Impact of different diagnostic measures on drug class association with dementia progression risk: a longitudinal prospective cohort study

Daman Kaura*, Magda Bucholcb, David P. Finnc, Stephen Toddd, KongFatt Wong-Linb, Paula L. McCleana

a Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Clinical Translational Research and Innovation Centre (C-TRIC), Altnagelvin Hospital Site, Derry~Londonderry BT47 6SB, Northern Ireland, UK. Ph: +44 (0) 2871675675

b Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Northland Rd, Derry~Londonderry BT48 7JL, Northern Ireland, UK. Ph: +44 (0) 2871675320

c Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, Human Biology Building, National University of Ireland Galway, University Road, Galway H91 W5P7, Republic of Ireland. Ph: +353-91-495586

d Altnagelvin Area Hospital, Western Health and Social Care Trust, Derry~Londonderry BT47 6SB, Northern Ireland, UK. Ph: +44 (0) 2871345171

*Corresponding author: Daman Kaur, kaur-d1@ulster.ac.uk, Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, C-TRIC, Altnagelvin Hospital Site, Derry~Londonderry BT47 6SB, Northern Ireland, UK.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. Declarations of interest: none
Abstract

Background: Clinical Dementia Rating Sum of Boxes (CDRSOB) scale is known to be highly indicative of cognitive-functional status, but it is unclear whether it is consistent with clinician diagnosis in evaluating drug class associations with risk of progression to mild cognitive impairment (MCI) and dementia.

Methods: We employed multivariate logistic regression on longitudinal NACC data, to identify drug classes associated with disease progression risk, using clinician diagnosis and CDRSOB as the outcome.

Results: Non-steroidal anti-inflammatory drugs, anxiolytics, antidiabetics, and Parkinson’s medications were significantly associated with decreased progression to mild cognitive impairment (MCI)/dementia, and antihypertensives and Alzheimer’s medications significantly associated with increased progression risk. Associations were however dependant on the diagnostic measure used, e.g., antihypertensives were associated with increased Healthy-to-Dementia risk using clinical diagnosis as the outcome (OR:2.05, FDR p<0.001), but not for CDRSOB. Additionally, some associations appear to be gender specific; for instance, antidiabetics had lower MCI-to-Dementia risk for women (OR:0.58, FDR p=0.006) using CDRSOB. Further, in accordance with existing literature, acetylcholinesterase inhibitors were not beneficial in delaying dementia.
Conclusions: Overall, we demonstrate that choice of diagnostic measure can influence the magnitude of risk or protection attributed to drug classes. A consensus must be reached within the research community with respect to the most accurate diagnostic outcome to identify risk and improve reproducibility.

Funding: This project was supported by the European Union’s INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB (Centre for Personalised Medicine, IVA 5036)), with additional support by the Northern Ireland Functional Brain Mapping Project Facility (1303/101154803), funded by Invest Northern Ireland and the University of Ulster (K.W.-L.), Alzheimer’s Research UK (ARUK) NI Pump Priming (M.B., S.T., K.W.-L., P.L.M.), Ulster University Research Challenge Fund (M.B., S.T., K.W.-L., M.B.), and the Dr George Moore Endowment for Data Science at Ulster University (M.B.).

Introduction

Dementia is a complex disease with several subtypes and aetiologies, and few effective therapeutics (Arvanitakis et al., 2019). Therefore, extensive research has been carried out analysing factors that may influence disease incidence and progression (Livingston et al., 2020; Peters et al., 2019). Medications, in particular, may affect cognition in older adults (Barton et al., 2008; Nikaido et al., 1990) due to increased drug sensitivity associated with age-related factors such as impaired liver metabolism and decreased renal function (Barton et al., 2008). Moreover, factors like potentially inappropriate prescribing, drug interactions
and polypharmacy, which are common in dementia patients, complicate the assessment of specific drug classes on cognition (Delgado et al., 2019).

Several pharmacoepidemiology studies have analysed the relationship between medications and dementia risk with conflicting findings. Researchers have acknowledged that methodological differences substantially contribute to the variation in risk attributed to different medications. Study design, inclusion criteria, data preparation, and especially the diagnostic criteria used can influence outcomes (Erkinjuntti et al., 1997; Jamsen et al., 2016; Wancata et al., 2007). One study examining antidiabetic medications found protective effects of metformin on dementia risk (Chin-Hsiao 2019), whereas another reported increased risk of cognitive impairment associated with metformin use (Moore et al., 2013). For antihypertensives, one systematic review reported a significant association between reduced dementia risk and use of diuretics and angiotensin-converting enzyme (ACE) inhibitors (Shah et al., 2009), whereas a study by Rouch et al. (2015) showed that calcium (Ca^{2+}) channel blockers and renin–angiotensin system blockers, were associated with prevention of dementia. Similarly, discrepant findings across studies have been reported on the association between anxiolytics, such as benzodiazepines, and cognitive decline (Salzman, 2020; Verdoux et al., 2005). This is also the case for other drug classes including antidepressants, antipsychotics, and non-steroidal anti-inflammatory (NSAIDs) (Biringer et al., 2009; Hill et al., 2010; Imbimbo et al., 2010; Zhang et al., 2018). We note significant variability in the diagnostic criteria used across studies that undoubtedly impacts upon risk attribution leading to conflicting findings.

