MAVS expression in alveolar macrophages is essential for host resistance against *Aspergillus fumigatus*

Xi Wang¹, Cristina Cunha²,³, Madeleine S. Grau¹, Shelly J. Robertson⁴, João F. Lacerda⁵,⁶, António Campos Jr⁷, Katrien Lagrou⁸,⁹, Johan Maertens⁸,¹⁰, Sonja M. Best⁴, Agostinho Carvalho²,³, Joshua J. Obar¹,#

¹Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Lebanon, NH, USA
²Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
³ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
⁴Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton MT, USA.
⁵Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal.
⁶Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Lisboa, Portugal
⁷Serviço de Transplantação de Medula Óssea (STMO), Instituto Português de Oncologia do Porto, Porto, Portugal
⁸Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
⁹Clinical Department of Laboratory Medicine and National Reference Center for Medical Mycology, University Hospitals Leuven, Leuven, Belgium
¹⁰Department of Hematology, University Hospitals Leuven, Leuven, Belgium

**Conflict of Interests:** The authors have declared that no conflict of interest exists.

#Corresponding author:
Joshua J. Obar
Geisel School of Medicine at Dartmouth
Department of Microbiology & Immunology
1 Medical Center Drive
Lebanon, NH 03756
Telephone: +1 (603) 646-5384
Email: joshua.j.obar@dartmouth.edu
ABSTRACT

Our recent data demonstrates a critical role of the RIG-I-like receptor (RLR) family in regulating antifungal immunity against Aspergillus fumigatus in a murine model. However, the importance of this pathway in humans and the cell type(s) which utilize this innate immune receptor to detect A. fumigatus remains unresolved. Here we demonstrate that a polymorphism in human MAVS present in the donor genome was associated with the incidence of invasive pulmonary aspergillosis (IPA) in recipients of hematopoietic stem cell transplantation (HSCT). Moreover, in a separate cohort of confirmed IPA patients, polymorphisms in the IFIHI gene alter the inflammatory response, including interferon-responsive chemokines. Returning to our murine model, we now demonstrate that CD11c+ alveolar macrophages require Mavs expression to maintain host resistance against A. fumigatus. Our data support the role of MAVS signaling in mediating antifungal immunity in both mice and human at least in part through the role of MAVS-dependent signaling in alveolar macrophages.
INTRODUCTION

Aspergillus fumigatus is a ubiquitous environmental mold that humans inhale on a daily basis. Individuals with normal immune systems readily clear A. fumigatus conidia from their airways without complications. In contrast, immunocompromised individuals are at significantly greater risk of developing invasive pulmonary aspergillosis (IPA), including those receiving chemotherapy treatments for cancer and patients receiving immunosuppressive regimens to prevent GVHD following hematopoietic stem cell or solid organ transplantation [1-5]. However, only a small proportion of immunosuppressed patients develop invasive fungal infections indicating that additional risk factors must exist. Numerous human studies have identified genetic polymorphisms in key antifungal pattern recognition receptors and inflammatory cytokines associated with fungal infections (reviewed in [6-8]). Thus, it is important to understand how these responses are coordinated in response to fungal infection of the lungs.

Recently, both type I and type III interferons have been shown to be essential for host resistance against pulmonary A. fumigatus challenge [9]. Both Dectin 1 (Clec7a) and MDA5 (Ifih1) are necessary to induce of the type I and type III interferon response following A. fumigatus challenge in the mouse model [10, 11]. Engagement of Dectin 1 leads to Syk activation which drive IRF5 activation for the production of IFNβ following Candida albicans challenge [12]. MDA5 engagement by dsRNA leads to its interaction with MAVS resulting in the recruitment of IKKe and TBK1 that activate NFkB and IRF3 and IRF7, respectively, for the production of early cytokines and type I interferons [13]. Genetic polymorphisms within CLEC7A have been associated with increased risk of developing IPA [14-16], while the role for genetic polymorphisms within IFIH1 or MAVS regarding susceptibility to IPA has not been explored to date.
Herein, our data demonstrates that genetic polymorphisms within *IFIH1* and *MAVS* alter the production of interferon-dependent chemokines and risk for HSCT patients in developing IPA, respectively. Interestingly, increased risk for developing IPA was associated with genetic variation within *MAVS* only in the donor/hematopoietic compartment. Using our murine model, we identify alveolar macrophages as a key hematopoietic cell in the induction of the MAVS-dependent interferon response which is necessary for host resistance against *A. fumigatus*. Overall, our study reveals a critical role for MDA5/MAVS in host anti-fungal immunity in both mice and humans.
**RESULTS**

Single Nucleotide Polymorphisms (SNPs) in *IFIH1* and *MAVS* influence the risk for developing invasive pulmonary aspergillosis.

