Testing Denmark: A Danish nationwide surveillance study of COVID-19

Kamille Fogh,1,2 MD, Jarl E Strange,1 MD, Bibi FSS Scharff,5 PhD, Alexandra RR Eriksen,1,2 B. Med., Rasmus B Hasselbalch,1,2 MD, Henning Bundgaard,4 DMSc., Susanne D Nielsen,6 DMSc., Charlotte S Jørgensen,6 PhD., Christian Erikstrup,7 PhD, Jakob Norskov,1,2 MD, Pernille Brok Nielsen,1,2 MD, Jonas H Kristensen,1,2 MD, Lars Østergaard,7 DMSc., Svend Ellermann-Eriksen,8 DMSc., Berit Andersen,5 MD, Henrik Nielsen,10 DMSc., Isik S Johansen,11 DMSc., Lothar Wiese,12 PhD., Lone Simonsen,13 PhD, Thea K. Fischer,14 DMSc., Fredrik Folke,1,15 PhD., Freddy Lippert,15 MD., Sisse R Ostrowski,8 DMSc, Thomas Benfield,16 DMSc., Kåre Mølbak,17 DMSc., Steen Ethelberg,18 PhD., Anders Koch,5,17 PhD, Ute Wolff Sönksen,5 MD., Anne-Marie Vangsted,6 MPH, Tyra Grove Krause,6 MD., Anders Fomsgaard,6 DMSc., Henrik Ullum,6 PhD., Robert Skov,4 MD., Kasper Iversen,1,2 DMSc.

1. Department of Cardiology, Copenhagen University Hospital, Herlev and Gentofte, Denmark*
2. Department of Emergency Medicine, Copenhagen University Hospital, Herlev and Gentofte, Denmark*
3. Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Denmark*
4. Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark*
5. Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark*
6. Statens Serum Institut, Copenhagen Denmark
7. Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark**
8. Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark**
9. University Research Clinic for Cancer Screening, Randers Regional Hospital, Randers, Denmark**
10. Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark***
11. Department of Infectious Diseases, Odense University Hospital, Odense, Denmark****
12. Department of Infectious Diseases, Zealand University Hospital, Roskilde, Denmark
13. Department of Science and Environment, Roskilde University, Denmark
14. Department of Clinical Research, North Zealand Hospital, Hillerød, Denmark*****
15. Copenhagen Emergency Medical Services, Copenhagen, Denmark*
16. Department of Infectious Diseases, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark*
17. Statens Serum Institut, Copenhagen, Denmark******
18. Statens Serum Institut, Copenhagen, Denmark******

* and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
** and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
*** and Department of Clinical Medicine, Aalborg University, Odense, Denmark
**** and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
***** and Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksborg C, Denmark
****** and Department of Public health, University of Copenhagen, Copenhagen, Denmark

Corresponding author:
Kamille Fogh, MD
E kamille.fogh.01@regionh.dk

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background

National data on the spread of SARS-CoV-2 infection and knowledge on associated risk factors are important for understanding the course of the pandemic. “Testing Denmark” is a national large-scale epidemiological surveillance study of SARS-CoV-2 in the Danish population.

Methods

Between September and October 2020, approximately 1.3 million of 5.8 million Danish citizens (age > 15 years) were randomly invited to fill in an electronic questionnaire covering COVID-19 exposures and symptoms. The prevalence of SARS-CoV-2 antibodies was determined by Point-of-Care rapid Test (POCT) distributed to participants home addresses.

Findings

In total 318,552 participants (24.5% invitees) completed the questionnaire and provided the result of the POCT. Of these, 2,519 (0.79%) were seropositive (median age 55 years) and women were more often seropositive than men, interquartile range (IQR) 42-64, 40.2% males. Of participants with a prior positive Polymerase Chain Reaction (PCR) test (n=1,828), 29.1% were seropositive in the POCT. Seropositivity increased with age irrespective of sex. Elderly participants (>61 years) reported less symptoms and had less frequently been tested for SARS-CoV-2 compared to younger participants. Seropositivity was associated with physical contact with SARS-CoV-2 infected individuals (Risk ratio (RR) 7.43, 95% CI: 6.57-8.41) and in particular household members (RR 17.70, 95% CI: 15.60-20.10). Home care workers had a higher risk of seropositivity (RR 2.09 (95% CI: 1.58-2.78) as compared to office workers. Geographic population density was not associated to seropositivity. A high degree of compliance with national preventive recommendations was reported (e.g., > 80% use of face masks), but no difference was found between seropositive and seronegative participants.

Interpretation

This study provides insight into the immunity of the Danish population seven to eight months after the first COVID-19 case in Denmark. The seroprevalence was lower than expected probably due to a low sensitivity of the POCT used or due to challenges relating to the reading of test results. Occupation or exposure in local communities were major routes of infection. As elderly participants were more often seropositive despite fewer symptoms and less PCR tests performed, more emphasis should be placed on testing this age group.
Introduction

National seroprevalence data on antibodies to SARS-CoV-2 can guide national health policies in understanding transmission routes and thereby improve the management of potential new outbreaks during the COVID-19 pandemic (1-4). However, a large sample size is required to describe the spread of infection, risk factors, and severity of the infection across geography and demography (5).

Denmark has 5.8 million inhabitants (6) and as of July 5, 2021, there have been more than 295,654 (5 %) confirmed cases of SARS-CoV-2 infection and more than 2,537 COVID-19 related deaths in Denmark (7). The first confirmed case of SARS-CoV-2 infection in Denmark was reported on February 27, 2020 (8). In Denmark, the epidemic has been characterized by two infection waves; spring 2020 and autumn-winter 2020/2021, similar to several other European countries (9). Two lockdowns were imposed by the government, the first between March 11th to April 15th, 2020 and the second December 17th, 2020 to February 8th, 2021 (10). Testing for SARS-CoV-2 in Denmark using Polymerase Chain Reaction (PCR) was established in March 2020 and has been upscaled during the pandemic. From March 12 to April 21, 2020 individuals with moderate to severe symptoms of respiratory tract infection were offered testing. From April 21, 2020 testing was available for individuals with mild symptoms and asymptomatic contacts, and since May 18, 2020, nationwide high-intensity, free of charge testing for SARS-CoV-2 infection has been performed using PCR (11). Vaccination against COVID-19 began on December 27th, 2020 with residents and employees at nursing homes and frontline staff at hospitals (12).