Clinical assessment of dementia involves detailed examination of medical history, cognitive tests followed by laboratory assays, psychiatric evaluation, and brain imaging to
identify dementia subtype. Studies have shown that subtle differences in classification associated with National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA), Diagnostic and Statistical Manual Of Mental Disorders (DSM) criteria including DSM–III–R, DSM–IV, DSM-V, International Classification of Diseases (ICD) criteria including ICD-9, ICD-10, ICD-11, and Cambridge Mental Disorders of the Elderly Examination (CAMDEX) criteria can influence clinical diagnosis, and lead to variation in dementia prevalence (Berman & Bursztajn 1999; Chaves et al., 2007; Erkinjuntti et al., 1997; Wancata et al., 2007). As a result of this variation, researchers often employ cognitive scores for analysis, especially in longitudinal studies as they allow for identifying small changes in cognition over time. However, in clinical settings cognitive tests are mainly used to aid the diagnostic decision-making process.

The Clinical Dementia Rating (CDR® Dementia Staging Instrument) scale, a cognitive assessment tool, is regularly used in clinical and research settings to gauge dementia severity. It provides a global score, and a more detailed CDR sum of boxes (CDR-SOB) score obtained through patient and informant interview based on the following cognitive and functional domains; memory, orientation, judgment & problem solving, community affairs, home & hobbies, and personal care (Morris, 1993). Studies have reported moderate (Forsell et al., 1992; Juva et al., 1994), to good (Chaves et al., 2007; Ding et al., 2018; Lima et al., 2017) correlation of the CDR scale with DSM and McKhann (1984) diagnostic criteria, with one study reporting efficiency of CDR-SOB in distinguishing MCI from dementia for patients with CDR global score 0.5 (O’Bryant et al., 2010). However, it is unclear whether such cognitive-functional assessments are consistent with clinical diagnosis in terms of evaluating the benefits or risks of medications.
In this study, we investigate how the associations between medications and dementia risk vary between clinical diagnosis and CDRSOB scores generally, and differentially in men and women (Trenaman et al., 2009). We analysed several drug classes available in the National Alzheimer’s Coordinating Center (NACC) dataset, namely, antihypertensives, lipid lowering medication, NSAIDs, anticoagulants, antidepressants, antipsychotics, anxiolytics, antidiabetics, Alzheimer’s disease (AD) medication and Parkinson’s disease (PD) medication, and subcategories of drugs within each class, for those significantly associated with progression to MCI, all-cause dementia, and AD.

Results

Using multivariate logistic regression, we identified drug classes associated with risk of progression from Healthy-to-MCI, Healthy-to-Dementia, Healthy-to-AD, MCI-to-Dementia, and MCI-to-AD for both CDRSOB and clinical diagnosis as the outcome. The adjusted odds ratios were calculated based on drug exposure vs. absence of the drug of interest during the timeline available within the NACC dataset. The mean conversion time (standard deviation) in years was 5.4 (3.1) for stable healthy, 6.7 (2.9) for Healthy-to-MCI, 3.1 (2.2) for stable MCI, 7 (2.6) for Healthy-to-Dementia, and 5.5 (2.3) for MCI-to-Dementia progression group. For brevity, significant results are illustrated in Figures 1-4. Complete results, including insignificant associations, can be found in Supplementary Table 1.
NSAIDs reduce Healthy-to-MCI progression risk with clinical diagnosis as the outcome

Progression analysis comparing stable healthy individuals to those who progressed from Healthy-to-MCI, revealed antihypertensives and AD medications were significantly associated with increased progression risk with both CDRSOB and clinical diagnosis as the diagnostic measure (FDR p<0.001). NSAIDs, on the other hand, significantly reduced progression risk only with clinical diagnosis (FDR p<0.001; Fig. 1A). For women specifically, antihypertensives were significantly associated with increased progression risk for both CDRSOB and clinical diagnosis (FDR p<0.001), whereas AD medications were significantly associated with progression risk only for clinical diagnosis as the outcome for women specifically (FDR p<0.001; Fig. 1A).

