Muscle microRNAs in the cerebrospinal fluid predict clinical response to nusinersen therapy in type II and type III spinal muscular atrophy patients

Iddo Magen1,2, Sharon Aharoni3,4, Nancy Sarah Yacovzada1,2, Itay Tokatly Latzer4,5, Christiano R R Alves6, Liora Sagi4,5, Aviva Fattal-Valevski4,5, Kathryn J Swoboda6, Jacob Katz4,7, Elchanan Bruckheimer4,8, Yoram Nevo3,4,* and Eran Hornstein1,2,*

1 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
2 Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
3 Institute of Pediatric Neurology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
4 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
5 Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel.
6 Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
7 Division of Department of Anesthesia, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
8 Cardiology Institute, Schneider Children's Medical Center of Israel, Petach Tikva, Israel

$ Equal contribution

* To whom correspondence should be addressed:
yoramne@clalit.org.il or eran.hornstein@weizmann.ac.il
Abstract

Objective: The antisense oligonucleotide nusinersen (spinraza) regulates splicing of the survival motor neuron 2 (SMN2) messenger RNA to increase survival motor neuron (SMN) protein expression and has improved ventilator free survival and motor function outcomes in infantile onset forms of SMA, treated early in the course of the disease. However, the response in later onset forms of SMA is highly variable and dependent on symptom severity and disease duration at treatment initiation. Therefore, we aimed to identify novel noninvasive biomarkers that could predict the response to nusinersen in type II and III SMA patients.

Methods: This is a multi-center longitudinal cohort study including a total of 34 type II or III SMA patients. We applied unbiased next-generation sequencing to identify cell-free microRNAs in the cerebrospinal fluid (CSF) as candidate biomarkers to predict response to nusinersen. Motor function, assessed by the Hammersmith Functional Motor Scale Expanded (HFMSE), was considered the primary clinical outcome. HFMSE was conducted at baseline and 6 months post initiation of nusinersen therapy. Patients with an improvement ≥ 3 points or no change or decline < 0 points in the HFMSE total score were considered to be responders or non-responders, respectively.

Results: Lower baseline levels of two muscle microRNAs (miR-206 and miR-133), alone or in combination, were associated with the pre-determined clinical response to nusinersen after 6 months therapy. Moreover, miR-206 levels were inversely correlated with the HFMSE score.

Conclusions: Lower miR-206 and miR-133 in the CSF predict more robust clinical response to nusinersen treatment in later onset SMA patients. These novel findings have high clinical relevance for identifying early treatment response to nusinersen in later onset SMA patients and call to test the ability of miRNAs to predict more sustained long-term benefit.
Introduction

Spinal muscular atrophy (SMA) is a genetic pediatric disease with an incidence of ~1/11,000 live births, and a carrier frequency of ~1/40\(^1\),\(^2\). SMA is characterized by muscle weakness and atrophy, resulting from progressive degeneration of lower motor neurons in the spinal cord and the brain stem nuclei. Historically, SMA subtype classification is based on age of onset and the maximum motor abilities achieved. SMA type I patients have onset in early infancy and never sit. SMA type II patients have later infantile onset but never walk. SMA type III patients have more variable childhood onset, and achieve the ability to walk\(^3\). The cause of SMA are homozygous deletion or compound heterozygous mutation involving exon 7 of the Survival Motor Neuron 1 (SMN1) gene. However, SMN1 has a paralogous gene named SMN2, which undergoes alternative splicing, including the removal of exon 7, and produces ~10% functional SMN protein\(^4\),\(^5\). Therefore, the number of SMN2 copies correlates with phenotypic severity and is the main genetic disease modifier\(^6\)\(^-\)\(^8\).