Our recent mouse data suggests that MDA5/MAVS signaling is critical in maintaining host resistance against pulmonary challenge with *A. fumigatus* [11]. Therefore, we wanted to explore the role of these molecules in a human cohort comprised of 460 HSCT patients (Supplemental Table 1). Missense SNPs within the coding region of *IFIH1* (rs1990760 and rs3747517) are associated with autoimmune conditions, particularly interferonopathies [17]. Moreover, a missense SNP in *MAVS* (rs17857295) is associated with altered type I interferon regulation [18]. While an individual genotype for each SNP was not associated with risk of developing IPA (Supplemental Figure 1), we further examined these SNPs using a recessive genetic model because the autoimmune risk allele in *IFIH1* rs1990760 has been shown to work in a dominant fashion [17]. Notably, we found a significant association between the CC genotype at rs1990760 in *IFIH1* and the risk of developing IPA in HSCT recipients (Figure 1A). This increased risk occurred when the variant was carried by the recipient in a recessive genetic model, but not when it was carried by the donor. In contrast, no association between the *IFIH1* rs3747517 SNP and the risk of developing IPA was found (Figure 1B). Additionally, we also found a significant association between the *MAVS* rs17857295 SNP and the risk of developing IPA in HSCT recipients (Figure 1C). This increased risk occurred when the variant was carried by the donor in a recessive genetic model, but not when it was carried by the recipient. Moreover, the risk from the donor *MAVS* rs17857295 SNP held up to multivariate analysis accounting for relevant clinical risk factors (Table 1).
To demonstrate a functional effect of the rs1990760 SNP in IFIH1 and the associated amino acid substitution on the function of MDA5, we analyzed the inflammatory response in the bronchoalveolar lavage fluid (BALF) of 23 patients with IPA after stratification by genotypes at rs1990760 in IFIH1. We found that individuals with the CC genotype, which is associated with increased risk of developing IPA (Figure 1A), had a significant reduction in IP-10 (CXCL10), RANTES (CCL5), and MIP-1α (CCL3), but not IL-8 and GROα (CXCL1) (Figure 1D). IP-10 (CXCL10), RANTES (CCL5), and MIP-1α (CCL3) are known to be interferon-responsive genes, while IL-8 and GROα (CXCL1) are not [19]. In the BALF samples from this patient cohort, the levels of IFN-α were below the detection limit (data not shown). Given the relatively rare frequency of the rs17857295 genotype in MAVS, it was not possible to analyze cytokine production according to MAVS genotype in the BAL samples (data not shown). Overall, these data support an important role for MDA5/MAVS signaling in regulating the inflammatory response and host resistance against Aspergillus spp. in humans.

Deletion of Mavs in CD11c+ cells result in increased susceptibility to Aspergillus fumigatus in mice.

Given the observation that patients in the HSCT cohort with the MAVS rs17857295 polymorphism within the donor population had altered risk for developing IPA, we next wanted to assess which hematopoietic cell population(s) in our invasive aspergillosis murine model relies on Mavs to maintain host resistance against A. fumigatus. To directly address which cells must express Mavs we utilized the recently developed Mavs(−/−) x Itgax-Cre conditional knock-out model, hereafter referred to as Mavs(Cd11c/Cd11c), that will delete Mavs in all CD11c-expressing cells [20], including both dendritic cells and alveolar macrophages. To test of role of Mavs expression
in CD11c-expressing cells for the maintenance of host resistance against \textit{A. fumigatus}, we
challenged C57BL/6J, \textit{Mavs}^{(fl/fl)}, and \textit{Mavs}^{(Cd11c/Cd11c)} mice with 4x10^7 conidia of the CEA10 strain
and monitored survival over nine days. \textit{Mavs}^{(Cd11c/Cd11c)} mice were more susceptible to pulmonary
challenge with \textit{A. fumigatus} than either C57BL/6J or \textit{Mavs}^{(fl/fl)} mice (Figure 2A; Mantel-Cox log
rank test, p < 0.0001). Mice completely lacking either \textit{Ifih1} or \textit{Mavs} have decreased neutrophil
recruitment, which was associated with increased fungal germination after pulmonary challenge
with \textit{A. fumigatus} [11]. Thus, we assessed fungal germination in the lung by histological analysis
at 48 h after conidial instillation. Strikingly, GMS staining of lung tissue from \textit{Mavs}^{(Cd11c/Cd11c)}
mice revealed high levels of \textit{A. fumigatus} germination at this time compared with control \textit{Mavs}^{(fl/fl)}
mice (Figure 2B). When the percentage of germinated \textit{A. fumigatus} was quantified, \textit{Mavs}^{(fl/fl)} mice
displayed low levels of fungal germination (23.5% ± 9.1) compared with \textit{Mavs}^{(Cd11c/Cd11c)} mice
(60.1% ± 8.2). Finally, we assessed inflammatory cell accumulation in the airways. The increased
susceptibility of \textit{Mavs}^{(Cd11c/Cd11c)} mice to \textit{A. fumigatus} challenge was associated with decreased
accumulation of neutrophils in the airways compared with \textit{Mavs}^{(fl/fl)} mice (Figure 2C). These data
match our prior observations with mice completely lacking either \textit{Ifih1} or \textit{Mavs} having increased
IPA susceptibility [11], suggesting that \textit{Mavs} expression within CD11c-expressing cells is critical
for host resistance against \textit{A. fumigatus} challenge.

