Covid-19 Associated Hepatitis in Children (CACH) during the second wave of SARS-CoV-2 infections in Central India: Is it a complication or transient phenomenon.

Sumit Kumar Rawat¹ MD, Ajit Anand Asati¹ MD, Ashish Jain¹ MD, R K Rathi² MD

1. Bundelkhand Medical College Sagar, Madhya Pradesh, India.
2. Post Graduate Institute of medical Sciences, Chandigarh, India

Grant support: NA

Key words: Hepatitis, Covid-19, SARS-CoV-2, Pediatric

Conflict of interest- There is no conflicts of interest among the authors. All the authors have nothing to disclose in this manuscript.

Abstract

Background: Besides Covid-19, SARS-CoV-2 infection has been associated with Multiple Inflammatory Syndrome in children (MIS-C). However, a unique presentation of a transient form of hepatitis in pediatric age group occurring subsequent to the asymptomatic SARS-CoV-2 infection is yet to be reported in children. Presently the clinical work, temporal association and characteristics different than MIS-C, of the cases of CAHC is being dealt with.

Methods: As a retrospective and follow up observational study we reviewed all pediatric patients presenting with acute hepatitis during the study period from April 2021 to mid-June 2021. We observed a sudden rise of features of hepatitis in a group of pediatric patients during the second wave of SARS CoV-2 infections, where “children or adolescents developing sudden onset acute hepatitis with no history of pre-existing liver disease in the absence of familiar etiology of acute hepatitis and with a recent 3-6 week history of RT-PCR positivity or a retrospectively proven Covid-19 infection with high titer SARS CoV-2 antibodies”. Such patients had asymptomatic Covid-19 infection, while another very small group (n=8) patients having findings similar to MIS-C was identified with protracted and grave presentation, having multiple organ involvement along
with Covid-19 diagnosis. Routine lab workup along with viral serology of acute hepatitis was performed in all such patients. These patients were negative for Hepatitis A, B, C and E but had high titer of SARS CoV-2 antibodies.

Results: Among 33 patients who presented with hepatitis, 25 patients showed unique features of CAHC, they had hepatitis only. These patients did not have any typical Covid-19 symptoms, had normal to borderline inflammatory markers, with admission to general care wards, all recovered on supportive treatment without any complications or mortality. Whereas patients with MIS-C (n=8) required admission to critical care, they had high level of inflammatory markers and 3 (37.5%) had an adverse outcome.

Conclusion: With emergence of newer variants of concern such as the Delta variant which caused the massive wave of Covid-19 in India, with varied presentations, CAHC is one of them. Such new entities need to be timely identified and differentiated from other types of emerging syndromes in children for appropriate management.

Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the causing of ongoing pandemic, was first identified in China in late 2019, with its subsequent epicenters recognized in Western countries, thereafter the first wave of infections in India (1). Initial reports of SARS-CoV-2 infection indicated that young children were disproportionately spared from infection, this age group had been reported to have predominantly asymptomatic or mild disease (2). However, it didn’t persist for long, where a novel syndrome of “multisystem inflammatory syndrome in children” (MIS-C) with likely relation to SARS-CoV-2 infection was first described (3). In children and adolescents in mid-2020 the following features had been observed in patients of MIS-C: “serious illness leading to hospitalization, an age of less than 21 years, fever (body temperature, >38.0°C) or report of subjective fever lasting at least 24 hours, laboratory evidence of inflammation, multisystem organ involvement (i.e., involving at least two systems), and laboratory-confirmed SARS-CoV-2 infection (positive SARS-CoV-2 real-time reverse-transcriptase polymerase chain reaction [RT-PCR] or antibody test during hospitalization) or an epidemiologic link to a person with Covid-19” (4).
In September 2020, Covid-19 induced hepatitis (CIH) was coined to describe “benign new transient hepatitis in a SARS-CoV-2 patients which is characterized by the following; Gradual onset, elevated AST and ALT, dilated sinusoids with lymphocytic infiltration of liver parenchyma, non-obstructive jaundice, stable underlying liver disease and no radiological new hepatobiliary changes”(5). Similar to the reports from the west, the first wave of SARS-CoV-2 pandemic that lasted till November 2020 causing a large number of infections across India, but it did not cause any serious disease in children (6). However, in contrast the ongoing massive second wave of Covid-19, that started in April 2021 in India (7), serious concerns about children being affected became true. Newer variants of concern like the delta (B.1.116.2) variant which has now spread to more than 60 countries, were largely responsible for this massive upsurge in Covid-19 cases (8). Besides such newer variants bringing changes in disease presentations, they also led to rise in reports of not only respiratory disease in children but number of MIS-C cases (9).