Antihypertensives increase Healthy-to-Dementia risk overall, and in women with clinical diagnosis as the outcome

In terms of Healthy-to-Dementia progression, AD medications were significantly associated with increased progression risk overall, and for both women and men separately, for both CDRSOB and clinical diagnosis (FDR p<0.001; Fig. 1B). Antihypertensives were significantly associated with increased progression risk overall and specifically for women only with clinical diagnosis as the outcome (FDR p<0.001; Fig. 1B).
Anxiolytics and antidiabetics reduce MCI-to-Dementia progression risk with CDRSOB as the outcome

Comparing stable MCI individuals to those who progressed from MCI-to-Dementia, AD medications were significantly associated with increased progression risk overall, and in men and women separately, with clinical diagnosis and CDRSOB (FDR p<0.001; Fig. 1C). Anxiolytics were significantly associated with reduced progression risk overall with CDRSOB score. Similarly, diabetes medications were associated with reduced MCI-to-Dementia risk overall (FDR p<0.001) and specifically for women (FDR p<0.01) with CDRSOB as the outcome (Fig. 1C).
A: Remained Healthy vs. Healthy-to-MCI

<table>
<thead>
<tr>
<th>Category</th>
<th>Clinical Diagnosis</th>
<th>CDRSOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined cohort:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antihypertensives</td>
<td>Remained Healthy (n=7870) vs. Healthy-to-MCI (n=706)</td>
<td>Remained Healthy (n=6999) vs. Healthy-to-MCI (n=1034)</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>1.68 (1.39-2.03)</td>
<td>1.51 (1.30-1.77)</td>
</tr>
<tr>
<td>AD Medication</td>
<td>0.64 (0.51-0.80)</td>
<td>0.74 (0.61-0.89)</td>
</tr>
</tbody>
</table>

Women:

<table>
<thead>
<tr>
<th>Category</th>
<th>Clinical Diagnosis</th>
<th>CDRSOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antihypertensives</td>
<td>Remained Healthy (n=5248) vs. Healthy-to-MCI (n=438)</td>
<td>Remained Healthy (n=4721) vs. Healthy-to-MCI (n=546)</td>
</tr>
<tr>
<td>AD Medication</td>
<td>1.78 (1.41-2.25)</td>
<td>1.61 (1.33-1.95)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Women:</th>
<th>Clinical Diagnosis</th>
<th>CDRSOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD Medication</td>
<td>3.84 (2.14-6.89)</td>
<td>2.52 (1.28-4.94)</td>
</tr>
</tbody>
</table>

B: Remained Healthy vs. Healthy-to-Dementia

<table>
<thead>
<tr>
<th>Category</th>
<th>Clinical Diagnosis</th>
<th>CDRSOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined cohort:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antihypertensives</td>
<td>Remained Healthy (n=7870) vs. Healthy-to-Dementia (n=506)</td>
<td>Remained Healthy (n=6999) vs. Healthy-to-Dementia (n=359)</td>
</tr>
<tr>
<td>AD Medication</td>
<td>2.05 (1.62-2.59)</td>
<td>1.58 (1.20-2.08)</td>
</tr>
<tr>
<td>Women:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antihypertensives</td>
<td>Remained Healthy (n=5248) vs. Healthy-to-Dementia (n=332)</td>
<td>Remained Healthy (n=4721) vs. Healthy-to-Dementia (n=250)</td>
</tr>
<tr>
<td>AD Medication</td>
<td>2.27 (1.70-3.01)</td>
<td>1.71 (1.24-2.35)</td>
</tr>
<tr>
<td>Men:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD Medication</td>
<td>11.21 (6.99-17.99)</td>
<td>34.9 (19.78-61.58)</td>
</tr>
</tbody>
</table>

© 2021 medRxiv preprint. doi: https://doi.org/10.1101/2021.08.03.21261570; this version posted August 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Fig. 1: Summary grouped forest plots of adjusted odds ratios for drug classes significantly associated with risk of progression to MCI and dementia for two diagnostic variables; clinical diagnosis and CDRSOb scores. Progression groups analysed: (A) Remained Healthy vs. Healthy-to-MCI; (B) Remained Healthy vs. Healthy-to-Dementia; (C) Remained MCI vs. MCI-to-Dementia. (AD: Alzheimer’s Disease; NSAIDs: Non-steroidal anti-inflammatory drugs; CDRSOb: Clinical Dementia Rating sum of boxes).
Antihypertensives increase Healthy-to-AD risk with clinical diagnosis as the outcome

Next, we compared stable healthy individuals with those who progressed from Healthy-to-AD (Fig. 2A). The results obtained were analogous to the analysis focusing on all-cause dementia in terms of OR values and significance. Antihypertensives were significantly associated with increased progression risk overall and specifically for women with clinical diagnosis as the outcome (FDR p<0.001; Fig. 2A). AD medications were significantly associated with increased progression risk overall, and for both women and men separately, for both CDRSOB and clinical diagnosis (FDR p<0.001; Fig. 2A).