The rates of COVID-19-related morbidity and mortality have been low in Denmark compared to other European countries (13). Nevertheless, considering the unknown proportion of asymptomatic or mildly symptomatic SARS-CoV-2 infected persons who have not been PCR-tested (viral throat- and nasopharyngeal swab), the population exposure to infection might be higher than reported according to PCR test findings (1). The seroprevalence has been reported for different groups in Denmark; blood donors (14), medical students (15), health care workers (16), a smaller national random selection of the population (10), homeless persons and sex workers (17) and persons from social housing areas (18), but hitherto no national investigation of this scale has been performed in Denmark.

“Testing Denmark” was a nationwide surveillance study of SARS-CoV-2 infection in the Danish population, launched in September 2020. The study was divided in 2 phases; phase 1 (the general population) and phase 2 (subgroups). In this article, we describe the process and results of phase 1. Results from phase 2 have been described elsewhere (17, 18).
The aim of this study was to explore possible risk factors for seropositivity by questionnaire data, and to determine the distribution of SARS-CoV-2 antibodies among Danish citizens over the age of 15 years, by the use of Point-of-care rapid test (POCT) for antibodies against SARS-CoV-2.

Methods

Study design and participation

1.3 million Danish citizens over the age of 15 years (22 % of the population) were randomly drawn from the Civil Registration System (19) and invited to participate via the governmental, personal, password-protected digital mailbox system (e-Boks) from September 25, 2020. Written information about the project was available in 3 different languages; Danish, English and Arabic.

Participants were invited to complete a web-based questionnaire by a link (Enalyzer, Copenhagen, Denmark) in the invitation letter. The questionnaire included demographics, history of symptoms compatible with COVID-19, co-morbidities and substance use (see Appendix). In the questionnaire participants could further indicate if they wanted a POCT sent to their home address.

During October 2020 the POCT testing for SARS-CoV-2 IgG and IgM antibodies was performed by participants. Answers to the questionnaire and the result of the POCT results were registered by the participant in a secondary separate questionnaire sent to their e-Boks and returned to Enalyzer.

Detailed information about the test-procedure was provided with the invitation and could also be found at the project website (www.vitesterdanmark.dk), including instructional video on how to perform the POCT in practice, as well as videos with experts explaining different aspects of the study. Social media (Facebook and Instagram) were used for visualization. A call-center was set up for the participants to call in case of questions about the project, the questionnaire or how to perform the POCT.

Information about previous positive PCR test results amongst study participants was obtained from MiBa (The Danish Microbiological Database) that has complete coverage of all microbiological samples from general practice, hospitals and test facilities, analyzed by public laboratories (20).

Detection of SARS-CoV-2 antibodies

The Livzon POCT (Livzon Diagnostics, Zhuhai, Guangdong, China) was used. The POCT is a lateral flow chromatographic immunoassay rapid test for qualitative detection and differentiation of anti-SARS-CoV-2 IgG and IgM antibodies in whole blood, which yields results in 15 minutes. The manufacturer reported a
combined test sensitivity (either IgG or IgM positive) of 90.6% (95% CI: 86.6% - 93.4%) and a combined specificity (neither IgG nor IgM is positive) of 99.2% (95% CI: 97.6% - 99.7%) (21). An in-house validation (cases=150 individuals, controls=600 individuals) showed sensitivity of 93.3% and 92.7% and specificity of 98.2% and 97.5% for each of the two batches respectively (see appendix Table 4). The case panel samples were obtained from convalescent individuals within 2 months of disease onset. Sensitivity and specificity by self-use has not previously been studied.

The POCT was sent out with a small container of isotonic saline, capillary tubes, and fingerprickers. Participants were instructed by the use of the capillary tubes to add blood by fingerprick and isotonic saline to each of the two test cassettes (IgG and IgM). The test results were read by participants individually; positive results counted when both control line and test line appeared, the test was inconclusive when no control line appeared or if the reading chamber was discolored by blood. Inconclusive test results were treated as negative, as the test could not be repeated, participants only receiving one POCT for both IgG and IgM. Participants were categorized as seropositive if they had developed either IgG or IgM antibodies, or both against SARS-CoV-2.

Outcome measures

The primary outcome of interest was to explore the association between SARS-CoV-2 infection, defined as a positive SARS-CoV-2 antibody self-test result (IgG and/or IgM), and putative risk factors for seropositivity. The proportion of the study population with a positive antibody test for SARS-CoV-2 (as a proxy for previous infection) was a secondary outcome of interest.

Approvals, ethics and registrations

This study was performed as a national surveillance study under the authority task of the national infectious disease control institute Statens Serum Institut (SSI), Copenhagen, Denmark. According to Danish law national surveillance activities from SSI do not require any individual approval from an ethics committee. The study was performed in agreement with the Helsinki II declaration and registered with the Danish Data Protection Authorities (P-2020-901). Participation was voluntary and all data were self-reported. All personal data obtained in Enalyzer was kept in accordance with the general data protection regulation and data protection law stated by the Danish Data Protection Agency. Invitees received information about their legal rights and the use of their data in the invitation letter.
Statistical analyses

Participants were considered seropositive if they tested positive for IgG, IgM, or both antibodies. Baseline characteristics of seropositive compared to seronegative persons are presented as numbers and percentages for categorical values and continuous values are presented as medians and interquartile ranges. The Wilcoxon rank test and chi-square test were used for comparisons of groups for continuous and categorical values, respectively. Unadjusted risk ratios (RR) with 95% confidence intervals (CI) were calculated for risk factors of seropositivity. We used logistic regression to calculate Odds ratios (OR) for seropositivity with 95% CI adjusted for sex, age, and household size for participants exposed to COVID-19 infected patients within the household. Data on population and areal by municipality for 2020 was obtained from Statistics Denmark (22). For participants with previous positive PCR test, we calculated the proportion of seropositive participants. Further, we analyzed the seroprevalence according to self-assed risk of being infected with SARS-CoV-2. Demographics were compared for responders and non-responders to the questionnaire. Further, demographics were compared for participants who provided the POCT results versus participants who did not provide the POCT results. P <0.05 was considered statistically significant. Data management, statistical analyses, and figures were performed and created using R version 3.2.1 (23).

Results

Baseline variables and association with seropositivity

In total, 474,411 participants (36.5% of invitees) replied to the electronic questionnaire and 397,843 received a POCT between October 2 and October 11, 2020. Invited persons who did not answer the questionnaire were more often males with lower participation among persons aged < 35 and > 74 years of age with no noticeable geographical variations (Supplementary table 1). Participants not providing POCT results were more often younger with no noticeable geographical variations (Supplementary table 1). The final study population comprised 318,552 participants (24.5% invitees) who answered the questionnaire and provided the results of the POCT (Figure 1). Age and sex distribution of the study population are shown in Supplementary figure 1.