Nusinersen was the first drug approved by the US Food and Drug Administration (FDA) to precisely treat SMA. The drug is a synthetic antisense oligonucleotide that modulates pre-messenger RNA splicing of the SMN2 gene. Despite the advance of novel molecular and gene therapies for SMA, nusinersen remains to this day the most widely used and available SMA disease-modifying therapy. Nusinersen has been proven efficient in young type I SMA patients, and it is dramatically changing the natural history of this disease\(^9\),\(^10\). However, the degree of response in subjects with later-onset forms of SMA (type II and III) is highly dependent on age of treatment, time from symptom onset and severity of denervation. Therefore, better understanding of the variable treatment response in this population is important and novel biomarkers to predict treatment response to nusinersen in type II or type III SMA subjects are critical.

A main interest of our group has been to investigate the profile of microRNAs (miRNAs) in the disease context, since several endogenous non-coding RNAs are highly expressed in both neuronal and muscular tissues. Previous evidence indicates that some miRNAs are essential for motor neuron survival, and low expression levels have been demonstrated in motor neurons from an SMA mouse model and in postmortem neuronal tissues from patients with another motor neuron disease, amyotrophic lateral sclerosis (ALS)\(^11\)\(^-\)\(^13\). Moreover, miRNAs known as myomiRs, such as miR-1/133a/133b/206, are mainly expressed in the skeletal muscle, where they are thought to play an important role in myoblast proliferation and differentiation\(^14\),\(^15\). Recent studies have demonstrated that the expression of myomiRs can be detected and differentially expressed in biofluids from ALS patients...
when compared to healthy controls16-18, suggesting a potential role of these molecules in the early diagnosis of the disease. In addition, serum myomiRs are in correlation with the response to ongoing therapy in SMA type II and III19. However, a prospective study that identifies responders to Nusinersen therapy, based on a basal, pre-treatment, molecular profile, was not yet reported.

On the basis of understanding the miRNA role in motor neuron diseases11-13 and potential discovery of novel biomarkers20-22, we sought to test the utility of specific miRNAs in the cerebrospinal fluid (CSF) as candidate molecules to predict a positive clinical response to nusinersen in type II/III SMA patients. We applied for the first time an unbiased next-generation sequencing to investigate the potential of cell-free microRNAs in the CSF of SMA patients receiving nusinersen therapy. Our novel findings indicate that the muscle miRNAs miR-206 and miR-133 are associated with the response to nusinersen treatment and, therefore, have the potential to help predict, when combined with other indicators, whether or not a given SMA patient is more or less likely to show an early response.

\textbf{Materials and Methods}

\textbf{Subjects, Ethics and Motor Function.} This study includes a cohort of 45 type II or type III SMA patients, that were recruited between November 2016 and July 2019 in three different medical centers: Schneider Children’s Medical Center of Israel (Israel, n=13), Dana-Dwek Children’s Hospital, Tel Aviv Medical Center (Israel, n=20) and Massachusetts General Hospital (MA, US, n=12). Approval for the study was provided by local ethical committees (Schneider Medical Center: RMC-0060-18; Tel Aviv Medical Center: 0347-18-TLV; Massachusetts General Hospital MGH #2016P000469), and it was conducted in accordance with the International Conference on Harmonization guidelines for Good Clinical Practice and the World Medical Association Declaration of Helsinki. Written informed parental consent were obtained from all participants. Nusinersen was administered on days 1, 15, 29, and 64 for the loading phase, followed by an additional maintenance dose after 4 additional months from the loading phase. Baseline demographic and clinical data were collected. Motor function was assessed at each visit by a physical therapist with SMA clinical trial training23 using Hammersmith Functional Motor Scale Expanded (HFMSE)24. CSF samples were collected on day 1 and 183 right before the nusinersen injection in each day and were stored frozen at \(-80^\circ\text{C}\).

