prevalence of hereditary HL did not change, in contrast to the “Assortative mating” scenario (Figure 2, Supplementary Table 4, Supplementary Figure 4). This scenario presumed that all deaf individuals with cochlear implants “become” phenotypically hearing, despite their pathogenic genotypes. In this case there are no assortative marriages by deafness, since all individuals become “hearing” and genetic fitness of all individuals becomes equal regardless of their genotype. Therefore, the proportion of recessive homozygotes \((q^2)\) in the population will determine the probability of marriage of two deaf individuals \((q^2 \times q^2)\). And the proportion of such marriages will be much lower than in population with assortative mating by deafness. Thus, this scenario represents a panmictic population in which all individuals have equal genetic fitness, and the proportions of genotypes and allele frequencies will constant from generation to generation according to the Hardy-Weinberg principle.

Thus, the results of the modeling showed that in an isolated population with a low effective size and a high carrier frequency of pathogenic recessive allele the introduction of total cochlear implantation cannot lead to an increase in prevalence of hereditary HL (Figure 3). A similar "panmictic" scenario versus a scenario with assortative marriages by deafness were tested in two previous studies [24, 30]. Nance & Kearsey (2004) modelled a population with a totally random choice of a partner (random mating) and the equal reproductive capabilities of deaf and hearing individuals,
which resulted in a minimal increase in the proportion of mutant homozygotes (by
~1.5%) over 400 years [24]. Brown et al. (2020) showed that in a model population with
random mating, the frequency of the pathogenic allele and the proportion of mutant
homozygotes did not change over 200 years (10 generations) [30].

The modeling results have shown that an initially low genetic fitness of deaf
people can be greatly increased by assortative mating by deafness, resulting in a greater
prevalence of DFNB1A. Contrary, in a model population where all deaf individuals
undergo cochlear implantation, the initial frequencies of pathogenic allele and the
prevalence of hereditary HL become constant.

DECLARATIONS

Competing interests

All authors declare that they have no competing interests

Funding

This work was carried out as part of the State Project of the Ministry of Science
and High Education of the Russian Federation (FSRG-2020-0016) and the Research
Project of the YSC CMP "Study of the genetic structure and burden of hereditary
pathology in the populations of the Republic of Sakha (Yakutia)", as well as with the
support of the RFBR grants (No. 18-05-600035_Arctika and No. 20-015-00328_A) and
by the Russian State Budget program No 0259-2021-0014.

Authors’ contributions

All authors read and approved the final manuscript. GPR – study design, project
coordination, data interpretation and analysis, manuscript writing; AAS, VIZ – data
interpretation and analysis, additional C++ and main python code writing; AMM, FVK
– code review, manuscript proofreading; VGP, FMT, AVS – data interpretation and analysis, manuscript proofreading; SAF – project supervision, funding acquisition, manuscript proofreading; OLP – project supervision, data interpretation and analysis, manuscript proofreading; SAL – project supervision, study design, main C++ code writing and review, manuscript proofreading; NAB – project supervision, funding acquisition, study design, data interpretation and analysis, manuscript writing.

Acknowledgements

The authors would like to express their sincere gratitude to Igor Dyachenko and Stepan Kutsenogiy for their participation in the project on its early stages.

REFERENCES

17. Barashkov NA, Dzhemileva LU, Fedorova SA, Teryutin FM, Posukh OL, Fedotova EE, Lobov SL, Khusnutdinova EK: Autosomal recessive deafness 1A (DFNB1A) in Yakut population isolate in Eastern Siberia: extensive accumulation of the splice site mutation IVS1+1G>A in GJB2 gene as a result of

FIGURE LEGENDS

Figure 1. The simplified scheme of main cycle of the program. At the initial stage, a population of agents (individuals) is created according to the parameters set by the user. The population of next generation consists of the progeny of the agents of the previous generation.

Figure 2. The simulation results for different scenarios. A – Frequency of recessive mutant allele; B – Proportion of deaf individuals (recessive mutant homozygotes). Y-axis: proportion; X-axis: generations (1 generation = 20 years).

Figure 3. Visualization of the modeling results of three scenarios. The initial state of the model population is on the left; the final state (after 20 generations) is in the right. A – Scenario “No deaf community”. The decrease in the proportion of the deaf individuals was registered. B – Scenario “Assortative mating”. The increase in the proportion of the deaf individuals was registered. The use of sign language leads to assortative marriages among deaf individuals, forming the deaf community. C – Scenario “Cochlear implantation”. No differences in the HL incidence was registered due to the random mating pattern of all individuals.
SUMMARY

It was evidenced, that the increase in the prevalence of autosomal recessive deafness 1A (DFNB1A) in populations of European descent was promoted by assortative marriages among deaf people. Sign language is the main type of communication of people with congenital hearing loss (HL). A widespread introduction of sign language has increased the genetic fitness of deaf individuals, thus relaxing selection against deafness. Whether relaxed selection will have a similar effect in populations with different genetic structures remains unclear. Currently, cochlear implantation is becoming a common method of rehabilitation for deaf patients, restoring their hearing ability and promoting the acquirement of spoken language. Whether the mass cochlear implantation could affect the spread of hereditary deafness is unknown. The aim of this study is a computer modeling of the DFNB1A prevalence in an isolated human population with regard to the genetic fitness of deaf individuals. We have developed an agent-based computer model for analysis of the spread of hereditary congenital recessive HL in an isolated human population. We run the model in three different combinations of initial parameters (scenarios) in order to model the DFNB1A prevalence under the different intensity of selection pressure for 20 generations (400 years). The “No deaf community” scenario represented the pressure of “purifying” selection on deafness and showed the decrease of the proportion of deaf individuals (from 0.0027 to 0.0014) and the pathogenic allele frequency (from 0.0542 to 0.0376). The “Assortative mating” scenario represented relaxed selection and showed the increase of the proportion of deaf individuals (from 0.0027 to 0.0034) and the decrease of the pathogenic allele frequency (from 0.0542 to 0.0337). The “Cochlear implantation” scenario representing neutral selection pressure, did not reveal significant changes in both the proportion of deaf individuals (0.0029) and the pathogenic allele
frequency (0.0542). The modeling results have shown that the initially low genetic fitness of deaf people can be significantly increased in the presence of assortative mating by deafness, resulting in a higher prevalence of DFNB1A. Contrary, the modeling of a population where all deaf individuals undergo cochlear implantation showed that the initial frequency of pathogenic allele and the incidence of hereditary HL become constant.
Simulation START

Creation of initial population of agents

For i=0 to n-1
(n = number of generations)

Selection of marital partners

Creation of children (new agents)

Population data registration

Delete all parental agents

Creation of a new population consisting of children

Simulation END
Simulation START

No deaf community

Selection pressure

Assortative mating

Relaxed selection

Cochlear implantation

Absence of selection pressure

Simulation END