A total of 2,519 / 318,552 (0.79%) participants tested seropositive with 852 (0.27%) participants being positive for IgG antibodies, 1,078 (0.34%) for IgM antibodies, and 589 (0.18%) positive for both IgG and IgM antibodies. The seroprevalence increased with age with a higher proportion of IgM positive compared to
IgG positive (age group 15-30: 0.24% IgG positive, 0.26% IgM positive, age group >61-75: 0.25% IgG positive, 0.38% IgM positive, Supplementary figure 2). No clear difference was found between IgG and IgM according to age groups (data not shown). For IgG, 9,294 (2.92%) and for IgM 9,269 (2.91%) were inconclusive, respectively.

Women were more likely to be seropositive (Table 1 and Supplementary figure 3). The comorbidity burden was higher in seropositive participants and reached statistical significance for participants with hypertension, stroke, diabetes, and chronic obstructive pulmonary disease (COPD). There was a numerically higher proportion of seropositive females among participants smoking >10 cigarettes per day and among participants consuming >21 standard drinks of alcohol per week. For body-mass index (BMI), the proportion of seropositive females was higher in the category underweight or obese, see Supplementary figure 4.

POCT findings in participants with previous COVID-19, or a positive PCR

When comparing self-estimated risk of infection with POCT results, only 0.5% of participants who self-estimated no prior infection were seropositive. Contrary, 13.5% of participants, who thought they had been infected, were seropositive. In comparison, 29.1% of participants, who had previously tested positive on a PCR test were seropositive (Supplementary figure 5 and Supplementary figure 6). For time between positive PCR test and POCT, 37.7% were seropositive 21-30 days after the PCR test. The proportion of seropositive participants decreased with increasing time between PCR test and POCT (Supplementary figure 7). Differences between seropositive and seronegative who had previously tested positive on PCR test are shown in Table 3. Notably, time between positive PCR and POCT was lower for seropositive than seronegative participants.

Supplementary figure 8 and 9 shows geographical variations between municipalities in seropositivity and variations in population density. When ordering municipalities according to population density, no clear association between seropositivity and population density was found.

Risk factors for seropositivity

Protective effect of authority recommendations

Most participants followed multiple recommended public health measures to prevent infection, e.g. >80% reported use of face masks. However, when examining serostatus according to behavior, no difference in serostatus was found between individual protective health measures, e.g. 82.5% of seronegative and 84% of seropositive reported use of face masks. (Figure 2).

Exposure to SARS-CoV-2 individuals
Participants who had physical contact or lived in a household with a SARS-CoV-2 infected person had the highest risk of being seropositive compared to participants who reported not to have been exposed to a SARS-CoV-2 infected person; RR of 7.43 (95% CI: 6.57 to 8.41) and 17.70 (95% CI: 15.60 to 20.10), respectively (Figure 3). Among participants exposed to a SARS-CoV-2 infected person within the household, the proportion of seropositive participants was higher in smaller household sizes (see Supplementary figure 10). However, when adjusting for sex, age, and household size, there was no significant increased risk for lower household size and risk of seropositivity (Table 2).

Occupation

Among professionals (full-time, part-time, and self-employed), working in the healthcare sector or with home care was associated with a higher risk of seropositivity compared to office work; healthcare sector: RR 2.02 (95%CI: 1.75 to 2.33), home care: RR 2.09 (95%CI: 1.58 to 2.78), see Figure 4.

Symptoms

For individual symptoms, loss of taste and smell were associated with the highest risk of being seropositive: ageusia (RR 5.91, 95% CI: 5.41 to 6.46) and anosmia (RR 4.84, 95% CI: 4.43 to 5.29). The risk of seropositivity for each symptom is shown in Figure 5.

Participants in advanced age groups had experienced less symptoms compared to participants in younger age groups with 39.5% in age group >75 years compared to 8.2% in the age group 15-30 years experiencing no symptoms (Supplementary figure 11). Further, participants in advanced age groups had been tested fewer times compared to participants in younger age groups irrespective of sex (Supplementary figure 12).

Discussion

To our knowledge this is the largest population-based SARS-CoV-2 surveillance study performed. The main findings can be summarized as follows; females were found to have a higher seroprevalence than males. Elderly participants were more often seropositive despite fewer symptoms and less often PCR tests. The geographical variation in seroprevalence was limited and did not seem to be related to population density. A prevalence of SARS-CoV-2 antibodies of only 0.79% was reported. Only 29% of PCR positive were POCT seropositive in our study. The study showed a high degree of adherence with national recommendation but there was no clear difference in reported compliance between seropositive and seronegative participants.
in the study period which covered the interval between the first infectious wave in spring 2020 and the
second in autumn/winter.

Age and sex

Until October 2020, 2.4 million people in Denmark had been tested with PCR at least once and up to
multiple times, and 27,998 people were confirmed PCR positive (0.5% of the total population) (24). A
population-based study in Denmark with 7,015 participants from August 2020 found a seroprevalence of
2.0% (age > 12 years) measured by Wantai SARS-CoV-2 Ab ELISA (10), the point estimates tended to be
higher in the age group 18-39 years and lower in the age group >65 years, with no difference observed by
sex. Also, a convenience sample of blood donors tested in October 2020 with ELISA found a seroprevalence
of 2.1% (adults aged 18-70) (25). In contrast, we found a seroprevalence of only 0.79%, higher proportions
of seropositivity in younger age groups and females being seropositive more often.

A Danish study of household transmission, with individual level register data on all national PCR test for
SARS-CoV-2 for the period February-July 2020, suggested that susceptibility to infection increases with the
age of the susceptible person (26). Other international studies tends to show trends in line with our results
with an increase in seropositivity with age (9) and females having increased IgG positivity (27). By sending
our test material to participants at home, we may have been able to include vulnerable and elderly
susceptible to infection who otherwise would not have had the opportunity to participate. This is
supported by our findings that participation in POCT was high in all age groups except the younger age
group. This could partially explain the difference in seroprevalence between our study and aforementioned
Danish studies, which included healthy blood donors as well as a population that should attend a venous
blood sample.

Testing and symptoms

In Denmark, one of the measures to contain the epidemic has been to offer easy-access, free of charge
testing. The Danish Health authorities have encouraged the population to have test performed in case of
symptoms of COVID-19 or after close contact with infected persons. Elderly participants reported fewer
previous tests. When compared to younger participants, elderly participants might have fewer social
contacts and/or could have isolated themselves to a higher degree thus avoiding potential close contact
with infected persons. Further, younger participants may be more exposed to infection by having more
social contacts or via their employment. However, in a recent report by the HOPE project (How
Democracies Cope with COVID19), elderly people in Denmark were not found to report higher levels of self-
quarantine when experiencing symptoms or when testing positive by PCR compared to younger people (28).