Among adult patients of Covid-19, signs of liver injury are known to occur in 15-78% of cases(10), on the other hand among MIS-C cases hepatic injury has been reported in around 60% of cases (9). Although different phenotypes of liver injury have been proposed based on the presence/absence of pre-existing liver disease in Covid-19, any different presentations of liver injury have not been described in adults (11). Whereas a recent study documented two different phenotypes of liver injury were associated with SARS-CoV2 infection in children (12). To our knowledge, none of the published studies and reports took a detailed account of such incidences of post Covid-19 hepatitis in pediatric or adolescent age group, as in CAHC. This unique entity has been noticed by us, only during the ongoing second wave of SARS-CoV-2 infections.

We need to be on the toes to watch any new presentations during or after the disease, which will help the medical fraternity to help take timely decisions and prevent the avoidable morbidity and mortality. Once we noticed a sudden rise in cases of hepatitis among children, typically setting in after a 2-week or more interval post Covid-19 during the ongoing second wave of SARS-CoV-2 infections, the study was planned to correctly identify the cases, to differentiate from the other entities, and to find out its temporal relation with COVID-19 infections.
Methods

Patients and Study Design: It was a retrospective and follow up observational study of children presented with acute hepatitis during April 2021 to Mid-June 2021 at a tertiary care institute in Sagar, which is a dedicated Covid-19 (500 beds) center for the entire region as shown in figure 1. During the study period we screened a total of 5539 pediatric patients in Sagar district (Central India) by Indian Council of Medical research (ICMR) recommended RT-PCR assay (13), among whom 469 children within 14 years were found to be positive for Covid-19. As per existing protocols, all the positive cases, their family members and contacts (including these children) were monitored through central control command telemedicine centre from the Sagar smart city control room (14). Children presented with serious symptoms including hepatitis, during post Covid illness were referred to our associated hospital and admitted on requirement. A record review for all such patients was performed and follow up information was gathered from the control command center and from the hospital helpdesk center which has been looking up after the follow up of all hospitalized patients during the second wave of the pandemic in Sagar district. The outline of the procedures has been shown in figure 2.

Inclusion criteria: Children presented with clinical features and laboratory findings (elevated transaminases) suggestive of acute hepatitis during post Covid-19 were enrolled in the study for further evaluation. Based on temporal association in relation to Covid-19, disease severity and presence or absence of multi system involvement we could differentiate these hepatitis patients into two entirely different categories

1) Covid-19 associated hepatitis in children (CAHC): Those who presented with transient self-limiting acute hepatitis post 2 or more weeks of Covid-19 or a history of contact with laboratory confirmed Covid-19 case and presented without involvement of any other organ system, we refer here as CAHC. We defined CAHC as “New transient hepatitis in a pediatric patient with sudden onset raised transaminases, non-obstructive jaundice, no history of underlying liver disease, negative for evidence of other known causes of acute hepatitis and with a laboratory evidence of recent Covid-19”. These patients developed hepatitis after
a period of 2 or more weeks from testing RT-PCR positive or they had been a close contact of a RT-PCR confirmed case of Covid-19 for the same duration and were admitted to general care wards. They did not have signs of any other obvious systemic disease, with normal to borderline inflammatory markers ≤ 2X upper limit of normal (ULN) and majority had turned RT-PCR negative for Covid-19 at the time of presentation.

2) MIS-C: Patients presenting with acute hepatitis i.e. elevated transaminases and falling within CDC case definitions of MIS-C (15). They presented within 2-3 weeks of testing positive by RT-PCR with admission to critical care wards. In contrast to CAHC, cases classified in this group had protracted grave illness with moderate to severe symptoms of Covid-19, high inflammatory markers >2X ULN and multi system involvement.

Exclusion criteria: Those patients who had evidence of pre-existing liver disease, drug induced liver injury (DILI) or those who were positive for other known causes of acute hepatitis were excluded from the study.