Anxiolytics in women and Parkinson’s medication in men are associated with reduced MCI-to-AD progression risk

Analysis comparing stable MCI individuals with those who progress from MCI-to-AD revealed that anxiolytics significantly reduced progression risk with clinical diagnosis (FDR p<0.01) and CDRSOB (FDR p<0.001) as the outcome (Fig. 2B). Whereas for women, anxiolytics reduced progression risk only with CDRSOB as the outcome (FDR p<0.01). AD medication was associated with increased risk for both diagnostic variables overall, and for both women and men, whereas Parkinson’s medications significantly reduced progression risk overall, and specifically for males with clinical diagnosis (FDR p<0.01) and CDRSOB (FDR p<<0.001) as the outcome (Fig. 2B).
Fig. 2: Summary grouped forest plots of adjusted odds ratios for drug classes significantly associated with risk of progression to AD for two diagnostic variables; clinical diagnosis and CDRSOB scores.

Progression groups analysed: (A) Remained Healthy vs. Healthy-to-AD; (B) Remained MCI vs. MCI-to-AD. (AD: Alzheimer’s Disease; PD: Parkinson’s Disease; CDRSOB: Clinical Dementia Rating sum of boxes).
Propionic acid derivatives reduce healthy to MCI and dementia progression risk

We then focused on subcategories, or drug classes, of the significant drug families obtained from primary analyses. In terms of NSAIDs, propionic acid derivatives were significantly associated with reduced Healthy-to-MCI progression risk in general (FDR p<0.001) and specifically for women (FDR p<0.01) with CDRSOB score (Fig. 3A). With clinical diagnosis as the outcome, propionic acid derivatives were associated with significantly reduced Healthy-to-Dementia progression risk overall (FDR p<0.001) and specifically in females (FDR p<0.01; Fig. 3A). Propionic acid derivatives were also associated with significantly reduced Healthy-to-AD progression risk (FDR p<0.01; Fig. 3C) with clinical diagnosis, but not CDRSOB.

Moving on to antihypertensives, diuretics were significantly associated with increased Healthy-to-MCI progression risk in women with CDRSOB as the outcome (FDR p<0.01; Fig. 3A). With CDRSOB as the diagnostic outcome, antiadrenergic agents were associated with significantly reduced MCI-to-Dementia risk in men (FDR p<0.001; Fig. 3B), and more specifically with reduced MCI-to-AD progression risk in men (FDR p<0.01; Fig. 3C).

Benzodiazepines and sulfonylureas are associated with reduced MCI-to-Dementia risk with CDRSOB as outcome

With respect to anxiolytics, benzodiazepines were associated with significantly reduced MCI-to-Dementia progression risk with CDRSOB (FDR p<0.01; Fig. 3B), but not clinician diagnosis. Furthermore, benzodiazepines were associated with reduced MCI-to-AD progression risk in general (FDR p<0.001) and specifically for both men and women (FDR p<0.01) with CDRSOB (Fig. 3C).
With CDRSOB as the diagnostic measure, the sulfonylurea class of antidiabetic drugs was significantly associated with reduced MCI-to-Dementia risk (FDR $p<0.01$; Fig. 3B). Furthermore, dopamine precursors, a class of Parkinson’s disease medication, were associated with significantly reduced MCI-to-AD progression risk (FDR $p<0.001$; Fig. 3C) only with CDRSOB as the diagnostic outcome.
A

Remained Healthy vs. Healthy-to-MCI

Combined cohort:
- Propionic acid derivatives

Women:
- Diuretics
- Propionic acid derivatives

Remained Healthy vs. Healthy-to-Dementia

Combined cohort:
- Propionic acid derivatives

Women:
- Propionic acid derivatives

B

Remained MCI vs. MCI-to-Dementia

- **ACE inhibitor**
- **Antiadrenergic agent**
- **Benzodiazepines**
- **Sulfonylureas**

Men:
- Antiadrenergic agent
Fig. 3: Summary grouped forest plots of adjusted odds ratios of specific drug classes significantly associated with risk of progression to MCI, dementia, and AD for two diagnostic variables; clinical diagnosis and CDRSOB scores. Progression groups analysed: (A) Remained Healthy vs. Healthy-to-MCI, Remained Healthy vs. Healthy-to-Dementia; (B) Remained MCI vs. MCI-to-Dementia; (C) Remained Healthy vs. Healthy-to-AD and Remained MCI vs. MCI-to-AD.
AD drug treatments in individuals with MCI are associated with increased risk of dementia and AD

Commonly prescribed AD medications were analysed in participants who remained MCI over time vs. those who progressed from MCI to AD specifically or dementia in general. Donepezil, a cholinesterase inhibitor (ChEI) was significantly associated with increased MCI-to-Dementia risk (FDR p<0.001; Fig. 4A) and MCI-to-AD risk (FDR p<0.001; Fig. 4B) in general, and in men and women with both clinical diagnosis and CDRSOB as the outcome. Memantine, an N-methyl-D-aspartate (NMDA) receptor antagonist was also significantly associated with increased MCI-to-Dementia and MCI-to-AD risk overall and specifically for women with CDRSOB (FDR p<0.001; Fig. 4), but not clinical diagnosis.

