Fractality of tics as a quantitative assessment tool for diagnosis of Tourette syndrome.

Payton Beeler¹, Nicholas O. Jensen³, Soyoung Kim⁴, Amy Viehoever-Robichaux⁵, Bradley L. Schlaggar⁶, Deanna J. Greene⁷, Kevin J. Black⁴,⁵,⁸*, and Rajan Chakrabarty¹,²*

¹Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
²Institute for Public Health, Washington University in St. Louis, St. Louis, MO 63130, USA
³Computational and Systems Biology Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
⁴Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63130, USA
⁵Department of Neurology, Washington University School of Medicine, St. Louis, MO 63130, USA
⁶Kennedy Krieger Institute, Baltimore, MD 21205; and Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
⁷Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, USA
⁸Department of Radiology, Washington University School of Medicine, St. Louis, MO 63130, USA

*Corresponding authors: Rajan K. Chakrabarty and Kevin J. Black.

Email: chakrabarty@wustl.edu
kevin@wustl.edu

Competing Interest Statement: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Abstract

Tics manifest as brief, purposeless, and involuntary movements or noises that can be suppressed temporarily with effort. In 1998, Peterson and Leckman (P&L) hypothesized that the chaotic temporal nature of tics could possess an inherent fractality, that is, have neighbor-to-neighbor correlation at all levels of time scale. However, demonstrating this phenomenon has eluded researchers for more than two decades, primarily because of the challenges associated with estimating the scale-invariant, power law exponent – called the fractal dimension Df—from a fractional Brownian noise. Here, we confirm P&L’s hypothesis and establish the fractality of tics by examining year-long tic time series dataset of children diagnosed with Tourette syndrome using one-dimensional random walk models. We find that Df increases from ~1.4 to 1.75 in order of decreasing tic severity, and is correlated with the conventional YGTTS total tic score (TTS) clinical measure (p-value = 0.03). We demonstrate Df to be a sensitive parameter in examining the effect of several tic suppression conditions on the tic time series. Our findings pave the way for utilizing the fractal nature of tics as a quantitative tool for estimating tic severity and treatment effectiveness, as well as a marker for differentiating typical from functional tics.
Main Text

Introduction

Tics are brief, purposeless, unwanted behaviors appearing as repeated movements of skeletal or vocal musculature, affecting more than 20% of all children (1–5). Approximately 0.5% of children have Tourette syndrome (TS), which is diagnosed when both motor and vocal tics occur over a period of a year or longer (6). Tic disorders are moderately heritable, but despite decades of active scientific research, no consensus has been reached on their pathophysiological foundations (7). In 1998, Peterson and Leckman (P&L) noted that tics tend to arise in clusters (bouts of several tic occurrences within a few seconds, separated by longer tic-free intervals), but also that at longer time scales, bouts of tics lasting several seconds similarly recur in grouped episodes over the courses of hours (2, 8). Such recursive behavior in turn extends to longer timespans (days, weeks, and months), maintaining self-similarity (Figure 1, left). Their observation suggests that the occurrence of tics could have an associated fractal pattern. Consequently, one would expect the occurrences to exhibit neighbor-to-neighbor correlation and follow a power curve with a scale-invariant exponent, the fractal dimension D_f. We are unaware of any previous attempts at estimating the D_f of tics, which would not only provide quantitative insights into the deep history of the Brownian noise-laden occurrence, but also facilitate new ways for diagnosing and treating the disorder.

We first record the timing of tics in patients during 5-minute video sessions under 4 conditions: free to tic (baseline), verbal request not to tic (verbal), immediate token rewards for 10-s tic-free periods (differential reinforcement of other, DRO), or tokens given at the same timing as in a previous DRO session regardless of current tic appearance (non-contingent reinforcement, NCR). Video sessions were conducted within the first 6 months after onset of tics (screening visit) and again at the 12-month anniversary of the first tic (12-month visit). Next, we use a one-dimensional random walk model in which the movement direction of walkers is reversed with each tic exhibited by the patient, generating what is hereafter referred to as a “tic-modulated random walk”. The random walk model produces trajectories corresponding to each patient, visit, and condition. Further details regarding the random walk model can be found in section S1 of the supporting information (SI).