Laboratory work up: SARS-CoV-2 RT-PCR was done at the ICMR recognized Virology research and diagnostic laboratory (VRDL) of our institute with established protocols and results were recorded on the national portal. All patients presenting with hepatitis were thoroughly evaluated at our institute as per the standard protocols including complete blood counts, liver function tests, renal function tests, serum ferritin, CRP, D Dimer, LDH, myocardial enzymes, procalcitonin and a repeat RT-PCR for Covid-19. All these Blood investigations were carried out at the Central clinical lab in the dedicated Covid-19 hospital of our institute. Those children with signs of acute hepatitis were further evaluated with additional tests including HbsAg, anti hepatitis E virus (HEV) IgM, anti hepatitis A virus (HAV) IgM, anti HCV, anti leptospira IgM, anti EBV IgM, anti VZV IgM, Widal test, malaria antigen, malaria antibody, antinuclear antibody (ANA), anti LKM antibody, total IgG, anti SARS-CoV-2 IgG, dengue NS1 antigen and IgM (All antibody tests were done in the department of Microbiology with ICMR recommended ELISA kits)(16).
Treatment: All children in the CAHC group (n=25) admitted in general wards were given supportive therapy consisting of anti-emetics, IV fluids, Multivitamins, Zinc without any use of steroids. Those with MIS-C (n=8) were treated as per the ICMR recommended Covid-19 regimen for children and other supportive treatment inclusive of IVIG (n=1) in child with neurologic symptoms, steroids in all, and oxygen administration (n=3) in intensive care settings, without mechanical ventilation.

Outcomes: Survival at 4 weeks of follow up was taken as an endpoint for assessment of outcomes.

Statistical analysis: The data was extracted and entered in MS excel, proportions and percentages were calculated for categorical variables. The chi-square test was performed to check out possible associations between the categorical variables like association of male sex, clinical outcome with either of entities. After checking the normality of data, t-test was applied to compare the mean values of different baseline laboratory parameters such as age, days of hospital stay etc. For those variables not having normality Mann Whitney U test was applied; A p-value of less than 0.05 was considered significant. The statistical analysis was performed using SPSS trial version 16 for windows.

Ethics statement: The follow-up and analysis work was performed after obtaining due approval from the institutional human ethics committee of our institute.

Funding: No external funding was used for the study; routine workup was supported by the institutional funds used in patient care.

Results

Patient characteristics: During the study period from April 2021 to mid-June 2021 from among the screened population of 5539, 469(8.46%) children consisting of 299 (63.7%) male children and 170(36.4%) female children were found to be Covid-19 RT-PCR positive. The age group of these children ranged from 4 months till 14 years with mean age of 8.9±3.8 years, the age group wise distribution is *shown in figure 3.a.* From among the admitted patients presented to our institute, 33 patients having presented
with features of hepatitis were found (Table 1). As per the study criteria a total of 25 cases, including 16 (64%) males and 9 (36%) females were found to satisfy the criteria of being affected with CAHC. A total of 8 cases (25%) males and 6 (75%) females were found to be affected by MIS-C among those presented with hepatitis. The majority of patients (68%) were in >6 years’ age group, the distribution among age groups for both entities is depicted in figure 3.b. The time of presentation of these cases started in mid-April 2021 and peaked around the end of May 2021, which was around 2 weeks in consequence to the peaks of new Covid-19 cases in the region. The relative incidences of hepatitis cases in temporal relation to Covid-19 cases have been shown in figure 4.

Clinical and laboratory findings:

CAHC group: Children in this group presented with typical symptoms of hepatitis including nausea, vomiting, loss of appetite, weakness and mild fever usually not exceeding 100 °F. The frequency of symptoms is shown in figure 5.a. Icterus was present on examination in 18 of the cases. None of these children had experienced any serious or typical symptoms of Covid-19. None of these children had any significant findings on chest X-ray. The X-ray findings of CAHC versus MIS-C have been shown in figure 5 b.

On laboratory investigation, after admission majority (23/25) of these patients had a RTPCR test negative for SARS CoV-2, only 2 of them had RTPCR positive post admission. On blood investigations CAHC cases were associated with markedly raised transaminases>10X ULN (ALT 400-4000) with median 575.2 (190.5-1625.7)) U/L (p <0.001), raised serum bilirubin median 3.4 (2.45-6.55) mg/dl (p=0.000), with slightly raised or borderline C reactive protein (CRP) median 8.2 (5.5-11.7) mg/L (p< 0.015), normal or slightly raised IL-6, median 8.1 (10.3-15.3) pg/ml (p=0.000). They had slightly raised alkaline phosphatases 2X ULN (p= 0.29), slightly elevated total IgG levels and normal platelet counts on majority of cases. All patients (100%) were positive for anti SARS-CoV-2, anti N protein antibodies in high titers. Besides this 8 (38%) of them demonstrated a positive IgM for Dengue, 19 (90.4%), a Widal titer of more than 1:160,
with negative ANA. The mean laboratory values of the groups have been depicted in Table 2.