\textbf{Inclusion and exclusion criteria.} All 45 patients had a genetic diagnosis for SMA, and were followed up to this point. They were included in the study after verifying that for both day 1 and day 183, they had non-hemolyzed CSF samples and record of their HFMSE score.
An improvement at the HFMSE final score ≥ 3 points was considered clinically significant25, 26 and patients with such an improvement were considered as ‘responders’, while those with a change of HFMSE final score ≤ 0 were considered as ‘non-responders’. Samples from 11 patients with an indefinite clinical response to nusinersen (HFMSE improvement of 1 or 2 points) were processed, but were later excluded from further analysis, arriving a final study size of 34 patients. Based on power analysis calculations, we found that this number was sufficient to obtain an effect size of 3 for change in miRNA level with a power of 95% and a p-value of 0.01.

Small RNA Next Generation Sequencing. Total RNA was extracted from CSF using the miRNeasy micro kit (Qiagen, Hilden, Germany) and quantified with Qubit fluorometer using RNA broad range (BR) assay kit (Thermo Fisher Scientific, Waltham, MA). For small RNA next generation sequencing (RNA-seq), libraries were prepared from 7.5 ng of total RNA using the QIAseq miRNA Library Kit and QIAseq miRNA NGS 48 Index IL (Qiagen), by an experimenter who was blinded to the identity of samples. Samples were randomly allocated to library preparation and sequencing in batches. Precise linear quantification of miRNA is achieved by using unique molecular identifiers (UMIs), of random 12-nucleotide after 3’ and 5’ adapter ligation, within the reverse transcription primers20. cDNA libraries were amplified by PCR for 22 cycles, with a 3’ primer that includes a 6-nucleotide unique index, followed by on-bead size selection and cleaning. Library concentration was determined with Qubit fluorometer (dsDNA high sensitivity assay kit; Thermo Fisher Scientific, Waltham, MA) and library size with Tapestation D1000 (Agilent). Libraries with different indices were multiplexed and sequenced on NextSeq 500/550 v2 flow cell or Novaseq SP100 (Illumina), with 75bp single read and 6bp index read. Fastq files were de-multiplexed using the user-friendly transcriptome analysis pipeline (UTAP)27. Human miRNAs, as defined by miRBase28, were mapped using Geneglobe Data Analysis Center (Qiagen).

Statistical analysis. As many as 2530 individual miRNA species were aligned to the human genome (GRCh37/hg19) across all samples. miRNAs with ≤ 100 UMIs on average across all samples were excluded from analysis. Sequencing data were normalized with DESeq2 package29 under the assumption that miRNA counts followed negative binomial distribution and data were corrected for the library preparation batch in order to reduce its potential bias. Fold-change values in miRNA abundance between responders and non-responders were calculated as the ratio of normalized counts in responders (\textit{i.e.} patients exhibiting meaningful clinical improvement) to the normalized counts in the
non-responders (patients exhibiting lack of clinical improvement), and transformed to log base 2. Statistical significance was determined using the Wald test.

Feature scaling to the range of [0-1] was further done for DESeq2 normalized counts of miR-133a and miR-206 by applying min-max scaling, whereby the scaled value \((x') \) is calculated by subtracting the minimum value of each feature \([\min(x)]\) from each individual observation \(x\), and further divided by the difference between the maximum and the minimum value \([\max(x) – \min(x)]\), as shown below:

\[
x' = \frac{x - \min(x)}{\max(x) - \min(x)}
\]

Scaled values were then summed to generate a devised feature termed miR-133a/206.

Correlation between miRNA levels and the clinical improvement in HFMSE score (HFMSE score post treatment – HFMSE score pretreatment) was calculated by both linear regression, wherein the improvement is a numerical value, and logistic regression, wherein the improvement is binarized into “failure” (HFMSE score change ≤ 0 between post and pretreatment) and “success” (HFMSE score change ≥ 3 between post and pretreatment). Logistic regression was performed with the aod and ggplot2 packages in R, either for a single explanatory variable (either one miRNA gene or a feature combined of two miRNAs) or as multinomial regression with multiple explanatory variables (a combination of different miRNAs or miRNAs and clinical features). The fitted logistic regression model is an exponential model from which predicted probabilities of “success” can be calculated based on values of the explanatory variable(s). Exponential equations for all models are available in supplementary table 1. Two values are derived from the logistic regression model: Chi-square (\(\chi^2 \)), which expresses the goodness of fit for the whole model and Akaike's information criterion (AIC)\(^3\), an estimation of the model prediction error. Statistical significance was determined for Spearman rho and chi-square values, with p-values < 0.05 being considered statistically significant.