\textbf{Alveolar macrophage transfer to \textit{Mavs}^{(Cd11c/Cd11c)} conditional knock-out mice reduces their
susceptibility to \textit{Aspergillus fumigatus} in mice.}

Multiple cells in the lungs can express \textit{Igta1} (CD11c) including alveolar macrophages,
CD103^+ dendritic cells, CD11b^+ dendritic cells, monocyte-derived dendritic cells, and
plasmacytoid dendritic cells, all of which have be implicated in the antifungal immune response
against *A. fumigatus* [21-27]. Utilizing the publicly available data assembled by the ImmGen Consortium [28], in the lungs we see that *Mavs* is highly expressed in Siglec F⁺ alveolar macrophages, but also moderately expressed in both monocytes and dendritic cells (data not shown). Interestingly, following RSV infection alveolar macrophages have been shown to be the key cell type for initiating the type I interferon through a MAVS-dependent mechanism [29, 30].

While alveolar macrophages largely populate the lungs during embryogenesis and are maintained by local proliferation during homeostasis [31, 32] following conditioning for HSC transplantation, alveolar macrophage can be repopulated from the donor HSC compartment [33-36]. Therefore, to specifically address the role of *Mavs* in alveolar macrophages, we purified Siglec F⁺ cells from the lungs of naïve *Mavs*(^fl/fl^) or *Mavs*(^Cd11c/Cd11c^) mice and transferred 5x10⁵ Siglec F⁺ cells intratracheally into *Mavs*(^Cd11c/Cd11c^) mice one day prior to challenging with 4x10⁷ conidia of the CEA10 strain (Figure 3A). Forty-eight hours after challenge, we examined the lungs by GMS staining of lung tissue from *Mavs*(^Cd11c/Cd11c^) mice receiving the *Mavs*(^Cd11c/Cd11c^) Siglec F⁺ cells and revealed the presence of high levels of germinated *A. fumigatus* (68.1% ± 12.6), while that was not observed to the same extent in *Mavs*(^Cd11c/Cd11c^) mice receiving the *Mavs*(^fl/fl^) Siglec F⁺ cells (31.4% ± 6.7) (Figure 3B). This is in line with control *Mavs*(^Cd11c/Cd11c^) mice or *Mavs*(^fl/fl^) mice receiving DMEM (vehicle) administered intratracheally. When we examined the accumulation of leukocytes in the airways by differential cytospin analysis we found that *Mavs*(^Cd11c/Cd11c^) mice receiving *Mavs*(^Cd11c/Cd11c^) Siglec F⁺ cells had reduced numbers of neutrophils when compared with *Mavs*(^Cd11c/Cd11c^) mice receiving *Mavs*(^fl/fl^) Siglec F⁺ cells (Figure 3C). Strikingly, when we examined macrophage numbers in the airways, we found *Mavs*(^Cd11c/Cd11c^) mice receiving *Mavs*(^fl/fl^) Siglec F⁺ cells had many macrophages present, but *Mavs*(^Cd11c/Cd11c^) mice receiving *Mavs*(^Cd11c/Cd11c^) Siglec F⁺ cells had few macrophages in their airways at 48 hours post-inoculation with *A.
fumigatus (Figure 3D). Importantly, the decrease in macrophages in the airways is not observed in naïve Mavs\(^{Cd11c/Cd11c}\) mice (Supplemental Figure 2A). Additionally, Mavs\(^{Cd11c/Cd11c}\) mice receiving an i.t. transfer of Mavs\(^{Cd11c/Cd11c}\) Siglec F\(^+\) cells 24h prior only had a moderate decrease in alveolar macrophage numbers (Supplemental Figure 2B). These data demonstrate that Mavs expression within Siglec F\(^+\) alveolar macrophages is critical for host resistance against A. fumigatus.
DISCUSSION