The strongest correlation to seropositivity was ageusia and anosmia (loss of taste and smell), consistent with previous findings (15, 16, 18). In general, we found that seropositive participants more frequently recalled having had symptoms when compared to seronegative participants.

When stratifying for age groups, elderly participants reported symptoms less frequently. It may be that only the healthiest elderly participated, however, this outcome could also be a bias resulting from comorbidity disorders and long recall period. Our results are surprising because aging itself has been associated with more severe COVID-19 symptoms due to increased comorbidities with age and more aggressive clinical behavior (29). Nevertheless, the level of antibodies (comparable levels of IgG and IgM) was highest among elderly participants although they reported fewer symptoms and had fewer tests. As such, elderly participants may more often be subject to asymptomatic infections, thereby constituting an important subgroup that may warrant further attention. However, it should also be noted that individuals in the working age who were unable to work from home may attend PCR testing more often than people who have retired, and this could contribute to our observations.

Occupation

As previously reported, working in the health care sector was associated with a higher risk of seropositivity (16, 30). Working in home care or at nursing homes also increased the risk. These occupations often involves working with patients and being in close physical contact to other persons, thus increasing the risk of infection (30). The proportion of females working in the health care sector is typically higher than males (31), possibly explaining the higher proportion of seropositive females. Conversely, those who have office jobs, and therefore possibly better opportunities to work from home, have been at less risk of infection during the first infectious surge.

Behavior and household

We observed a high proportion of participants following the authority’s recommendations to reduce the risk of SARS-CoV-2 infection. Remarkably, seropositive participants were slightly more compliant with these recommendations compared to seronegative participants on almost all the preventive measures. However, participants who are more attentive to recommendations, e.g. health care professionals are more exposed to SARS-CoV-2 infection. As such, the effect of the authority’s recommendations could be underestimated. Household composition is an important venue for transmission of infection due to household size and living conditions (32). Sustained close contact and crowded indoor environments pose a higher risk of
transmission (33, 34). A metanalysis by Madewell et al indicated that household and family members are at higher risk of infection compared with other types of close contacts, and spouses were at higher risk compared with family contacts. Further, household crowding (e.g. number of people per room) may be more important for transmission than the total number of people per household (32). Our results showed seropositivity to be highest among smaller households with only two household members, possibly due to two person households often comprising of couples with close contact, and thereby increased risk of transmission. This finding is also consistent with a previous preprint study on SARS-CoV-2 transmission within Danish households, which demonstrated a transmission pattern that was exponentially decreasing with the number of members in the household (26).

Strengths and limitations

This population-based study had a broad national participation with 22% of the population invited and a response rate of 36.5% among the invitees for the questionnaire and 24.5% for the POCT. To determine the distribution of infectious disease, serological surveys with a representative sample of the wider population are important, particularly in the presence of asymptomatic individuals or incomplete ascertainment of those with symptoms.

This study has limitations. Recruitment of participants by e-Boks might exclude the proportion of the population that are without or have only limited access to this digital governmental information system and less technology-proficient individuals, or marginalized groups who are seen to have a higher risk of infection (17, 18). A smaller proportion of residents may not have been able to read and understand Danish, English or Arabic. People under the age of 15 years were not included and the findings are not applicable to children. Data on ethnicity was not available from the questionnaire. The recall period of symptoms was long, up to 7 months. Information on the exact point of time for participants becoming infected or turning seropositive was not available. In addition, persons with a previous positive PCR may have been less inclined to participate, thereby resulting in selection bias and potentially underestimating the true seroprevalence. Conversely, particularly persons working in health care or nursing may have had an increased interest to know about possible protective immune status due to their working tasks and knowledge of former infection and/or increased exposure.

The low seroprevalence at 0.79% in our study may be due to low sensitivity of the POCT used or due to challenges relating to the reading of the test results, since 2.9% were inconclusive. POCT in general have a lower diagnostic performance compared to laboratory testing (35). Test results also depend on the prevalence of infection in the population which will be low when screening asymptomatic and higher for those with suggestive symptoms. In low prevalence settings, true positive test results are uncommon. As
such, the predictive value of a positive test will be lower in individuals with a low background risk of
infection (36). Only 0.5% of the Danish population were confirmed PCR positive during the study period.
The diagnostic testing window is also of importance as the study was performed seven to eight months
after the first COVID-19 case in Denmark. The antibody response of IgM and IgG is found to be highest
about 2-3 weeks and 3-4 weeks, respectively after symptom onset and decrease afterwards (35). 37% of
our study participants had a positive POCT 20-30 days after a positive PCR. In addition, we found that for
seronegative, longer time had passed from a previously positive PCR test than for seropositive. As
participants performed the POCT at home, incorrect testing procedure or misinterpreted POCT results
could lead to false negative POCT results. Importantly, inconclusive tests were treated as negative in our
study, and weak lines suggesting a positive test result, could be misinterpreted as a negative test result. In
other Danish studies, the tests (POCT and ELISA) have been performed and read or analyzed by professional
staff which increases the performance of the test. Consequently, the seroprevalence is likely
underestimated in our study. However, seropositivity was low among participants who did not have a
previous positive PCR test, indicating a high specificity of the POCT, thus the associations found are reliable.

Perspectives

To date, this is the largest population-based Danish study where test material has been sent to participants
and performed at home with broad national participation. Nationwide information can be difficult to
gather and the study design in question presents a novel way for conducting future studies. Additionally,
this setup can be used as a model for ongoing monitoring of COVID-19 immunity in the population, both
from past infection and from vaccination against SARS-CoV-2.

Conclusion

This study provides insight into the immunity of the Danish population seven to eight months after the first
COVID-19 case in Denmark. The seroprevalence was lower than expected probably due to low sensitivity of
the POCT used or due to challenges relating to the reading of test results. Future studies could be improved
with an easier POCT test to perform and a shorter questionnaire. A high degree of compliance with national
preventive recommendations was seen, but no clinically significant protective effect was identified.
Occupation, domestic exposure and other known exposures in the local communities were clear routes of
infection, and in particular transmission in two person households, served as a major domain of
transmission. As elderly participants were more often seropositive despite fewer symptoms and less
testing, more emphasis should be placed on testing this age group.
This study was supported by grants from the Danish Ministry of Health (2012461). The funders did not influence study design, conduct, or reporting.

The study was designed and initiated by: KF, BS, RS, HU and KI.

Data analysis was done by: JS and KF

The first draft was written by: KF, JS, HB, RS and KI

All authors have critically revised the manuscript and agree to be accountable for all aspects of the work.