Leave-one-out-cross-validation was performed on the logistic regression model, whereby model learning was done in n-1 samples out of the total n, and tested on the leave-one-out sample, yielding a predicted success probability for each sample. This procedure was repeated n times. Receiver operating characteristic (ROC) curves were generated by plotting true positive rates (sensitivity), i.e. percentage of patients classified as responders, out of the total number of responders, against false positive rates (100% - specificity), i.e. percentage of patients classified as responders, out of the total number of non-responders, when each predicted success probability value is taken as a cut-off for binary classification. Area under the curve (AUC) and its respective P-value were calculated for ROC
curves, given null hypothesis of AUC = 0.5. Graphs were generated with Prism 5 (GraphPad Software, San Diego, California, USA).

Results

Next-Generation Sequencing Analysis in the CSF of SMA Patients Treated with Nusinersen

We sought to explore miRNAs expressed in the CSF as potential biomarkers for monitoring response to nusinersen and to help determine, prior to treatment initiation, whether a patient was more or less likely to respond to the therapy. We used next generation sequencing to investigate, without an a priori bias, the comprehensive landscape of CSF miRNAs in 34 type II and type III SMA patients with documented demographic and clinical information available (Table 1). We analyzed RNA-seq data from CSF samples collected before treatment and analyzed these data in context of clinical response 6 months after initiation of nusinersen treatment. Data from additional 11 patients with HFMSE change of a single or two units (1,2) were excluded.

After next generation sequencing, 2530 miRNA were annotated to the genome. Only 68 miRNA species exceeded a cut-off of ≥100 unique molecular identifier (UMI) counts per sample, averaged on all samples. 17 out of the 68 miRNAs changed post-treatment relative to pre-treatment (p-value < 0.05, Wald test; Figure S1). Two miRNAs, miR-5694-5p and miR-3613-3p increased x 1.4-fold and miR-1-5p decreased by 1.6-fold. These data suggest that only minor effects were observed on miRNA profile after 6 months of nusinersen therapy.

Baseline miR-206 / miR-103 Levels Predict Beneficial Response to Nusinersen Therapy

The clinical response to nusinersen therapy is heterogeneous. We tested whether the miRNA profile at baseline would be different between patients that clinically responded to nusinersen therapy and those that poorly responded. Responders (N=13) were defined as those demonstrating an increase of ≥3 points in the Hammersmith Functional Motor Scale Expanded (HFMSE) total score following six months of nusinersen treatment, whereas non-responders (N=21) were defined as those with no improvement or deterioration (≤0 points).

In responders’ CSF, two miRNAs changed in a significant manner relative to non-responders: miR-103b increased by 2.6-fold (Wald test: p = 0.002, Figure 1), and miR-206 decreased by 1.8-fold (p = 0.048). During these analyses, we noticed that similar to the downregulated miR-206 levels, other miRNAs that are known to be expressed mainly in the skeletal muscle (i.e. myomiRs) were relatively
low in CSF of responders, including the miR-1-3p, miR-133a-3p and miR-133b, with 1.4-fold, 1.6-fold, and 2.2-fold, respectively.

The levels of miR-206 were negatively correlated with clinical improvement, quantified as the change in the HFMSE final score (Spearman rho = -0.43, 95% CI: -0.67 to -0.09, p = 0.01, Figure 2A). In addition, an orthogonal logistic regression model supported that miR-206 levels correlated with clinical response to nusinersen therapy ($\chi^2 = 7$, p = 0.008, Akaike’s information criterion (AIC) = 42.2, Figure 2B).