Humans inhale *Aspergillus fumigatus* spores on a daily basis, but individuals with healthy immune systems readily clear *A. fumigatus* conidia from their airways without problems. One lung sentinel cell that can be critical in the clearance of *A. fumigatus* is the alveolar macrophage. Alveolar macrophages are known to phagocytose and destroy *A. fumigatus* [25], but their role in host resistance has remained controversial [27, 37]. Patients undergoing HSCT are at increased risk of developing IPA [1-5]. In patients undergoing HSCT, alveolar macrophages are dysfunctional [35] and found at decreased in numbers [34-36] for at least 50 days post-transplantation. Thus, it is important to understand the role of alveolar macrophages in the initial inflammatory response induced by *A. fumigatus*. These lung sentinel alveolar macrophages are also known to participate in the inflammatory response induced by *A. fumigatus* [38], but their role in driving the interferon response following *A. fumigatus* challenge was not addressed. During respiratory syncytial virus infection alveolar macrophages have been demonstrated to be key drivers of the type I interferon response through a MAVS-dependent mechanism [29, 30]. We recently describe a critical role for MDA5/MAVS-dependent induction of interferons following *A. fumigatus* challenge [11], but the cellular localization of MAVS-dependent signaling was not elucidated. Here we demonstrated that *Mavs* expression in alveolar macrophages was at least partially necessary for host resistance against *A. fumigatus*, through the regulation of neutrophil accumulation in the lung for the prevention of fungal growth. While alveolar macrophage transfer to *Mavs*(Cd11c/Cd11c) mice largely restores host resistance, it was not absolute suggesting additional CD11c+ cells might require *Mavs* expression for resistance. One potential candidate would be plasmacytoid dendritic cells that are known to produce type I interferons after fungal challenge [21] and are essential for host resistance *A. fumigatus* [39], but the importance of MAVS signaling
in plasmacytoid dendritic cells in driving the interferon response remains controversial. The role of MAVS signaling in other CD11c⁺ cell populations will be explored in future studies. Alveolar macrophages also participate in the inflammatory response to other fungal pathogens including Cryptococcus neoformans [40], Pneumocystis spp. [41], and Rhizopus spp. [42]. Interestingly, heterogeneity within the alveolar macrophage population has been demonstrated particularly in regard to CXCL2 expression [40], which could be important in our findings showing that the mice lacking Ifih1 or Mavs have decreased neutrophil accumulation following A. fumigatus challenge [11].

While our previous studies have shown the importance of MDA5/MAVS signaling [11] and type I/III interferons [9] in host resistance against A. fumigatus in the murine model, the importance of these pathways in humans has not been described. Herein, we have found that antifungal role of MDA5/MAVS signaling is also critical in humans. Our data from a cohort of HSCT patients demonstrate that SNPs in IFIH (rs1990760) and MAVS (rs17857295) are associated with an altered risk of developing IPA. Interestingly, SNPs within IFIH1 have been associated with numerous autoimmune diseases, particularly those that are highly dependent on type I interferons for their progression [17, 43]. Recent evidence suggests that the autoimmune risk genotype of the rs1990760 SNP in IFIH1 (TT) has functional consequences in human PBMCs, specifically it is associated with elevated basal levels of IFNB1 [17]. Knock-in of the IFIH1 rs1990760 autoimmune risk genotype (TT) into mice not only recapitulates the susceptibility to autoimmune diseases, but also results in increased host resistance against encephalomyocarditis virus (ECMV), a picornavirus specifically recognized by MDA5 [44], and elevated Ifnb1 expression [17]. Moreover, in human pancreatic islets it has been shown that the IFIH1 rs1990760 TC genotype also drove enhanced interferon signaling after Coxsackievirus infection [45]. This
enhanced interferon response during Coxsackievirus infection was associated with greater signaling from the peroxisomes by the \textit{IFIH1} rs1990760 TC genotype \cite{45}, which has previously been shown to preferentially induce a type III interferon response \cite{46, 47}. Interestingly, our SNP analysis of a human HSCT cohort found that the T allele of \textit{IFIH1} rs1990760, which as just mentioned is associated with an increased interferon response \cite{17, 45}, was associated with a reduced risk for the development of IPA. In addition to the \textit{IFIH1} rs1990760 SNP, we also found a clinical association with the rs17857295 SNP in \textit{MAVS} with the risk of developing IPA after HSCT. Much less is known about the functional outcome of the rs17857295 SNP in \textit{MAVS}, but one report suggests overexpression of the GG genotype in 293T cells stably knocked-down for the endogenous \textit{MAVS} allele resulted in an inability to induce \textit{Ifnb1} expression following PolyI:C stimulation \cite{18}. Overall, our analysis suggests that HSCT patients harboring these SNPs display a reduced ability to trigger an interferon response and are at greater risk of developing IPA.

In contrast to our clinical data from HSCT patients who develop IPA, the T allele at rs1990760 in \textit{IFIH1} is associated with an increased risk for the development of chronic mucocutaneous candidiasis \cite{48}. Again, the T allele at rs1990760 is associated with an increased interferon response \cite{17, 45}, but the lack of IFNAR-dependent signaling leads to increased susceptibility to invasive candidiasis in mice \cite{12}. In their study Netea and colleagues did not observe altered \textit{Ifnb} expression in the absence of MDA5 after stimulation with \textit{Candida albicans} hyphae \cite{48}, but a role for MDA5 in regulating other interferons was not explored. Our data with \textit{A. fumigatus} suggests that MDA5/MAVS-signaling are more important in the regulation of type III interferons (IFN\textlambda/IL-28), rather than type I interferons (IFN\textalpha/\beta). Excessive inflammation and tissue pathology can be critical in mediating disease during invasive candidiasis \cite{49}. Rivera and colleagues demonstrated that type III interferon (IFN\textlambda/IL-28) signaling enhances the production
of reactive oxygen species by neutrophils following *A. fumigatus* [9], which could enhance disease
during invasive candidiasis. Thus, there appears to be an interesting dichotomy in MDA5 signaling
that is crucial for tuning host resistance against different fungal pathogens and warrants further
research.
METHODS

Mice and Aspergillus fumigatus challenge model. Mavs\(^{fl/fl}\) and Mavs\(^{fl/fl}\) x Itgax-Cre mice [20] were bred in-house at Geisel School of Medicine at Dartmouth. C57BL/6J mice were purchased from Jackson Laboratory. All mice were 8-16 weeks of age at the time of challenge.