Another ChEI, Galantamine, was associated with increased MCI-to-Dementia risk in general (FDR p<0.001) and specifically for men (FDR p<0.001; Fig.4A), and increased MCI-to-AD progression risk (FDR p<0.001; Fig.4B) with CDRSOB as the diagnostic measure, but not clinical diagnosis. Rivastigmine was significantly associated with increased MCI-to-Dementia risk overall (FDR p<0.001) and specifically for men (FDR p<0.01; Fig.4A) with CDRSOB as the diagnostic measure. In terms of MCI-to-AD progression, rivastigmine was significantly associated with increased risk of progression overall (FDR p<0.001), and in both women and men (FDR p<0.01 & FDR p<0.001 respectively) with CDRSOB as the outcome, but not clinical diagnosis (Fig.4B).

Combined prescription of memantine and donepezil was significantly associated with increased MCI-to-Dementia (FDR p<0.001; Fig. 4A) and MCI-to-AD risk (FDR p<0.001; Fig. 4B) in general, and specifically in women and men with both CDRSOB and clinical diagnosis.
Fig. 4: Summary grouped forest plots of adjusted odds ratios for AD drugs significantly associated with risk of progression to dementia and AD for two diagnostic variables; clinical diagnosis and CDR-SOB scores. Progression groups analysed: (A) Remained MCI vs. MCI-to-Dementia; (B) Remained MCI vs. MCI-to-AD. (CDR-SOB: Clinical Dementia Rating sum of boxes).
Discussion

In this study, we demonstrate that the use of different diagnostic measures for MCI and dementia, i.e., clinical diagnosis and CDRSOB scores, affect the magnitude of the association of various medications with disease risk and progression. From the drug classes analysed, antihypertensives, NSAIDs, anxiolytics, antidiabetics, AD and PD medications were found to be differentially associated with risk of progression to MCI, all-cause dementia, and AD with respect to the diagnostic measure used. Additionally, subcategories of these drug classes; antiadrenergics, ACE inhibitors, propionic acid derivatives, benzodiazepines, sulfonylureas, and dopamine precursors were associated with decreased risk of progression, and diuretics were associated with increased progression risk.

In the NACC dataset, consensus-based clinical diagnosis was made using the criteria proposed by McKhann et al. (McKhann et al., 1984; Mckhann et al., 2011). A previous study, analysing the NACC dataset, reported diagnostic accuracy with 0.71 sensitivity and 0.81 specificity when comparing CDRSOB scores to dementia diagnosis (O’Bryant et al., 2010). We report that despite good correlation between the two diagnostic measures, our analysis produced discordant results while analysing risk associated with different medications. With the exception of AD and PD medications, whilst odds ratios were consistently in the same direction, the statistical significance of results was inconsistent for the two diagnostic measures.

The CDRSOB scale offers a wider score range allowing better demarcation of subtle changes between different stages of disease progression. In the NACC cohort (Fig. 1-3), a lower number of individuals are classified into Healthy-to-MCI group by clinical diagnosis.
(n=438), compared to CDRSOB score (n=646). This suggests that CDRSOB scale can detect early disease symptoms and help diagnose MCI. Whereas in terms of a clinical diagnosis, there are no specific tests that confirm MCI, judgement is made based on clinical evaluation and exclusion of other causative factors such as hypothyroidism or vitamin B12 deficiency. These factors not only affect the prevalence of MCI and dementia in a cohort but may also lead to variation in risk analysis.

In our study, PD medications were associated with reduced MCI-to-AD risk overall, and specifically for men with both diagnostic measures, given that PD is more common in males. Dopamine precursors, in particular, were associated with significantly reduced MCI-to-AD risk with CDRSOB as the outcome. Studies have shown that levodopa treatment can have beneficial effect on cognition (Ikeda et al., 2017). Additionally, PD related MCI is clinically distinct and has a longer conversion period to dementia, compared to AD related MCI (Besser et al., 2016).