We next sought to validate the model on newly introduced data. We trained a machine learning procedure on 33 samples and tested the prediction on the single sample that was left out. The ‘leave one out cross validation’ (LOOCV) procedure, was reiterated 34 times. This analysis reveals that miR-206 predicts response more than can be expected at random (area under the receiver operating characteristic curve (ROC AUC) = 0.7, 95% CI: 0.51 – 0.88, p-value 0.06, Figure S2). None of the other myomiRs (miR-1-3p, miR-133a-3p or miR-133b, Figure S3) displayed a significant correlation with response to therapy. However, miR-103b levels correlated to the change in HFMSE score after therapy (Figure S4). Taken together, these data suggest that myomiRs predict the response to nusinersen therapy, and the miR-206 levels at baseline may predict the response to the nusinersen therapy.

Multi-Feature Classifiers of Response to Nusinersen Therapy

We next considered simultaneously more than a single miRNA. The correlation of miR-206 and miR-133a-3p to clinical improvement and classification, when both are considered explanatory variables with weighted contributions to the model (multinomial logistic regression, equation available in supplementary table 1), was higher than when miR-206 was considered as a single feature ($\chi^2 = 9$, p = 0.01, AIC = 42.1; ROC AUC 0.74, 95% CI: 0.55 – 0.92, p = 0.022, Figure 3A). None of the other miRNAs (miR-1-3p, miR-103b or miR-133b) displayed an improved prediction capacity when added on to miR-206 (Figure S5A-C). Thus, a feature composed of miR-206 and miR-133a-3p levels has an improved prediction capacity for nusinersen therapy response. Adding SMA type (III vs II) improved the correlation even further ($<$miR-206 + miR-133a-3p + SMA type$>$, $\chi^2 = 12$, p = 0.007, AIC = 41.35). We preserved the prediction capacity also by performing leave one out cross validation (LOOCV) (AUC = 0.73, 95% CI: p = 0.024, Figure 3B). Input about patient sex further improved prediction ($<$miR-206 + miR-133a-3p + SMA type+sex$>$, $\chi^2 = 14.5$, p = 0.006, AIC = 40.7; ROC AUC = 0.76, 95 CI%: 0.56 – 0.95, p = 0.01, Figure 3C), with males being less likely to respond to therapy.
Patient age did not improve prediction ($\chi^2 = 14.9$, $p = 0.01$, AIC = 42.4; ROC AUC = 0.7, 95% CI: 0.475 – 0.925, $p > 0.05$).

In addition to the multinomial regression of miR-133a and miR-206, we also devised a feature by normalization of the miRNA values by min-max scaling and summation of the scaled values. The new predictor, miR-133a/206, displays a χ^2 of 9 ($p = 0.003$, Figure 4A), with a drop in predicted model errors relative to when miR-133a-3p and miR-206 are independently considered (AIC 40.2 vs. 42.1, respectively). The single standardized feature, miR-133a/206, displays ROC AUC of 0.74 (95% CI: 0.55 – 0.92, $p = 0.02$, Figure 4B) and information about SMA type (II or III based on clinical manifestation) and sex further improved correlation to clinical response and predictive capacity ($\chi^2 = 14.5$, $p = 0.002$, AIC = 38.8; ROC AUC = 0.784, 95% CI: 0.6 – 0.97, $p = 0.006$, Figure 4C). In summary, two miRNA in the CSF are able to predict response to nusinersen therapy in SMA type II and III patients and may be useful for pre-treatment clinical decisions.
Discussion

Given the expanding treatment options available for motor neuron diseases, the discovery of novel biomarkers to help track disease progression and therapeutic response is urgent. Here, we report novel findings derived from the first screening for small RNAs in the CSF of type II/III SMA patients treated with nusinersen. These data demonstrate that baseline levels of the myomiRs miR-133a-3p and miR-206 are associated with the response to nusinersen therapy, suggesting that these myomiRs could play an important role in the clinical setting to help identify those patients most likely to demonstrate a more robust response to nusinersen therapy. In presenting these data, we hope to encourage incorporation of examination of CSF levels of miR-133a-3p and miR-206 as well as other myomiRs in longitudinal follow-up across cohorts of SMA patients receiving nusinersen or other novel therapies to help validate the current findings.