Results

The center panel of Figure 1 shows the trajectory of a one-dimensional tic-modulated random walker with data obtained from one child with TS (black line). We then compare the trajectory of the tic-modulated random walker with two cases which represent the two extremes of the chaotic nature of tics. The first case is normal Brownian diffusion (hereafter referred to as diffusive motion). Diffusive motion represents the most chaotic case for a tic time series, where at any time increment, the walker is equally likely to move in either direction. If a patient generates a tic time series which closely resembles diffusive motion, that the patient is equally likely to tic or not tic at any given time. The second case is that of ballistic motion. Ballistic motion represents the most ordered case for a tic time series, where at any given time increment, the walker does not change directions and continues on its original path (i.e., the patient has a 0% chance of exhibiting a tic at any given time). When compared to the trajectory of a walker undergoing normal diffusion, the tic-modulated random walks appear to possess many scales. Unlike the normal diffusion case, some excursive episodes of the walker (i.e., longer periods without a tic) can be observed in the tic-modulated trajectories. Qualitatively speaking, the mobility of the tic-driven walker is stronger than that of normal diffusion but weaker than that of ballistic motion.
The fractal dimension (D_f) of the tic time series was determined by analyzing the squared Fourier transform of the density autocorrelation function of the random walkers (S_f) (9), which is given by:

$$S_f = \left| \frac{1}{N} \sum_{i=1}^{N} \exp \left[i (f \cdot \vec{r}_i) \right] \right|^2$$
(Eq. 1)

where \vec{r}_i is the position of the i^{th} walker in t-x space, N is the number of time steps, and f is the frequency (9). Equation 1 is evaluated for each iteration of the random walk model. Specifically, S_f was found by first rotating the trajectory of the walker by an angle (θ), then solving equation 1 for a given frequency. The result of equation 1 is then averaged over 180 values of θ (evenly distributed between 0 and 2π), to give S_f as a function of frequency. The slope of S_f vs. f in log-log space then gives D_f of the tic time series (9).

Figure 1 (right) shows examples of S_f for a tic-driven walker, normal diffusion, and ballistic motion. Ballistic motion and normal diffusion can be respectively quantified by $D_f = 2$ and $D_f = 1$, with tic-modulated walkers having D_f between these. Figure 2a shows that for individual patients, the change in D_f of the tic time series is correlated with change in YGTSS total tic score (TTS) between screening and 12-month visits (p-value=0.03). Total tic score is a traditional clinical measure of tic severity on a scale from 0-50. Given this, D_f of the tic time series can be used to measure tic severity, with more severe tics having $D_f \approx 1$, and less severe tics having $D_f \approx 2$.

Figure 2b demonstrates the effectiveness of various tic suppression methods for the ensemble of patients using the average D_f of the tic-modulated walkers. Figure 2a shows that during screening visits, DRO and verbal conditions were effective suppression techniques, marked by a statistically significant increase in D_f (p-value=1E-7 and 2E-4, respectively). We also find that NCR did not lead to statistically significant changes in D_f when compared to baseline. Twelve months after the onset of tics, we find that DRO and verbal suppression conditions led to statistically significant increases of D_f (p-values=8E-4 and 3E-4, respectively). The key results were confirmed by co-author AVR, who independently recorded tic timing from the video recordings blind to visit or video condition (10). Figure 2c and 2d show that D_f from the two independent raters was highly correlated ($r = 0.71$, $N = 194$ sessions from screening visits).