Outcomes: All patients were discharged with supportive treatment without any complications with mean hospital stay duration of 5.8 (± 1.0) days and remained uneventful at 4 weeks follow up. The survival rate among these cases was 100%.

MIS-C group: Children in this group presented with moderate to severe symptoms of Covid-19, mainly with persistent fever >100 °F, for which they were hospitalized in intensive care units. Most common symptoms in this group were persistent fever, cough, shortness of breath, abdominal pain, loss of appetite and weakness. Some of them developed ARDS and signs of multi organ failure mainly hypotension, swelling and sometimes and occasionally liver failure. Among them 4 (50%) children had significant findings of pneumonia on chest X rays as shown in figure 5 b.

On laboratory investigation MIS-C patients presented with hepatitis had got a RTPCR test positive for SARS CoV-2 within 2 weeks, they were associated with markedly raised CRP (p=0.015), markedly raised IL-6 (p=0.000) and reduced albumin levels with median 3.3 (2.7-3.58) gm/dl (p=0.116). They had reduced platelet counts in some cases, mild to moderately elevated transaminases (ALT 40-200 U/L), normal or borderline raised serum bilirubin, slightly raised alkaline phosphatases, raised procalcitonin, normal Widal titers (data available for n=5 cases), negative IgM for dengue, positive ANA in 1 case and positive SARS-CoV-2 antibody test in 3 cases (test was available for n=5 cases).

Outcomes: Among the MIS-C group, were children having multi systemic involvement including lung disease, vasculitis, encephalitis, one child developed paralytic ileus which resolved on conservative treatment, however 3 (37.5%) out of 8 had an adverse outcome. These cases had protracted illness, the mean hospital stay in this group was 9 (± 1.4) days, on 4 weeks follow up the remaining children recovered leading to a survival rate of 62.5%.
DISCUSSION

With the emergence of newer variants of concern and newer waves of the Covid-19 pandemic in different countries, like the recent second wave of infections in India. The scientific world will witness newer presentations and complications of Covid-19 like CAHC, the latest one which our study describes. In our study of 33 cases, we identified a unique presentation of acute hepatitis in 25 children as CAHC, whereas MIS-C could account for the rest of hepatitis cases (n=8).

CAHC cases had a higher chance of being in the age group of 6-11 years and belonging to male sex. This pattern was somewhat similar to the findings observed in large cohort studies done among MIS-C cases, where similar patient characteristics were found. However, it was surprising to see in our study cohorts, that MIS-C was more common among female children as far as, the cases presenting with hepatitis are concerned, this observation is in contrast to published literature as far as cases of MIS-C with hepatitis is concerned. This might not hold true if we see the distribution among all cases of MIS-C irrespective of presence or absence of liver involvement. Nevertheless, both these findings support the earlier reported evidences that liver injury is more common among male patients, which is thought to occur because of more number of ACE2 receptors in the male biliary tract.

On comparing the clinical findings among the two entities, it was noted that CAHC cases not only has an asymptomatic Covid-19 course but they also did not have a further severe disease, they could be managed in general care wards. Fortunately, these cases did not have any documented underlying illnesses and hence did not land into a grave disease course as mentioned earlier for Covid-19 cases with liver injury (12). Most common presenting symptoms were also mild among these cases, most common of them being nausea, followed by weakness. Most common sign noticed was presence of icterus seen in 17 of 25 cases. These cases presented after 2-4 weeks of showing mild symptoms of Covid-19, or remained asymptomatic for the same period following exposure to a lab confirmed case of Covid-19. CAHC cases peaked following
3-4 weeks in relation to the peak of new cases of Covid-19 during the second wave of SARS-CoV-2 infections in central India.

These cases were not associated with any remarkably high inflammatory markers or any other systemic derangements except high levels of serum bilirubin and a more than 10x ULN, elevation of transaminases. Serum albumin levels were normal or borderline, with mildly raised INR, mild rise in ferritin levels, mildly raised or normal D-Dimer levels along with slightly raised total IgG levels. Prima facie, these biochemical parameters do not resemble the findings associated with an active Covid-19 disease, that generally presents with a more protracted course and occurs in persons with documented pre-existing morbidities (17).