Identifying biomarkers to track SMA progression and the response to molecular therapies is an important focus of our group and others. We have previously demonstrated the usefulness of electrophysiologic measures of peripheral denervation to track peripheral motor unit integrity. Circulating SMN protein levels is a candidate biomarker for monitoring SMA disease progression, although changes in peripheral SMN levels are not expected with at least two of the three currently FDA-approved therapies. CSF and plasma neurofilaments are markers of neuronal damage and have been identified as a potential treatment responsive biomarker in SMA and other neurodegenerative diseases, but baseline CSF or circulating neurofilament levels do not seem to necessarily predict treatment response. With 3 FDA-approved therapies and the anticipation of additional emerging treatments for SMA, comprehensive longitudinal cohort studies remain critically necessary to identify useful biomarkers that could predict the response to individual therapies.

One striking finding from our observations here is that myomiR levels were detected in the CSF and that CSF levels decreased in SMA patients that responded to nusinersen, when compared to those who presented a limited response. Although the myomiRs discussed here were identified via an unbiased screening approach in CSF, our data corroborate recent findings demonstrating that serum myomiRs levels are readouts of nusinersen response in SMA. We propose a model, whereby the presence of myomiRs in SMA CSF could be indicating blood-CSF barrier or blood-spinal cord disruption, enabling the entrance of miRNAs that are derived from breakdown of muscle cells in the setting of acute denervation. Thus, lower myomiR levels prior to treatment with nusinersen, which predicts
those with a better response, could reflect either reduced muscle cell breakdown and/or blood to CSF barrier integrity or both.

We previously demonstrated that serum creatinine, a product of skeletal muscle creatine metabolism, was also identified as a candidate biomarker to track SMA disease progression\(^{42}\), and that creatinine maybe a sensitive predictor for the onset of denervation in infants with 3 \(\text{SMN2}\) copies\(^{42}\). Similarly, circulating creatine kinase (CK) levels correlate with SMA severity and decreased during nusinersen therapy\(^{43}\). Therefore, in the future creatine capacity to predict response to Nusinersen therapy may be tested by protein biomarkers, on their own, or in combination with miRNAs, such as miR-206/133a-3p.

In summary, the current study demonstrates that the levels of muscle microRNAs miR-206 and miR-133 in CSF can predict the clinical response to nusinersen treatment in SMA patients. These novel findings have high clinical relevance and may prove useful in helping to design appropriate protocols intended to refine and improve treatment outcomes.

Disclosures

CRRA and KJS are inventors on a patent filed by Mass General Brigham that describes genome-engineering technologies to treat SMA. KJS has received clinical trial funding from AveXis/Novartis and Biogen. She has received speaker fees from Biogen and has served on scientific advisory boards for AveXis, Biogen, Roche/Genentech.

SA has received clinical trial funding from AveXis/Novartis Gene Therapies and Biogen and has served on scientific advisory boards for AveXis/Novartis Gene Therapies.