All authors approved the final version of the manuscript.

The authors declared no potential conflict of interest with respect to the research, authorship, and/or publication of this article.

The authors would like to thank the Danish Ministry of Health, the Danish Patient Safety Authority, the Local Government Denmark, Danish Regions, Danish Patients, DaneAge Association, the Danish Medical Association, the Danish Nurses Organization, the Danish Heart Association, the Danish Cancer Society, the Danish Lung Association, the Danish National Organization for homeless people (SAND), the Danish Family Planning Association and the Council for Ethnic Minorities for support of the study.
References

20. Institut SS. MiBa, HAIIBA og det digitale infektionsberedskab 2021 [Available from: https://miba.ssi.dk/]

Table 1: Baseline characteristics of the study cohort on sex, age, BMI, smoking, alcohol use, previous test result and comorbidities stratified by seropositivity.

<table>
<thead>
<tr>
<th></th>
<th>Full cohort</th>
<th>Seronegative</th>
<th>Seropositive</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>316,033</td>
<td>2,519</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years) (median [IQR])</td>
<td>53 [39-64]</td>
<td>55 [42-64]</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>Male (%)</td>
<td>113,412 (42.2)</td>
<td>1,012 (40.2)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Body mass index (median [IQR])</td>
<td>25.4 [22.8, 28.7]</td>
<td>25.5 [23, 29]</td>
<td>0.115</td>
<td></td>
</tr>
<tr>
<td>Ever smoker (%)</td>
<td>168,024 (53.2)</td>
<td>1,375 (54.6)</td>
<td>0.161</td>
<td></td>
</tr>
<tr>
<td>Alcohol use* (%)</td>
<td>36,747 (12.9)</td>
<td>302 (13.5)</td>
<td>0.443</td>
<td></td>
</tr>
<tr>
<td>Comorbidities (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>6562 (2.1)</td>
<td>59 (2.3)</td>
<td>0.389</td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>9067 (2.9)</td>
<td>91 (3.6)</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>82215 (26.0)</td>
<td>711 (28.2)</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>17528 (5.5)</td>
<td>165 (6.6)</td>
<td>0.032</td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>23250 (7.4)</td>
<td>185 (7.3)</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>19309 (6.1)</td>
<td>176 (7.0)</td>
<td>0.074</td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td>13872 (4.4)</td>
<td>150 (6.0)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Asthma</td>
<td>43996 (13.9)</td>
<td>375 (14.9)</td>
<td>0.172</td>
<td></td>
</tr>
<tr>
<td>Other chronic disease</td>
<td>56134 (17.8)</td>
<td>456 (18.1)</td>
<td>0.675</td>
<td></td>
</tr>
</tbody>
</table>

*Alcohol use: Reporting >7 units of alcohol a week for females or >14 units of alcohol for males
Table 2: Odds ratio for age, sex and household size stratified by seropositivity of the cohort

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.02</td>
<td>[1.01;1.03]</td>
<td><0.001</td>
</tr>
<tr>
<td>Male</td>
<td>1.01</td>
<td>[0.77;1.34]</td>
<td>0.920</td>
</tr>
<tr>
<td>Household</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ref</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.75</td>
<td>[0.51;1.09]</td>
<td>0.128</td>
</tr>
<tr>
<td>4</td>
<td>0.73</td>
<td>[0.50;1.07]</td>
<td>0.106</td>
</tr>
<tr>
<td>5</td>
<td>0.58</td>
<td>[0.34;1.01]</td>
<td>0.054</td>
</tr>
<tr>
<td>>5</td>
<td>0.59</td>
<td>[0.30;1.16]</td>
<td>0.127</td>
</tr>
</tbody>
</table>
Table 3: Characteristics of the study cohort who previously tested positive on PCR test.

<table>
<thead>
<tr>
<th></th>
<th>Full cohort</th>
<th>Seronegative</th>
<th>Seropositive</th>
<th>Total</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1,296</td>
<td>532</td>
<td>1,828</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years) (median [IQR])</td>
<td>47 [31-59]</td>
<td>51 [40-61]</td>
<td>49 [34-59]</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Male (%)</td>
<td>480 (37.0)</td>
<td>233 (43.8)</td>
<td>713 (39.0)</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>Body mass index (median [IQR])</td>
<td>24.9 [22.4, 28.4]</td>
<td>25.6 [23.0, 29.1]</td>
<td>25.1 [22.6, 28.7]</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Days between pos. PCR and POCT (median [IQR])</td>
<td>58 [26, 188]</td>
<td>38 [23, 176]</td>
<td>46.5 [25, 187]</td>
<td>0.082</td>
<td></td>
</tr>
<tr>
<td></td>
<td>missing</td>
<td>693</td>
<td>331</td>
<td>1,024</td>
<td></td>
</tr>
<tr>
<td>Comorbidities (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>26 (2.0)</td>
<td>11 (2.1)</td>
<td>37 (2.0)</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>31 (2.4)</td>
<td>17 (3.2)</td>
<td>48 (2.6)</td>
<td>0.415</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>257 (19.8)</td>
<td>129 (24.2)</td>
<td>386 (21.1)</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>67 (5.2)</td>
<td>38 (7.1)</td>
<td>105 (5.7)</td>
<td>0.124</td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>75 (5.8)</td>
<td>33 (6.2)</td>
<td>108 (5.9)</td>
<td>0.815</td>
<td></td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>72 (5.6)</td>
<td>31 (5.8)</td>
<td>103 (5.6)</td>
<td>0.907</td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td>46 (3.5)</td>
<td>21 (3.9)</td>
<td>67 (3.7)</td>
<td>0.784</td>
<td></td>
</tr>
<tr>
<td>Asthma</td>
<td>202 (15.6)</td>
<td>84 (15.8)</td>
<td>286 (15.6)</td>
<td>0.970</td>
<td></td>
</tr>
<tr>
<td>Other chronic disease</td>
<td>211 (16.3)</td>
<td>84 (15.8)</td>
<td>295 (16.1)</td>
<td>0.850</td>
<td></td>
</tr>
<tr>
<td>Alcohol use* (%)</td>
<td>144 (12.5)</td>
<td>56 (11.7)</td>
<td>22 (12.3)</td>
<td>0.708</td>
<td></td>
</tr>
<tr>
<td>Ever smoker (%)</td>
<td>607 (46.8)</td>
<td>278 (52.3)</td>
<td>885 (48.4)</td>
<td>0.040</td>
<td></td>
</tr>
</tbody>
</table>
Figure Legends

Figure 1: CONSORT diagram.

Figure 2: Proportion of participants following public health measures stratified for serostatus among 318,552 individuals.