Preparation of Aspergillus fumigatus conidia and murine challenge model. A. fumigatus CEA10 strains were used for this study. A. fumigatus was grown on glucose minimal media (GMM) agar plates for 3 days at 37°C. Conidia were harvested by adding 0.01% Tween 80 to plates and gently scraping conidia from the plates using a cell scraper. Conidia were then filtered through sterile Miracloth, were washed, and resuspended in phosphate buffered saline (PBS), and counted on a hemocytometer.

Mice were challenged with A. fumigatus conidia by the intratracheal (i.t.) route. Mice were anesthetized by inhalation of isoflurane; subsequently, mice were challenged i.t. with ~4 \(\times\) 10\(^7\) A. fumigatus conidia in a volume of 100 µl PBS. At the indicated time after A. fumigatus challenge, mice were euthanized using carbon dioxide. Bronchoalveolar lavage fluid (BALF) was collected by washing the lungs with 2 ml of PBS containing 0.05M EDTA. BALF was clarified by centrifugation and stored at -20°C until analysis. After centrifugation, the cellular component of the BALF was resuspended in 200 µl of PBS and total BAL cells were determined by hemocytometer count. BALF cells were subsequently spun onto glass slides using a Cytospin4 cytocentrifuge (Thermo Scientific) and stained with the Hema 3™ Stat Pack (Fisher Scientific) stain set for differential counting. For histological analysis lungs were filled with and stored in 10% buffered formalin phosphate for at least 24 hours. Lungs were then embedded in paraffin and sectioned into 5-micron sections. Sections were stained with Grocott-Gomori methenamine silver
(GMS) using standard histological techniques to assess lung inflammatory infiltrates and fungal germination, respectively. Representative pictures of lung sections were taken using an Olympus BX50WI microscope with a QImaging Retiga 2000R camera.

**Alveolar macrophage isolation and adoptive transfer.** Lungs from naïve Mavs\(^{(fl/fl)}\) and Mavs\(^{(fl/fl)}\) x Itgax-Cre were perfused with 20-30 ml of PBS. Lungs were then removed, injected with 700 μl of collagenase buffer [10ml RPMI, 1ml FBS, 25 μl 0.5M CaCl\(_2\), 25 μl 0.5M MgCl\(_2\), 50 μl HEPES, 100 μl L-glutamine, 100 μl Penn-Strep, 2 μl gentamycin, 25 μl DNase (VWR, Catalog # 77001-900), and 2 ml Liberase (Sigma-Aldrich)], and finally placed in 15 ml conical tube containing 2 ml of collagenase buffer. Lungs were digested or 30 min at 37°C while shaking at 160-180 rpm. After which, 5 ml of ice cold stop buffer [25 ml RPMI, 1.25 ml FBS, 50 μl 0.5M EDTA] was added to each tube. Lungs were pushed through a 70 μm filter to generate a single cell suspension. Single cell lung suspensions were labeled with anti-Siglec-F MicroBeads (Miltenyi Biotec, Cat. No. 130-118-513) and selected for using LS Columns (Miltenyi Biotec, Cat. No. 130-042-401). Siglec F\(^+\) were eluted from the column, spun down, and resuspended in DMEM at 5x10^6 cells per ml. Subsequently 5x10^5 Siglec F\(^+\) alveolar macrophages were transferred i.t. to Mavs\(^{(fl/fl)}\) x Itgax-Cre. Twenty-four hours later mice were challenge with *A. fumigatus* as described above.

**Human HSCT cohort for SNP analysis.** A total of 460 hematologic patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) at the Hospital of Santa Maria, Lisbon and Instituto Português de Oncologia (IPO), Porto, between 2009 and 2015 were enrolled in the study. Cases of IPA were identified and classified as ‘probable’ or ‘proven’ according to the 2008 criteria.
from the European Organization for Research and Treatment of Cancer/Mycology Study Group (EORTC/MSG) [50]. Exclusion criteria included diagnosis of ‘possible’ IPA, infection with invasive molds other than Aspergillus spp. or history of pre-transplant mold infection. Study approval was obtained from the institutional review boards (SECVS-125/2014, HSM-632/14 and CES.26/015) and from the National Data Protection Commission (CNPD, 1950/2015) and was in compliance with all local relevant ethical regulations.