These cases had high anti SARS-CoV2 titers with values >50 COI for all the cases, significant Widal titers (>1:160 O, H), along with positive dengue IgM in 7/25, positive VZV IGM in 7/25 and positive EBV IgG in 6/25 cases. All these findings indicate towards a different and unique immune activation which is mostly concerned with B cell activation, with a possibility of a polyclonal activation resulting in positivity of multiple antibody tests. These unique immune signatures warrant a detailed workup to understand the underlying process behind this transient phenomenon, which is currently beyond the scope of this study.

As described previously the MIS-C cases with hepatitis, presented clinically with fever often >100 °F, respiratory distress, abdominal pain, loss of appetite, rash, conjunctival hemorrhages and sometimes even encephalitis like features. These cases required quick response from the treating physicians along with admission to intensive care units. These cases typically presented within around 2 weeks of showing moderate to severe symptoms of Covid-19, such cases peaked at around same interval in relation to the peak of new cases of Covid-19, in Sagar.

Their laboratory assessment showed significant association with high inflammatory markers, which were often many folds to the UNL, with borderline elevated aminotransferases, slightly altered INR, markedly raised ferritin levels in 7/8 cases,
elevated D-Dimer in 6/8 cases and decreased albumin levels in all. All had laboratory confirmed RTPCR positive for Covid-19, and 3/8 had developed anti SARS CoV2 antibodies. All cases of CAHC responded within a week with the help of supportive treatment and general care measures, since the majority of these hepatitis cases were RTPCR negative post admission, specific anti-viral treatment was not administered keeping in mind the risk Vs benefits. They were monitored carefully for any deterioration and complications that could develop, since this was the novel presentation and no guidelines were available to us for such a situation. Things went well and none of them required antiviral drugs, oxygen therapy or mechanical ventilation, which was the recommended line of treatment in case of any deterioration in Covid-19 cases (18).

Cases diagnosed as MIS-C were administered standard recommended therapy, including anti-viral drugs when needed, steroids in all cases, IVIG in 1 case, oxygen administration in 3 cases, and mechanical ventilation in 1 case. Despite the treatment and as per existing knowledge some of the patients deteriorate, and are difficult to save (19). In our cases as well 3 of them could not be saved, despite the best of efforts.

Cases of CAHC had a hundred percent survival rate, at 4 week follow up thus indicating towards a separate phenotype than either Civid-19 induced liver injury or MIS-C which might have a grave outcome. In contrast to CAHC, MIS-C which is known to be associated with significantly higher mortality and a poor survival rate, our findings were no different and only had fair survival rate of 62.5 percent.

CONCLUSION

This new entity needs to be timely identified and differentiated from other types of hepatitis for appropriate management. We recommend that timely identification of the phenotype such as CACH might not only prevent overtreatment in these cases, but also save costs and prevent unnecessary mental trauma to their parents. Hence conservative treatment and reassurance to their parents might be all that is required.
REFERENCES

Figure 1, Geographical location of the study
Figure 2, Study workflow and case work-up

Screening of suspected patients for SARS CoV-2 by RTPCR

- RTPCR Negative
- RTPCR positive

Monitoring by smart city control room

Admitted patients, presented with features of hepatitis

Clinical evaluation, Laboratory investigations (CBC, CRP, IL-6, Renal function, Liver function, viral hepatitis serology [HAV, HBV, HEV and HCV], anti SARS CoV-2 antibody and Chest X-ray, HRCT etc.)

CAHC cases (n=25) Fever < 100°F,
Multi systemic involvement absent.

- ALT ≥ 10X ULN, CRP ≤ 2X ULN, S albumin WNL, negative for viral hepatitis serology.

Supportive treatment in general care wards

MIS-C cases (n=8), Fever > 100°F for > 24 hr,
multi systemic involvement present.