While focusing on specific AD drugs for MCI-to-Dementia and MCI-to-AD progression, donepezil, and a combination of donepezil and memantine, were significantly associated with increased risk of disease progression with both clinical diagnosis and CDRSOB as the outcome. However, memantine, galantamine, and rivastigmine were found to be significantly associated only with CDRSOB as the outcome. Previous studies have shown faster cognitive decline with ChEI therapy in MCI and early AD (Han et al., 2019; Schneider et al., 2011). These associations could be due to confounding by indication since patients with cognitive impairment are more likely to be prescribed these drugs. It also reflects the prescribing patterns across clinics since, in contradiction to the US FDA guidelines, physicians are known to prescribe ChEIs and memantine during early stages of impairment (Schneider et al., 2011).
Additionally, we found significant MCI-to-Dementia risk associated with memantine in women, and galantamine and rivastigmine in men.

Antihypertensives were significantly associated with increased Healthy-to-MCI risk overall, and specifically for women, for both clinical diagnosis and CDRSOB diagnostic measures. However, for Healthy-to-Dementia/AD progression, antihypertensives were associated with significantly increased progression risk only with clinical diagnosis as the outcome. Several studies have reported increased risk of cognitive impairment associated with hypertension, and a subsequent reduced risk with antihypertensive treatment. However, there still exists ambiguity regarding the duration, specific drug subclass and optimal dosage to prevent cognitive impairment (Ou et al., 2020). A previous study analysing the NACC dataset reported an increased AD risk with intensive treatment for systolic BP, especially in those with comorbid depression (Yeung et al., 2019); another found lower cognitive scores associated with lower systolic BP (Fiford et al., 2020). Furthermore, with CDRSOB as the outcome, diuretics were associated with increased Healthy-to-MCI risk for women specifically, and antiadrenergics reduced MCI-to-Dementia/AD risk for men. Although studies have shown reduced risk of AD/dementia with diuretic therapy (DeLoach & Beall, 2018; Yasar et al., 2013), our analysis reports an increased risk of cognitive impairment in women.

With respect to NSAIDs, conflicting outcomes have been reported in observational and experimental studies (Ali et al., 2019; Breitner et al., 2009; Cote et al., 2012). Our analysis showed reduced Healthy-to-MCI risk with clinical diagnosis. However, in terms of subcategories, propionic acid derivatives were associated with reduced Healthy-to-MCI risk with CDRSOB, and reduced Healthy-to-Dementia/AD risk with clinical diagnosis. Commonly
used propionic acid derivatives, such as ibuprofen and naproxen, have been associated with delayed or decreased rate of cognitive decline (Grodstein et al., 2008; Leoutsakos et al., 2011). NSAID use may also lead to modulation of inflammatory pathways which can be beneficial as inflammatory genes and molecules have been linked with AD development (Newcombe et al., 2018; Raj et al., 2017). Additionally, studies have shown that some NSAIDs can mediate Aβ clearance. However, it is only effective during the early disease stages (Imbimbo et al., 2010).

In the case of anxiolytics, results were consistent for both clinical diagnosis and CDRSOB with a reduced MCI-to-Dementia and MCI-to-AD progression risk. However, while analysing subcategories, we found benzodiazepines to be associated with reduced MCI-to-Dementia and MCI-to-AD progression risk only with CDRSOB as the outcome. Anxiety and related disorders are speculated to be symptoms and risk factors of dementia (Gimson et al., 2017). Several studies have reported an increased dementia risk with anxiolytics. However, a previous study, analysing NACC data, demonstrated neutralised disease progression risk in MCI and AD patients suffering from anxiety, and apolipoprotein E4 carriers who were prescribed certain anxiolytics (Burke et al., 2017).

We found antidiabetics were significantly associated with reduced MCI-to-Dementia risk, and specifically for women with CDRSOB as the outcome. Despite the association of diabetes with lower cognitive function, several studies have reported a reduced dementia risk in those taking oral hypoglycaemic medication (Hsu et al., 2011; Kim et al., 2019; Wu et al., 2020). Further analysis of drug subcategories in the present study revealed reduced MCI-to-Dementia risk with CDRSOB associated with sulfonylureas. Again, there are inconsistent results in the literature regarding sulfonylureas and associated dementia risk. Some have reported an increased risk which might be linked to intensive treatment leading to
hypoglycaemia (Zammitt & Frier, 2005). Using CDRSOB as the outcome, studies have shown that glycaemic trajectories, can predict cognitive performance (Springer et al., 2014).

Overall, our study shows that the magnitude and significance of association of different medications with disease progression can vary depending on the diagnostic measure used. CDRSOB scores, though comparatively less comprehensive, form a part of clinical diagnosis which leads to high correlation between the two. Due to unavailability of clinical diagnosis in some datasets, or a preference for quantitative analysis to increase precision and reduce subjectivity, researchers often opt for cognitive scores. However, we must be aware of the implications of choosing a particular diagnostic measure, and careful regarding how we interpret the results.