Genomic DNA was isolated from whole blood of patients using the QIAcube automated system (Qiagen). SNPs were selected based on their previous association with infection or with putative functional consequences to the gene [17, 18, 45]. Genotyping was performed using KASPar assays (LGC Genomics) in an Applied Biosystems 7500 Fast Real-Time PCR system (Thermo Fisher Scientific), according to the manufacturer’s instructions.

**Cytokine analysis of BALF from human IPA patients.** BALF and blood samples were collected from hospitalized adult patients (≥18 years of age) at the Leuven University Hospitals, Leuven, Belgium, as previously described [51]. This study was approved and carried out in accordance with recommendations of the Ethics Subcommittee for Life and Health Sciences of the University of Minho, Portugal (SECVS-125/2014), and the Ethics Committee of the University Hospitals of Leuven, Belgium. Written informed consent was obtained from all subjects in accordance with the Declaration of Helsinki.

For this cytokine analysis, twenty-three cases of “probable” or “proven” IPA were identified according to the standard criteria from the European Organization for Research and Treatment of Cancer/Mycology Study Group (EORTC/MSG) [50] and included for cytokine
analysis. Genomic DNA was isolated from EDTA venous blood and genotyped for the *IFIH1* rs1990760 polymorphism. Cytokine levels were determined using the Cytokine & Chemokine 34-Plex Human ProcartaPlex and stratified based on their *IFIH1* rs1990760 genotype.

**Statistical analysis.** Statistical significance for *in vitro* and *ex vivo* data was determined by a Mann-Whitney U test, one-way ANOVA using a Bonferroni post-test, or Kruskal-Wallis one-way ANOVA with Dunn’s post-test through the GraphPad Prism 7 software as outlined in the figure legends. Mouse survival data were analyzed with the Mantel-Cox log rank test using GraphPad Prism. For the human HSCT cohort, the probability of IPA resulting from *IFIH1* and *MAVS* SNPs was analyzed using the cumulative incidence method and compared using Gray’s test [52]. Cumulative incidences were computed with the *cmprsk* package for R version 2.10.1 [53], with censoring of data at the date of last follow-up visit and defining relapse and death as competing events. A period of 24 months after transplant was chosen to include all cases of IPA.

**Study approvals.** All animal experiments were approved by the Dartmouth College Institutional Animal Care and Use Committee under protocol number 00002168. For our human studies approval was obtained from the institutional review boards (SECVS-125/2014, HSM-632/14 and CES.26/015) and from the National Data Protection Commission (CNPD, 1950/2015) and was in compliance with all local relevant ethical regulations.
AUTHOR CONTRIBUTIONS

Conceived and designed the experiments: XW, AC, JJO. Performed the experiments: XW, CC, MG. Analyzed the data: XW, CC, MG, AC, JJO. Provided clinical samples: JFL, AC Jr, KL, JM. Wrote the paper: XW, JJO.

ACKNOWLEDGEMENTS

Thank you to Drs. Robert Cramer, Claudia Jakubzick, and David Leib (Geisel School of Medicine at Dartmouth) for helpful discussion on this project. Research in this study was supported in part by institutional startup funds to JJO in part through the Dartmouth Lung Biology Center for Molecular, Cellular, and Translational Research grant P30 GM106394 (PI: Bruce A. Stanton) and Center for Molecular, Cellular and Translational Immunological Research grant P30 GM103415 (PI: William R. Green). JJO was partially supported by a Munck-Pfefferkorn Award from Dartmouth College and NIH R01 AI139133 grant. SMB is supported by the Division of Intramural Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases. AC and CC were supported by the Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-SER/29635/2017, PTDC/MED-GEN/28778/2017, UIDB/50026/2020, UIDP/50026/2020, and CEECIND/04058/2018), the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) (NORTE-01-0145-FEDER-000039), the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 847507, and the “la Caixa” Foundation (ID 100010434) and FCT under the agreement LCF/PR/HR17/52190003. The funders had no role in the preparation or publication of the manuscript.
REFERENCES


<table>
<thead>
<tr>
<th>Genetic/clinical variables</th>
<th>Adjusted HR† (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donor rs17857295 in MAVS</td>
<td>2.39 (1.07 – 5.32)</td>
<td>0.033</td>
</tr>
<tr>
<td>Recipient rs1990760 in IFIH1</td>
<td>1.46 (0.89 – 2.40)</td>
<td>0.121</td>
</tr>
<tr>
<td>Acute GVHD grades III-IV</td>
<td>1.73 (0.94 – 3.19)</td>
<td>0.047</td>
</tr>
</tbody>
</table>