Acknowledgments

EH is the Mondry Family Professorial Chair and Head of the Nella and Leon Benoziyo Center for Neurological Diseases. Research at Hornstein lab is supported by CReATE consortium and ALSA (program: ‘Prognostic value of miRNAs in biofluids from ALS patients’), RADALA Foundation; AFM Telethon (20576); Weizmann - Brazil Center for Research on Neurodegeneration at Weizmann Institute of Science; the Minerva Foundation with funding from the Federal German Ministry for Education and Research, ISF Legacy Heritage Fund 828/17; Israel Science Foundation 135/16; 392/21; 393/21; 3497/21. Target ALS 118945; Thierry Latran Foundation for ALS Research. the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–
2013)/ERC grant agreement number 617351; ERA-Net for Research Programmes on Rare Diseases (eRARE FP7) via Israel Ministry of Health; Dr. Sydney Brenner and friends, Edward and Janie Moravitz, A. Alfred Taubman through IsrALS, Yeda-Sela, Yeda-CEO, Israel Ministry of Trade and Industry; Y. Leon Benoziyo Institute for Molecular Medicine, Kekst Family Institute for Medical Genetics; David and Fela Shapell Family Center for Genetic Disorders Research; Crown Human Genome Center; Nathan, Shirley, Philip and Charlene Vener New Scientist Fund; Julius and Ray Charlestein Foundation; Fraida Foundation; Wolfson Family Charitable Trust; Adelis Foundation; Merck (United Kingdom); M. Halphen; and Estates of F. Sherr, L. Asseof, L. Fulop. NSY was supported by the Israeli Council for Higher Education (CHE) via the Weizmann Data Science Research Center. IM was supported by Teva Pharmaceutical Industries Ltd. as part of the Israeli National Network of Excellence in Neuroscience (NNE, fellowship 117941).

CRRA was funded by MGH Executive Committee on Research. KJS was funded by NIH NICHD R01HD054599, NIH NINDS R21NS108015, Biogen, AveXis and Cure SMA. We are grateful to all the patients and families who participated in this study.
References

Figure legend

Figure 1. Pre-treatment miRNA signature associates with the response to nusinersen treatment. MA plot of differential miRNA expression in responders (N=13, patients with HFMSE change ≥3 after 6 months of treatment) versus non-responders (N=21, HFMSE change ≤0). Data from additional 11 patients with HFMSE change of a single or two units (1,2) were excluded. Log 2 transformed fold change (y-axis), against mean miRNA abundance (x-axis). Red: significantly changed miRNAs (p<0.05, Wald test). Higher miR-103b levels and lower muscle enriched miRNA miR-1-3p, miR-133a/b and miR-206 levels are observed in prospective nusinersen responders.

Figure 2. miR-206 levels are associated with clinical improvement of SMA patients following 6-month nusinersen treatment. (A) Negative correlation of miR-206 levels with response to nusinersen therapy (as post-treatment – pre-treatment HFMSE score difference, Spearman rho = -0.43, p=0.01) number of patients. (B) Logistic regression of baseline miR-206 levels on clinical dichotomized response to therapy: responders (N=13, HFMSE change ≥3 after 6 months of treatment) versus non-responders (N=21, HFMSE change ≤0). Statistical significance of the logistic regression model goodness of fit was assessed by the chi-square test. AIC, Akaike’s information criterion.

Figure 3. A predictor, based on miR-133a and miR-206 predicts response to nusinersen. ROC curves (A) miR-133a-3p + miR-206 (B) miR-133a-3p + miR-206 + SMA type (C) miR-133a-3p + miR-206 + SMA type + sex with leave one out cross validation. (D) A summary of logistic regression parameters for three multiple feature models.

Figure 4. A predictor, based on a summation of the scaled values of miR-133a and miR-206 predicts response to nusinersen. (A) Logistic regression analysis of miR-133a/206 at baseline and clinical response to therapy after 6 months of nusinersen treatment. ROC curves based on LOOCV for (B) miR-133a/206 and (C) miR-133a/206 with SMA type and sex. (D) A summary of logistic regression parameters for two models.
Supplementary Figure 1. CSF miRNA signature after nusinersen treatment vs pre-treatment in the same patients. MA plot showing, in the X-axis, miRNA levels averaged across CSF samples collected from 34 patients at both baseline (pre-treatment) and after 6 months of nusinersen treatment (68 samples in total). Y-axis, miRNA levels after treatment versus pre-treatment (log 2 of fold difference). Each dot represents a single miRNA gene. Dots above/below the horizontal dashed line are miRNAs with higher/lower levels post-treatment. Red dots represent miRNAs with p-value <0.05 (unadjusted).