There were limitations in this study, such as the low number of individuals while analysing subcategories of drug classes. Importantly, it should be noted that significant results obtained in this study are associations and not causation, as the data was not generated from randomised controlled trials. Therefore, our findings are vulnerable to unmeasured confounders or confounding by indication, with AD drugs for example. Surprisingly, it was observed that some cognitively healthy individuals (clinical diagnosis, n=108; CDRSOB, n=63) were taking AD medication, either a reflection of genuine prescribing patterns for AD drugs or errors at the point of data entry. Moreover, in this study exposure to the drug classes was analysed irrespective of duration, dosage, and drug-drug interactions. There is a need for more detailed analyses on larger cohorts, including real-world clinical databases, for further evaluation to identify the most relevant diagnostic measure and to inform prescribing patterns in order to reduce modifiable risk of dementia. Additionally, based on our results we believe that further studies should focus on a gender stratified approach as there may be
differential risk profiles associated with various subcategories of drug classes in men and women.

Materials and Methods

Data source

Archival data from the National Alzheimer’s Coordinating Center (NACC), consisting of over 500 variables on genetic, lifestyle and clinical features for 34,848 individuals was used in this study. Details about the NACC, recruitment of participants, and assessment process has been previously described (Besser et al., 2018; Morris et al., 2006).

The NACC Uniform Data Set (UDS), comprising of data collected from September 2005 until June 2018 was used in our analysis. Written, informed consent from all participants and co-participants included in NACC-UDS was obtained by the Alzheimer’s disease research centers (ADRCs) where they completed their study visits. The following drug classes were analysed: antihypertensives, lipid lowering medication, NSAIDs, anticoagulants/antiplatelets, antidepressants, antipsychotic agents, anxiolytics/sedatives/hypnotics, diabetes medication, AD medication, and Parkinson’s disease medication. The diagnostic category of participants was determined based on both clinical diagnosis and CDRS O B scores. In NACC-UDS Version 1 and 2, the process of clinical diagnosis for all-cause dementia relied on the diagnostic protocol of the ADRC, with centres generally using DSM-IV (1994) or NINCDS-ADRDA guidelines. In NACC-UDS Version 3, the criteria for all-cause dementia was modified from McKhann (2011). Diagnoses of MCI were established using the modified Petersen criteria. Individuals included in the analyses were aged ≥40 years.
A multi-time-point data preparation approach was employed to conduct progression analysis.

Clinical diagnosis and CDRSOB scores were identified across all visits for each participant to determine changes in cognitive status over time. Subsequently, five comparisons were assessed for both diagnostic measures (Table 1) for the following six progression groups; participants that were healthy across all visits (Remained Healthy), participants that were MCI across all visits (Remained MCI), those who progressed from Healthy-to-MCI, from Healthy-to-AD, from MCI-to-Dementia, and from MCI-to-AD. CDRSOB scores were categorized as healthy: 0, MCI: 0.5-4.0 and dementia: 4.5-18 (O’Bryant et al., 2010). Details about the data cleaning procedure have been published previously (Kaur et al., 2020).
Table 1: Progression groups analysed using multivariate logistic regression.

<table>
<thead>
<tr>
<th>Clinical Diagnosis</th>
<th>CDRSOB score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remained Healthy (7870) vs.</td>
<td>Remained Healthy (6999) vs.</td>
</tr>
<tr>
<td>Healthy-to-MCI (706)</td>
<td>Healthy-to-MCI (1034)</td>
</tr>
<tr>
<td>Remained Healthy (7870) vs.</td>
<td>Remained Healthy (6999) vs.</td>
</tr>
<tr>
<td>Healthy-to-Dementia (506)</td>
<td>Healthy-to-Dementia (359)</td>
</tr>
<tr>
<td>Remained MCI (1895) vs.</td>
<td>Remained MCI (3796) vs.</td>
</tr>
<tr>
<td>MCI-to-Dementia (1041)</td>
<td>MCI-to-Dementia (1766)</td>
</tr>
<tr>
<td>Remained Healthy (7870) vs.</td>
<td>Remained Healthy (6999) vs.</td>
</tr>
<tr>
<td>Healthy-to-AD (382)</td>
<td>Healthy-to-AD (270)</td>
</tr>
<tr>
<td>Remained MCI (1895) vs.</td>
<td>Remained MCI (3796) vs.</td>
</tr>
<tr>
<td>MCI-to-AD (826)</td>
<td>MCI-to-AD (1422)</td>
</tr>
</tbody>
</table>
Fig. 5: (A) Drug classes available in the NACC UDS analysed in the present study. Statistically significant classes (shaded green; FDR p < 0.01) obtained from multivariate logistic regression. (B) Based on their mechanism of action, subcategories of significant drug classes were further analysed. (NACC: National Alzheimer's Coordinating Center; NSAIDs: Nonsteroidal anti-inflammatory drugs; AD: Alzheimer's Disease; ACE: Angiotensin-converting enzyme; COX-2: Cyclooxygenase-2; SGLT-2: Sodium-glucose co-transporter-2; DPP-4: Dipeptidyl peptidase-4; COMT: Catechol-O-methyltransferase; MAO-B: Monoamine oxidase type B).
The major drug classes analysed in this study, and subcategories of antihypertensives are available in the UDS dataset as variables. For subcategorising the other significant drug classes (Fig. 5), we used the researcher’s data dictionary (RDD) to identify the common drug names stored in the UDS. Next, we searched for specific drug terms (Supplementary Table 2) across all visits to determine prescription data for each individual, those who reported a specific drug at least during one visit were classified as taking the medication. These were then categorised based on their mechanism of action (Fig. 5B). Medications with ophthalmic and topical routes of administration were excluded from this analysis.