HR, hazard ratio; CI, confidence interval. Multivariate analyses were based on the subdistribution regression model of Fine and Gray. †Hazard ratios were adjusted for patient age and gender, and clinical variables with a P<0.15 in the univariate analyses. Only the variables remaining significant after adjustment are shown.
**Figure 1.** *IFIH1* and *MAVS* polymorphisms are associated with invasive pulmonary aspergillosis in human transplant patients using a recessive allele model. Cumulative incidence analysis of invasive aspergillosis after transplantation according to donor or recipient genotypes at rs1990760 in *IFIH1* (A), rs3747517 in *IFIH1* (B), or rs17857295 in *MAVS* (C) over 24 months after HSCT. Data were analyzed by two-sided Gray’s test. (D) Inflammatory cytokine levels in the bronchoalveolar lavage fluid from 23 patient with invasive pulmonary aspergillosis were measured using a 32-plex ProCarta Luminex assay and plotted based on their *IFIH1* rs1990760 genotype. Data were analyzed using a Mann-Whitney U-test (* p < 0.05).
Figure 2. Mavs-dependent responses are essential in CD11c<sup>+</sup> cells for host resistance against Aspergillus fumigatus. Mavs<sup>Cd11c/Cd11c<sup>, Mavs<sup>fl/fl</sup> and C57BL/6J mice were challenged i.t. with 4x10<sup>7</sup> resting conidia of the CEA10 isolate of *Aspergillus fumigatus*. (A) Survival analysis in immune-competent wild-type and knock-out mice were tracked over the first 9 days. ****, P < 0.0001 by Mantel-Cox log rank test. (B) Forty hours after *A. fumigatus* challenge mice were euthanized and fungal germination was assessed in the lungs by GMS staining. **, P < 0.01 by Mann-Whitney U-test. (C) At the same time point, cell differentials in the lung airways was determined by differential staining of BALF cytospins. Statistical significance was determined using a two-way ANOVA with a Sidak’s post-test.
**Figure 3.** Alveolar macrophages require a Mavs-dependent response to maintain host resistance against *Aspergillus fumigatus.* (A) *Mavs*<sup><fl/fl></sup> or *Mavs*<sup><Cd11c/Cd11c></sup> alveolar macrophages (Siglec F<sup>+</sup>) given intranasally. One day later mice were complemented with 5x10<sup>5</sup> resting conidia of the CEA10 isolate of *Aspergillus fumigatus.* Forty hours after *A. fumigatus* challenge mice were euthanized. (B) Fungal germination was assessed in the lungs by GMS staining. Representative 20x GMS images are shown. Statistically significant different were determined using a one-way ANOVA with a Tukey’s post-test: *p<0.05 (vs. DMEM → *Mavs*<sup><fl/fl></sup>), ****p<0.0001 (vs. DMEM → *Mavs*<sup><fl/fl></sup>), and ττττ p<0.0005 (vs. *Mavs*<sup><Cd11c/Cd11c></sup> → *Mavs*<sup><fl/fl></sup>). Neutrophils (C) and macrophages (D) in the lung airways was determined by differential staining of BALF cytospins.
### Supplemental Table 1. Baseline characteristics of transplant recipients enrolled in the study.