Figure 3: Risk ratio for seropositivity in a subset of 32,812 participants exposed to COVID-19 infected persons in various settings. For each setting, participants exposed to COVID-19 infected persons was compared to participants not exposed in this setting (reference group).

Figure 4: Risk ratio for seropositivity in a subset of 193,646 working (full-time, part-time, or self-employed) participants. Participants in each profession were compared to participants in office work.

Figure 5: Risk of seropositivity for individual symptoms. Analysis included 318,552 participants.
Figure 1: CONSORT diagram

Invitations sent out 1.299.857 millions

Did not fill out questionnaire 825,446

Participated in questionnaire 474,411

Did not receive POCT 76,568

Received POCT 397,843

Did not provide POCT results 75,712
Did not fill out questionnaire 3,579

Filled out questionnaire and provided POCT results 318,552
Figure 2: Proportion of participants following public health measures stratified for serostatus among 318,552 individuals.
Figure 3: Risk ratio for seropositivity in a subset of 32,812 participants exposed to COVID-19 infected persons in various settings. For each setting, participants exposed to COVID-19 infected persons was compared to participants not exposed in this setting (reference group).
Figure 4: Risk ratio for seropositivity in a subset of 193,646 working (full-time, part-time, or self-employed) participants. Participants in each profession were compared to participants in office work.

- Office work: 538 out of 83,401 employees. RR: 1.00 (95% CI: 1.00-1.00)
- Tradesman: 154 out of 20,653 employees. RR: 1.15 (95% CI: 0.97-1.38)
- Other: 370 out of 44,755 employees. RR: 1.28 (95% CI: 1.12-1.46)
- School/other educ. estab.: 199 out of 23,773 employees. RR: 1.30 (95% CI: 1.10-1.52)
- Shop work: 78 out of 9,103 employees. RR: 1.33 (95% CI: 1.05-1.68)
- Nursing home: 57 out of 5,768 employees. RR: 1.53 (95% CI: 1.16-2.00)
- Healthcare sector: 287 out of 21,863 employees. RR: 2.02 (95% CI: 1.75-2.33)
- Home care: 52 out of 3,827 employees. RR: 2.09 (95% CI: 1.58-2.78)
Figure 5: Risk of seropositivity for individual symptoms. Analysis included 318,552 participants.
Supplementary materials:

Supplementary table 1: Sex and age group distribution and place of living for responders and non-responders among population invited to participate in the questionnaire. Missing data represents invited persons who requested to be removed. Also shown are sex and age group distribution and place of living for participants who provided POCT results versus participants who did not provide the POCT results.

Supplementary figure 1: Age and sex distribution of the final study population. Numbers above bars represent number of participants in each group.

Supplementary figure 2: Distribution of SARS-CoV-2 antibodies according to age groups. Numbers above bars represent percentage of total number of participants in groups.

Supplementary figure 3: SARS-CoV-2 seropositive % among 318,552 individuals stratified for age groups and sex. Numbers above bars represent total of participants within each group.

Supplementary figure 4: SARS-CoV-2 seropositive % according to smoking habits, weekly alcohol consumption, and BMI stratified for sex. Red bar represents females, blue bar represents males. Numbers above bars represent number of participants in each group.

Supplementary figure 5: Seropositive % for self-assessed risk of being infected and seropositive % for participants with a previous positive PCR test. Purple bar represents a subset of 1,828 participants with a positive PCR test prior to POCT test. Red, green, and blue bars represent participants without a prior positive PCR test. The self-assessed risk of being infected was compared to the result of POCT test.

Supplementary figure 6: Flowchart for identifying participants with a positive PCR test before POCT.

Supplementary figure 7: SARS-CoV-2 seropositive % among 804 individuals by POCT stratified for days since positive PCR.

Supplementary figure 8: Map of seropositivity for each municipality.

Supplementary figure 9: Scatterplot of seropositive % according to population density for all municipalities. Each x-axis tick represents a municipality with the corresponding population density. Dots, triangles, squares, and crosses represent population density quartiles from lowest to highest quartile, respectively.

Supplementary figure 10: SARS-CoV-2 seropositive % in households with a COVID-19 infected person stratified by household size. Numbers above bars represent number of seropositive and seronegative participants in each household size.

Supplementary figure 11: Proportion of persons who experienced symptoms stratified for age groups. Numbers next to bars represent percentages.

Supplementary figure 12: Number of previous tests for 318,552 participants stratified for age groups and sex.
Supplementary table 1: Sex and age group distribution and place of living for responders and non-responders among population invited to participate in the questionnaire. Missing data represents invited persons who requested to be removed. Also shown are sex and age group distribution and place of living for participants who provided POCT results versus participants who did not provide the POCT results.

Col: Column, POCT: Point of care test

<table>
<thead>
<tr>
<th>Answered Questionnaire</th>
<th>Provided POCT result</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Row %</td>
</tr>
<tr>
<td>Females</td>
<td>384,507</td>
</tr>
<tr>
<td>Males</td>
<td>440,939</td>
</tr>
<tr>
<td>Total</td>
<td>825,446</td>
</tr>
<tr>
<td>Age group, N</td>
<td>Row %</td>
</tr>
<tr>
<td>15-25</td>
<td>147,686</td>
</tr>
<tr>
<td>25-34</td>
<td>141,758</td>
</tr>
<tr>
<td>35-44</td>
<td>113,045</td>
</tr>
<tr>
<td>45-54</td>
<td>116,213</td>
</tr>
<tr>
<td>55-64</td>
<td>99,021</td>
</tr>
<tr>
<td>65-74</td>
<td>94,985</td>
</tr>
<tr>
<td>75+</td>
<td>112,736</td>
</tr>
<tr>
<td>Total</td>
<td>825,446</td>
</tr>
<tr>
<td>Place of living, N</td>
<td>Row %</td>
</tr>
<tr>
<td>The Capital Region of Denmark</td>
<td>262,620</td>
</tr>
<tr>
<td>Region Zealand</td>
<td>121,320</td>
</tr>
<tr>
<td>The Region of Southern Denmark</td>
<td>174,432</td>
</tr>
<tr>
<td>Central Denmark Region</td>
<td>183,623</td>
</tr>
<tr>
<td>The North Denmark Region</td>
<td>83,451</td>
</tr>
<tr>
<td>Total</td>
<td>825,446</td>
</tr>
</tbody>
</table>
Supplementary figure 1: Age and sex distribution of the final study population. Numbers above bars represent number of participants in each group.
Supplementary figure 2: Distribution of SARS-CoV-2 antibodies according to age groups. Numbers above bars represent percentage of total number of participants in groups.
Supplementary figure 3: SARS-CoV-2 seropositive % among 318,552 individuals stratified for age groups and sex. Numbers above bars represent total of participants within each group.