Statistical analysis

In order to explore the associations between different drug classes and disease progression, multivariate logistic regression was employed which controls for confounders (Glonek et al., 1995). Drug classes illustrated in Fig. 5A, were first analysed together, followed by analysing subcategories of respective significant drug classes (as depicted column wise in Fig. 5B). Additionally, the analysis was repeated for men and women separately, to determine sex-specific effects associated with drug exposure. Adjustment for multiple hypothesis testing was achieved by applying false discovery rate (FDR) using the Benjamini-Yekutieli correction method (Benjamini & Yekutieli, 2001). FDR adjusted p-values (FDR p) <0.01 were considered statistically significant.
Software and codes

Statistical analyses were performed using the ‘PredictABEL’ package in R studio (Version 1.1.423) on a Windows machine with eight memory cores. Codes will be uploaded to GitHub.
Acknowledgements

1. This project was supported by the European Union’s INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB (Centre for Personalised Medicine, IVA 5036)), with additional support by the Northern Ireland Functional Brain Mapping Project Facility (1303/101154803), funded by Invest Northern Ireland and the University of Ulster (K.W.-L.), Alzheimer's Research UK (ARUK) NI Pump Priming (M.B., S.T., K.W.-L., P.L.M.), Ulster University Research Challenge Fund (M.B., S.T., K.W.-L., M.B.), and the Dr George Moore Endowment for Data Science at Ulster University (M.B.). The views and opinions expressed in this paper do not necessarily reflect those of the European Commission or the SEUPB.

2. The NACC database is funded by NIA/NIH Grant U01 AG016976. NACC data are contributed by the NIA-funded ADCs: P30 AG019610 (PI Eric Reiman, MD), P30 AG013846 (PI Neil Kowall, MD), P50 AG008702 (PI Scott Small, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P50 AG047266 (PI Todd Golde, MD, PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P50 AG005134 (PI Bradley Hyman, MD, PhD), P50 AG016574 (PI Ronald Petersen, MD, PhD), P50 AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Thomas Wisniewski, MD), P30 AG013854 (PI M. Marsel Mesulam, MD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI David Bennett, MD), P50 AG047366 (PI Victor Henderson, MD, MS), P30 AG010129 (PI Charles DeCarli, MD), P50 AG016573 (PI Frank LaFerla, PhD), P50 AG005131 (PI James Brewer, MD, PhD), P50 AG023501 (PI Bruce Miller, MD), P30 AG035982 (PI Russell Swerdlow, MD), P30 AG028383 (PI Linda Van Eldik, PhD), P30 AG053760 (PI Henry Paulson, MD, PhD), P30 AG010124 (PI John Trojanowski, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 AG005142 (PI Helena Chui, MD), P30 AG012300 (PI Roger Rosenberg, MD), P30 AG049638 (PI Suzanne Craft, PhD), P50 AG005136 (PI Thomas Grabowski, MD), P50
AG033514 (PI Sanjay Asthana, MD, FRCP), P50 AG005681 (PI John Morris, MD), P50 AG047270 (PI Stephen Strittmatter, MD, PhD).”
References

Center's Uniform Data Set", Alzheimer Disease & Associated Disorders, vol. 32, no. 4, pp. 351-570.

Data Set (UDS): clinical and cognitive variables and descriptive data from Alzheimer Disease Centers.

Obermann K.R., Morris J.C. & Roe, C.M. 2013, "Exploration of 100 commonly used drugs and supplements on cognition in older adults.", Alzheimer's and Dementia, vol. 9, no. 6, pp. 724-732.