<table>
<thead>
<tr>
<th>Variables</th>
<th>IPA (n=91)</th>
<th>No IPA (n=348)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at transplantation, no (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤20 years</td>
<td>13 (14.3)</td>
<td>69 (19.8)</td>
<td>0.264</td>
</tr>
<tr>
<td>21 – 40 years</td>
<td>23 (25.3)</td>
<td>101 (29.0)</td>
<td></td>
</tr>
<tr>
<td>&gt;40 years</td>
<td>55 (60.4)</td>
<td>178 (51.2)</td>
<td></td>
</tr>
<tr>
<td>Gender, no (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>38 (41.8)</td>
<td>150 (43.1)</td>
<td>0.859</td>
</tr>
<tr>
<td>Male</td>
<td>53 (58.2)</td>
<td>198 (56.9)</td>
<td></td>
</tr>
<tr>
<td>Underlying disease, no. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute leukemia</td>
<td>49 (53.8)</td>
<td>179 (51.5)</td>
<td>0.115</td>
</tr>
<tr>
<td>Chronic lymphoproliferative diseases</td>
<td>14 (15.4)</td>
<td>69 (19.8)</td>
<td></td>
</tr>
<tr>
<td>Myelodysplastic/myeloproliferative diseases</td>
<td>13 (14.3)</td>
<td>30 (8.6)</td>
<td></td>
</tr>
<tr>
<td>Chronic myeloproliferative diseases</td>
<td>7 (7.7)</td>
<td>20 (5.7)</td>
<td></td>
</tr>
<tr>
<td>Aplastic anemia</td>
<td>6 (6.6)</td>
<td>17 (4.9)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>2 (2.2)</td>
<td>33 (9.5)</td>
<td></td>
</tr>
<tr>
<td>Transplantation type, no. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matched, related</td>
<td>34 (37.4)</td>
<td>169 (48.6)</td>
<td>0.037</td>
</tr>
<tr>
<td>Matched, unrelated</td>
<td>33 (36.3)</td>
<td>81 (23.3)</td>
<td></td>
</tr>
<tr>
<td>Mismatched, related</td>
<td>0 (0.0)</td>
<td>7 (2.0)</td>
<td></td>
</tr>
<tr>
<td>Mismatched, unrelated</td>
<td>24 (26.4)</td>
<td>91 (26.2)</td>
<td></td>
</tr>
<tr>
<td>Graft source, no. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral blood</td>
<td>80 (87.9)</td>
<td>287 (82.5)</td>
<td>0.506</td>
</tr>
<tr>
<td>Bone-marrow</td>
<td>10 (11.0)</td>
<td>53 (15.2)</td>
<td></td>
</tr>
<tr>
<td>Cord blood</td>
<td>1 (1.1)</td>
<td>8 (2.3)</td>
<td></td>
</tr>
<tr>
<td>Disease stage, no. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First complete remission</td>
<td>49 (53.8)</td>
<td>188 (54.0)</td>
<td>0.800</td>
</tr>
<tr>
<td></td>
<td>Row 1</td>
<td>Row 2</td>
<td>P-value</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Second or subsequent remission, or</td>
<td>13 (14.3)</td>
<td>59 (17.0)</td>
<td></td>
</tr>
<tr>
<td>relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active disease</td>
<td>29 (31.9)</td>
<td>101 (29.0)</td>
<td></td>
</tr>
<tr>
<td><strong>Conditioning regimen, no (%)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIC</td>
<td>68 (74.7)</td>
<td>228 (65.5)</td>
<td>0.091</td>
</tr>
<tr>
<td>Myeloablative</td>
<td>23 (25.3)</td>
<td>120 (34.5)</td>
<td></td>
</tr>
<tr>
<td><strong>CMV serostatus of donor and recipient, no. (%)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-/R+ or D+/R+</td>
<td>80 (87.9)</td>
<td>313 (89.9)</td>
<td>0.504</td>
</tr>
<tr>
<td>D-/R- or D+/R-</td>
<td>11 (12.1)</td>
<td>35 (10.1)</td>
<td></td>
</tr>
<tr>
<td><strong>Duration of neutropenia, mean days (range)†</strong></td>
<td>13.1 (8 – 39)</td>
<td>13.5 (5 – 35)</td>
<td>0.460</td>
</tr>
<tr>
<td><strong>Acute GVHD, no. (%)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No GVHD or grades I – II</td>
<td>63 (69.2)</td>
<td>302 (86.8)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Grades III – IV</td>
<td>28 (30.8)</td>
<td>46 (13.2)</td>
<td></td>
</tr>
<tr>
<td><strong>Antifungal prophylaxis, no. (%)‡</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluconazole</td>
<td>42 (46.2)</td>
<td>117 (33.6)</td>
<td>0.002</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>26 (28.6)</td>
<td>107 (30.8)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>9 (9.9)</td>
<td>14 (4.0)</td>
<td></td>
</tr>
<tr>
<td>None or unknown</td>
<td>14 (15.4)</td>
<td>110 (31.6)</td>
<td></td>
</tr>
</tbody>
</table>

Twenty-one patients with “possible” IPA were excluded. Chronic lymphoproliferative diseases included cases of chronic lymphocytic leukemia, multiple myeloma, and B- and T-cell lymphomas. Chronic myeloproliferative diseases included cases of chronic myelogenous leukemia and primary myelofibrosis. Other diseases included cases of idiopathic medullar aplasia, lymphohistiocytosis, hemoglobinopathies and paroxysmal nocturnal hemoglobinuria. RIC, reduced intensity conditioning; CMV, cytomegalovirus; D, donor; R, recipient; GVHD, graft-versus-host-disease. †Neutropenia was defined as ≤0.5×10⁹ cells/L. ‡Other antifungals used in prophylaxis included voriconazole, liposomal amphotericin B, itraconazole and caspofungin. P values were calculated by Fisher’s exact probability t-test or Student’s t-test for continuous variables.
Supplemental Figure 1. Individual genotype of *IFIH1* and *MAVS* polymorphisms in human transplant patients. Cumulative incidence analysis of invasive aspergillosis after transplantation according to donor or recipient genotypes at rs1990760 in *IFIH1* (A), rs3747517 in *IFIH1* (B), or rs17857295 in *MAVS* (C) over 24 months after HSCT. Data were analyzed by two-sided Gray’s test.
Supplemental Figure 2. Alveolar macrophage numbers are normal in naïve mice. BAL cells from naïve Mavs<sup>Cd11c</sup> and Mavs<sup>fl/fl</sup> mice (A) or naïve Mavs<sup>Cd11c</sup> mice given 5x10<sup>5</sup> SiglecF<sup>+</sup> lung cells from naïve Mavs<sup>Cd11c</sup> and Mavs<sup>fl/fl</sup> mice 24h prior (B) were collected in PBS/EDTA. Alveolar macrophage numbers were quantified by Cytospin analysis and differential staining. n.s. = not significant; *, P < 0.01; by Mann-Whitney U-test.