Discussion

We validate here the hypothesis of fractal timing of tics in TS first reported over 20 years ago (2), and extend that observation for the first time to tics shortly after they appear (Provisional Tic Disorder). We first show that D_f of the tic time series is correlated with traditional clinical measures of tic severity (TTS) (p-value<0.05). The implication of this correlation is that D_f of the tic time series can be used as an objective measure of tic severity. Additionally, we measure for the first time the effect of tic suppression on the temporal dynamics of tic occurrence by quantification of D_f. Using this analytical framework, we further demonstrate that various tic suppression techniques have an effect on this relationship, with increased effectiveness reflected by increased D_f. For the ensemble of patients, DRO and verbal were effective tic suppression conditions during screening and 12-month visits, with DRO being the most effective. We find that all conditions showed increased D_f at 12-month visits compared to screening visits, which may be attributed to the passage of time, with continuing cognitive development and additional practice with environmental tic suppression resulting in improved tic inhibition in the social environment. Finally, we demonstrate inter-rater reliability and confirm key results with a blinded rater.

Future work should be directed to extend the scaling analysis to longer timespans, since qualitatively the temporal dynamics of tics has been observed to maintain self-similarity over months and even years. This method for analyzing the timing of tic occurrence shows promise for documenting or understanding tic-suppression-based behavior therapies for TS (11). We also
speculate that tic timing in patients with functional tics may not follow the chaotic pattern of tics in TS, potentially providing an objective method for differential diagnosis (12).

Materials and Methods

In this work, the timing of tics are first recorded during 5-minute video sessions under 4 conditions: free to tic (baseline), verbal request not to tic (verbal), immediate token rewards for 10-s tic-free periods (differential reinforcement of other, DRO), or tokens given at the same timing as in a previous DRO session regardless of current tic appearance (non-contingent reinforcement, NCR). Video sessions were conducted within the first 6 months after onset of tics (screening visit) and again at the 12-month anniversary of the first tic (12-month visit). Then, we use a one-dimensional random walk model in which the movement direction of walkers is reversed with each tic exhibited by the patient. The random walk model produces trajectories corresponding to each patient, visit, and condition. Further details regarding the random walk model can be found in section S1 of the supporting information.

The clinical methods appear in detail elsewhere (13). Briefly, we recruited children within the first 6 months after onset of tics (screening visit) and again at the 12-month anniversary of the first tic (12 month visit), when all the children still had tics and most met diagnostic criteria for TS (14). At each visit we recorded the timing of tics during 5-minute video recordings under 4 conditions. Author KJB recorded the timing of tics as they occurred, and rewards were delivered using a custom computer program connected to a token dispenser (15). In some participants, the NCR condition was omitted, so that most participants had 30-40 minutes of video at each visit.

All relevant datasets used for this study, including time series of tics can be found in supporting information datasets S1 and S2.

This study was approved by the Washington University Human Research Protection Office (IRB), protocol numbers 201109157 and 201707059. Each child assented and a parent (guardian) gave informed consent.

Acknowledgments

The authors would like to thank Drs. William R. Heinson, David Song, and Pai Liu.

Data Availability

All data and data processing codes are available upon request.
References

Figures

Figure 1.

Figure 1. (left) Fractal pattern in the occurrence of tics, adapted from (8). (center) Trajectory of a tic-modulated random walk (black) is compared with that of normal diffusion (blue) and ballistic motion (red). The position of each walker at time t is normalized by the maximum displacement of the walker from $t = 0$ to $t = 300$, rendering the trajectories of random walk in one-dimensional space as a function of time. (right) Estimation of D_f ($1 < D_f < 2$) for a walker undergoing diffusive motion (blue), ballistic motion (red), and tic-modulated motion (black).
Figure 2.

(a) Change in fractal dimension (D_2) between screening and 12 month visit as a function of change in YGTSS total tic score (TTS). Patients which had decreased TTS between screening and 12 month visits also had increased D_2 of the tic time series.

(b) Comparison of average D_2 for the patients under various suppression conditions during screening visits shows that for the ensemble of patients, DRO led to the most effective tic suppression (largest D_2). Additionally, the fractal dimension of all suppression conditions increased at 12 months (when most patients met diagnostic criteria for TS).

(c-d) Comparison of D_2 for tic time series generated by 2 examiners, with examiner 2 being blind to visit and condition. Good agreement is observed between examiners, verifying inter-rater reliability of results. All error bars show 95% confidence intervals.