Supplementary Figure 2. Receiver operating characteristic (ROC) curve based on miR-206 logistic regression and leave-one-out cross validation (LOOCV). True positive rate (sensitivity, y-axis) against false positive rate (100%-specificity, x-axis). Values of predicted success probability in each patient, as a cut-off for binary classification.

Supplementary Figure 3. Association of myomiRs with clinical improvement of SMA patients during nusinersen treatment. Spearman correlation of baseline miR-1-3p (A), miR-133a-3p (B) and miR-133b (C) with the difference in HFMSE score following nusinersen. Logistic regression analysis of baseline miR-1-3p (D), miR-133a-3p (E) and miR-133b (F) levels on clinical response, after 6 months of nusinersen treatment. ROC curves based on LOOCV for miR-1-3p (G), miR-133a-3p (H) and miR-133b (I).

Supplementary Figure 4. Increased miR-103b in the CSF modestly predicts clinical improvement of SMA patients during nusinersen treatment. (A) miR-103b levels at baseline exhibit a positive and significant correlation (Spearman rho = 0.39, p=0.02) with the difference in HFMSE score following nusinersen. (B) Logistic regression analysis of miR-103b levels at baseline and clinical response to therapy after 6 months of nusinersen treatment. (C) ROC curve based on LOOCV for the logistic regression model.

Supplementary figure 5. ROC curves for models of (A) miR-206 + miR-103b (B) miR-206 + miR-133b and (C) miR-206 + miR-1-3p.
<table>
<thead>
<tr>
<th>Cohort origin</th>
<th>N (% females)</th>
<th>Type (II/III)</th>
<th>Median age at treatment initiation in years (range)</th>
<th>N (% females)</th>
<th>Type (II/III)</th>
<th>Median age at treatment initiation in years (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schneider Medical Center</td>
<td>13 (69%)</td>
<td>7/6</td>
<td>11.0 (2.3 – 19.0)</td>
<td>7 (100%)</td>
<td>4/3</td>
<td>6.4 (2.9 – 17.3)</td>
</tr>
<tr>
<td>Tel Aviv Medical Center</td>
<td>20 (55%)</td>
<td>9/11</td>
<td>11.7 (1.7 - 24.4)</td>
<td>17 (59%)</td>
<td>8/9</td>
<td>11.1 (1.7 - 24.4)</td>
</tr>
<tr>
<td>Massachusetts General Hospital</td>
<td>12 (42%)</td>
<td>5/7</td>
<td>7.5 (2.1 - 56.6)</td>
<td>10 (40%)</td>
<td>4/6</td>
<td>11.1 (2.1 - 56.6)</td>
</tr>
<tr>
<td>Total</td>
<td>45 (55%)</td>
<td>21/24</td>
<td>11.0 (1.7 - 56.6)</td>
<td>34 (53%)</td>
<td>16/18</td>
<td>11.0 (1.7 - 56.6)</td>
</tr>
</tbody>
</table>

Table 1. Gender, age, SMA type and SMN2 copy number distribution for each cohort. 11 patients (6 from Schneider, 3 from Tel Aviv and 2 from MGH) whose change in HFMSE score between after 6 months of treatment was 1 or 2 were excluded from analysis.
Figure 2

A. Linear regression miR-206

\[\rho = -0.43, \ p = 0.01 \]

B. Logistic regression miR-206

\[\chi^2 = 7, \ p = 0.008, \ AIC = 42.2 \]
Figure 4

A. Logistic regression miR-133a/206

B. LOOCV miR-133a/206

AUC = 0.74, p = 0.02

C. miR-133a/206 + SMA type + sex

AUC = 0.784, p = 0.006

D. Model comparison

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2</th>
<th>p-value</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-133a/206</td>
<td>9</td>
<td>0.003</td>
<td>40.2</td>
</tr>
<tr>
<td>miR-133a/206 + SMA type + sex</td>
<td>14.5</td>
<td>0.002</td>
<td>38.8</td>
</tr>
</tbody>
</table>