- ALT < 2X ULN, CRP > 2XULN, Decreased S albumin

Aggressive management with O2, often with mechanical ventilation in critical care wards.
Figure 3 a: Age group distribution of total screened population vs study population

- Adolescents (12-14)
- Mid schoolers (6-11)
- Preschool (4-5)
- Toddlers (1-3)
- Infants (0-1 yr)

Figure 3 b: Age group distribution of CAHC Vs MIS-C cases

- Infants (0-1 yr)
- Toddlers (1-3)
- Preschool (4-5)
- Mid schoolers (6-11)
- Adolescents (12-14)
Figure 4: Relative incidences of Covid-19 new cases Vs hepatitis cases

Daily New Cases in India

Datewise incidence of hepatitis in study population

Sourced from worldometers.org
Figure 5a: Presenting signs and symptoms in CHAC Cases

- Subconjunctival hemorrhage: 2
- Fever: 5
- Abdominal pain: 8
- Vomiting: 17
- Weakness: 18
- Jaundice: 18
- Nausea: 23

Figure 5b: X-ray findings of CAHC Vs MIS-C cases.
Table 1: Patient characteristics of CAHC Vs MIS-C

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>CAHC (n=25)</th>
<th>MIS-C (n=8)</th>
<th>P value $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean ± SD, years</td>
<td>7.04± 3.2</td>
<td>5.5± 4</td>
<td></td>
</tr>
<tr>
<td>Male sex, No. (%)</td>
<td>16 (64)</td>
<td>2 (8)</td>
<td>0.045</td>
</tr>
<tr>
<td>ICU admission, n (%)</td>
<td>0 (0)</td>
<td>6 (75)</td>
<td>0.0003</td>
</tr>
<tr>
<td>Day of presentation mean ± SD</td>
<td>20.2 ± 2.38</td>
<td>5.3 ± 1.1</td>
<td></td>
</tr>
<tr>
<td>Anti SARS-CoV-2 antibody positive, n (%)</td>
<td>25 (100)</td>
<td>2 (25)</td>
<td>0.08</td>
</tr>
<tr>
<td>Hospital stay, mean</td>
<td>5.8 ± 1.05</td>
<td>9 ± 1.4</td>
<td></td>
</tr>
</tbody>
</table>

Clinical outcomes: ± SD

Discharged alive n (%)	25 (100)	5 (62.5)	0.45
In hospital death n (%)	0 (0)	2 (25)	0.02
Post discharge death n (%)	0 (0)	1 (12.5)	0.09

$Chi square test

Table 2: Laboratory findings of CACH Vs MIS-C cases.

<table>
<thead>
<tr>
<th>Lab values</th>
<th>CAHC</th>
<th>MIS-C</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median (IQR)</td>
<td>Median (IQR)</td>
<td></td>
</tr>
<tr>
<td>CRP, mg/L</td>
<td>8.10 (5.55-11.75)</td>
<td>25.90 (9.68-31.48)</td>
<td>0.015</td>
</tr>
<tr>
<td>IL6, pg/ml</td>
<td>12.40 (10.35-15.35)</td>
<td>186.40 (60.28-261.78)</td>
<td>0.000</td>
</tr>
<tr>
<td>Platelet, /mm3X103</td>
<td>2.40 (2.10-3.15)</td>
<td>2.70 (1.53-3.50)</td>
<td>0.705</td>
</tr>
<tr>
<td>T Bil, mg/dl</td>
<td>3.40 (2.45-6.55)</td>
<td>0.90 (0.90-1.32)</td>
<td>0.000</td>
</tr>
<tr>
<td>Albumin, gm/dl</td>
<td>3.50 (3.35-3.70)</td>
<td>3.30 (2.70-3.58)</td>
<td>0.116</td>
</tr>
<tr>
<td>AST, U/L</td>
<td>384.00 (129.00-1605.75)</td>
<td>97.00 (44.65-130.33)</td>
<td>0.002</td>
</tr>
<tr>
<td>ALT, U/L</td>
<td>575.20 (190.50-1625.75)</td>
<td>52.00 (43.47-150.50)</td>
<td>0.001</td>
</tr>
<tr>
<td>Alkaline PO4, U/L</td>
<td>326.10 (187.30-496.70)</td>
<td>245.50 (136.80-408.15)</td>
<td>0.294</td>
</tr>
<tr>
<td>INR, ratio</td>
<td>1.30 (1.00-1.52)</td>
<td>1.00 (1.00-1.59)</td>
<td>0.556</td>
</tr>
</tbody>
</table>

*Mann-Whitney U test

CRP, C-reactive protein; SD, standard deviation; IL-6, interleukin-6; AST, aspartate transaminase; ALT, alanine aminotransferase; T Bil, Total bilirubin; INR, international normalized ratio.