Red: female (n, 148,128), blue: male (n, 134,424), number of participants in each group
Supplementary figure 4: SARS-CoV-2 seropositive % according to smoking habits, weekly alcohol consumption, and BMI stratified for sex. Red bar represents females, blue bar represents males. Numbers above bars represent number of participants in each group.
Supplementary figure 5: Seropositive % for self-assed risk of being infected and seropositive % for participants with a previous positive PCR test. Purple bar represents a subset of 1,828 participants with a positive PCR test prior to POCT test. Red, green, and blue bars represent participants without a prior positive PCR test. The self-assed risk of being infected was compared to the result of POCT test.
Supplementary figure 6: Flowchart for identifying participants with a positive PCR test before POCT.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Date of PCR YYYY-MM-DD</th>
<th>Date of POCT YYYY-MM-DD</th>
<th>Seropositive?</th>
<th>Included in analysis of sensitivity?</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2020-03-06</td>
<td>2020-03-15</td>
<td>Yes</td>
<td>Yes</td>
<td>Date of PCR is before POCT.</td>
</tr>
<tr>
<td>B</td>
<td>2020-03-06</td>
<td>Missing</td>
<td>No</td>
<td>Yes</td>
<td>Date of PCR is before POCT as earliest possible POCT date is 2021-10-01.</td>
</tr>
<tr>
<td>C</td>
<td>2020-10-15</td>
<td>2020-10-17</td>
<td>No</td>
<td>Yes</td>
<td>Date of PCR is before.</td>
</tr>
<tr>
<td>D</td>
<td>2020-10-25</td>
<td>2020-10-06</td>
<td>Yes</td>
<td>No</td>
<td>POCT date is missing and could have been performed after PCR.</td>
</tr>
<tr>
<td>E</td>
<td>2020-10-25</td>
<td>Missing</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1,928 participants ALL with a previous positive PCR test.

Whole population 318,552

1,828 participants with a previous positive PCR test before POCT

100 excluded as we cannot be sure that date of PCR test was before POCT.
Supplementary figure 7: SARS-Cov-2 seropositive % among 804 individuals by POCT stratified for days since positive PCR.
Supplementary figure 8: Map of seropositivity for each municipality.
Supplementary figure 9: Scatterplot of seropositive % according to population density for all municipalities. Each x-axis tick represents a municipality with the corresponding population density. Dots, triangles, squares, and crosses represent population density quartiles from lowest to highest quartile, respectively.
Supplementary figure 10: SARS-CoV-2 seropositive % in households with a COVID-19 infected person stratified by household size. Numbers above bars represent number of seropositive and seronegative participants in each household size.
Supplementary figure 11: Proportion of persons who experienced symptoms stratified for age groups. Numbers next to bars represent percentages.
Supplementary figure 12: Number of previous tests for 318,552 participants stratified for age groups and sex.
Appendix

Table 4: In house validation (cases=600 individuals, controls=150 individuals)

<table>
<thead>
<tr>
<th>LIVZON</th>
<th>Expiration date for POCT</th>
<th>Sensitivity</th>
<th>95% CI</th>
<th>Specificity</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK2004310410</td>
<td>14.10.2020</td>
<td>93.3%</td>
<td>88.1-96.7</td>
<td>98.2%</td>
<td>96.7-99.1</td>
</tr>
<tr>
<td>CK2004350410</td>
<td>19.10.2020</td>
<td>92.7%</td>
<td>87.3-96.3</td>
<td>97.5%</td>
<td>95.9-98.6</td>
</tr>
</tbody>
</table>
The questionnaire:

1. Testing Denmark NOTE it is no longer possible to sign up for the antibody testing. It will still to be very valuable to us if you will take the time to fill out the questionnaire.
2. Questions about infection with COVID-19
3. If you were to give your best bet, do you think/know that you have ever been infected with COVID-19?
4. Have you previously been tested for COVID-19?
5. How many times have you been tested for COVID-19?
6. What type of COVID-19 test have you had? (Feel free to give multiple answers)
7. Was one or more of your tests positive?
8. Symptoms
9. How often do you usually have a cold or influenza-like symptoms?
10. Have you had any of the following symptoms in the period since 1 February 2020?
11. How many times have you had a fever since 1 February 2020?
12. How many times have you had chills since 1 February 2020?
13. How many times have you had runny or stuffy nose since 1 February 2020?
14. How many times have you had an impaired sense of smell since 1 February 2020?
15. How many times have you had an impaired sense of taste since 1 February 2020?
16. How many times have you had periods with sneeze since 1 February 2020?
17. How many times have you had a sore throat since 1 February 2020?
18. How many times have you had a cough since 1 February 2020?
19. How many times did you experience difficulty in breathing/shortness of breath since 1 February 2020?
20. How many times have you had a headache since 1 February 2020?
21. How many times have you experienced muscle and/or joint pain since 1 February 2020?
22. How many times have you had chest pain since 1 February 2020?
23. How many times have you experienced fatigue and exhaustion since 1 February 2020?
24. How many times have you experienced a loss of appetite since 1 February 2020?
25. How many times have you experienced coloured sputum (spit)/mucus since 1 February 2020?
26. How many times have you had bloodshot, watery eyes since February 1 2020?
27. How many times have you experienced nausea since 1 February 2020?
28. How many times have you vomited since 1 February 2020?
29. How many times have you had diarrhoea since 1 February 2020?
30. How many times have you had stomach pain since 1 February 2020?
31. How many times have you had other symptoms since 1 February 2020?
32. In which months since 1 February did you experience fever?
33. In which months since 1 February did you experience chills?
34. In which months since 1 February did you experience a runny or stuffy nose?
35. In which months since 1 February did you experience an impaired sense of smell?
36. In which months since 1 February did you experience an impaired sense of taste?
37. In which months since 1 February did you experience sneezing?
38. In which months since 1 February did you experience a sore throat?
39. In which months since 1 February did you experience a cough?
40. In which months since 1 February did you experience difficulty breathing?
41. In which months since 1 February did you experience headaches?
42. In which months since 1 February did you experience muscle and/or joint pains?
43. In which months since 1 February did you experience chest pains?
44. In which months since 1 February did you experience fatigue and exhaustion?
45. In which months since 1 February did you experience a loss of appetite?
46. In which months since 1 February did you experience coloured sputum (spit)/mucus?
47. In which months since 1 February did you experience bloodshot, watery eyes?
48. In which months since 1 February did you experience nausea?
49. In which months since 1 February did you experience vomiting?
50. In which months since 1 February did you experience diarrhoea?
51. In which months since 1 February did you experience stomach pains?
52. In which months since 1 February did you experience other symptoms?
53. Did you take your temperature when you had a fever?
54. What was your highest measured temperature?
55. Did your symptoms occur suddenly (over a few hours)?
56. Did you take any medication for your symptoms?
57. What do you think was the cause of your symptoms? (Feel free to give multiple answers)
58. Which of the following conditions best describes how you felt when you were feeling the worst, while you had/suspected you had COVID-19?
59. Risk of COVID-19
60. Since 1 February, have you at any time been in contact within proximity to someone whom you knew had tested positive for COVID-19? That is within seven days before or after this person tested positive for COVID-19?
61. Contact with infected
 61.1 Have you stayed for minimum 15 minutes in the same room as an infected person?
 61.2 Have you had body contact with a person infected with COVID-19?
 61.3 Have you worked/studied with someone who was infected with COVID-19?
 61.4 Has someone in your household been infected with COVID-19?
 61.5 Has someone in your family or a friend outside your household been infected with COVID-19?
62. Have you traveled abroad since 1 February 2020?
63. Approximately how many times have you traveled abroad (with sleepover) since 1 February 2020
64. Which of the following countries have you traveled to (with sleepover) since 1st of February (feel free to give multiple answers)
65. This part concerns behaviour
66. Have you taken any of the following measures in the past 14 days due to the risk of COVID-19 infection? (Feel free to give multiple answers)
67. Which of the statements below apply to you?
68. Have you consumed alcohol in the past 12 months?
69. On how many days a week do you drink alcohol on average?
70. How many units do you typically drink a week?
71. 1 unit =
72. Chronic illness. Information about any chronic illness, height, weight and lifestyle is important to enable us to assess whether you are at a particular risk of COVID-19.
73. For each of the following diseases and health problems, please state whether you currently suffer from it or have previously suffered from it.
 73.1 Asthma
 73.2 Allergy (other than asthma)
 73.3 Diabetes
 73.4 High blood pressure
 73.5 Heart attack
 73.6 Stroke
 73.7 Chronic bronchitis, hyperinflated (enlarged) lungs, smoker’s lungs (emphysema, COPD)
 73.8 Rheumatoid arthritis
 73.9 Cancer
 73.10 Other chronic disease
74. What other chronic disease
75. How much do you weigh in kilograms (kg)?
76. How tall are you in centimetres (cm)?
77. Did you get an influenza vaccine last autumn/winter 2019-2020?
78. Work and education
79. What is your highest level of completed education?
80. What is your main occupation?
81. Which area(s) or type(s) of work best describe(s) your work? (Feel free to give multiple answers)
82. Are you in contact with patients in your work?
83. Have you worked with patients hospitalised with COVID-19?
84. The following questions concern your household
85. How many people in the following age groups, including yourself, live in your household?
85.1 0-4 year-olds
85.2 5-16 year-olds
85.3 19-44 year-olds
85.4 45-64 year-olds
85.5 65+ year-olds

86. The following questions concern your perception of your health
87. In general would you say your health is
88. How do you experience your health now relative to last year at the same time?
89. The following questions are about activities you might do during a typical day.
90. Do your health now limit you in these activities? If so, how much?
90.1 Moderate activities, such as moving a table, pushing a vacuum cleaner or bicycling
90.2 Climbing several flights of stairs
90.3 Hard activities, such as sports, running or other hard physical activity
91. Have you had any of the following problems with your work or other day-to-day activities due to your physical health in the past four weeks?
91.1 I've managed less than I would've liked to
91.2 I've been restricted in the kind of work or other activities I've been able to perform
92. During the past 4 weeks, have you been limited in daily activities due to physical pain (including activities at home and at work)?
93. How do you experience your discomfort from pain now relative to last year at the same time?
94. How do you experience your physical health now relative to last year at the same time?
95. Have you had any of the following problems with your work or other day-to-day activities due to emotional problems in the past four weeks?
95.1 I've managed less that I would've liked to
95.2 I have performed my work or other activities less carefully than I usually do
96. How do you experience your emotional health now relative to last year at the same time?
97. These questions are about how you have felt in the past four weeks. How much of the time in the past four weeks have you
97.1 ... felt calm and peaceful
97.2 ... been full of energy
97.3 ... felt downhearted and blue
98. Within the past four weeks, how much of the time has your physical health or emotional problems made it difficult for you to see other people (e.g. visit friends, relatives etc.)?
99. If you have elaborating comments on the questions, you can write them here
100. Special health problems now and a year ago
101. If you have obvious explanations for your problems yourself, you can state them in a box at the end. For each condition, please state how this has changed relative to last year: -5 = Much worse 0 = The same 5 = Much better
102. Fatigue – Relative to last year
103. Dry cough – Relative to last year
104. Chest discomfort – Relative to last year
105. Shortness of breath/difficulty breathing when walking at a brisk pace or running – Relative to last year
106. Shortness of breath/difficulty in breathing when walking at an easy pace or light work, e.g. vacuuming or gardening – Relative to last year
107. Shortness of breath/difficulty breathing when talking – Relative to last year
108. Shortness of breath/difficulty breathing when resting – Relative to last year
109. Headache – Relative to last year
110. Dizziness – Relative to last year
111. Pain in muscles and joints – Relative to last year
112. Nausea – Relative to last year
113. Vomiting – Relative to last year
114. Constipation – Relative to last year
115. Diarrhoea – Relative to last year
116. Tingling sensations in hands or feet – Relative to last year
117. Difficulty concentrating – Relative to last year
118. Difficulty remembering things that have just happened (short-term memory) – Relative to last year
119. Difficulty remembering things that happened a long time ago (long-term memory) – Relative to last year
120. Sensitivity to light – Relative to last year
121. Sensitivity to sound – Relative to last year
122. You quickly become tired when looking at a screen (computer, iPad, TV and the like) – Relative to last year
123. Reduced or altered sense of taste – Relative to last year
124. Reduced or altered sense of smell – Relative to last year
125. Have you had an unintended change in your weight over the past year?
126. If you have elaborating comments on the questions, you can write them here
127. Your mood
128. During the past two weeks, have you had little interest or joy in doing things?
129. During the past two weeks, have you felt down, depressive or had a feeling of hopelessness?
130. How do you experience your mood now relative to last year at the same time?
131. If you have elaborating comments on the questions, you can write them here
132. Antibody test
133. Would you like to be sent a home test which you can use to test whether you have COVID-19 antibodies?
134. Thank you so much for participating in the survey!
135. Thank you so much for participating in the survey!