Running title: An autoencoder-classified cluster of SARS-CoV-2 strain with two mutations in helicase

Clusters consisting only of virus types with two mutations in the helicase found by Autoencoder analysis in Washington State, USA

Jun Miyake*1,2,3†, Mitsuaki Yoshino4†, Takaaki Sato1, Hirohiko Niioka5, Yasushi Sakata3, Yoshihisa Nakazawa2

1 Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.
2 Hitz Research Alliance Laboratory, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.
3 Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan.
4 National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.
5 Institute for Datability Science, Osaka University, Suita, Osaka, Japan.

* Corresponding Author (email-address: jun_miyake@bpe.es.osaka-u.ac.jp)
† These authors are equally contributed.

Keywords: COVID-19, SARS-CoV-2 (nCoV-2019), Genome, Helicase, Mutant, Autoencoder, Washington State, Classification, Cluster

Abstract

Using an autoencoder-based analysis to classify genomes of SARS-CoV-2 coronaviruses, we found a cluster consisting only of a specific genotype with two mutations in the helicase. This virus genotype, called C-type SARS-CoV-2, was almost exclusively prevalent in the United States from March to July 2020. This type of virus, characterized by a pair of the C17747T (P504L) and A17858G (Y541C) mutations on the nsp13 gene, had never been highly prevalent at any other time or in any other part of the world. In the U.S., Washington State was the center of the epidemic, and
the C-type viruses, along with the viruses with wild-type helicase, seemed to have aroused the pandemic. In Washington State, USA, the CoViD-19 epidemic during the first two months of the year, starting at the end of February 2020, was mainly caused by the type-C virus. During this period, the infection spread rapidly; from May onwards, the number of viruses with wild-type helicases became higher than that of type-C viruses, and no type-C viruses have been collected since early July. The involvement of the helicase in this COVID-19 disease was discussed.

Introduction

Coronaviruses have had a major impact on human society since the 2002–2003 SARS epidemic (Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. 2020). With the exception of influenza, there are few other viral infections that have been so prevalent, and it is important to elucidate the characteristics of viruses (Hua et al. 2020). There are questions about how host cells attack coronaviruses and whether there are other ways to defend against them besides antibodies. The coronavirus–host cell interactions such as the viral RNA-synthesizing machinery and the evasion of host innate immune responses are detailed in a review (de Welde et al. 2018).

Host organisms, including humans, have the ability to detect viral infection as "non-self-nucleic acid invasion," which is expected to trigger antiviral innate immunity and suppress viral replication. New coronaviruses have continued to mutate at a high rate (Gómez-Carballa et al. 2020; Jones and Manrique 2020; Nie et al. 2020; Rochman et al. 2020). Since its emergence, new variants have appeared one after another, and there are now more than eight in total (Miyake et al. 2021). The types, viral infections, disease patterns, and mutations of the encoded proteins have not yet been comprehensively understood. We believe that significant advances in our understanding of this complex system will be made in the near future.

The viral helicase (nsp13 in ORF1ab), which plays a central role in the immune response of host cells, is stably maintained in various strains, and a mutant form was first isolated in Washington State, USA in February 2020 (Chan et al. 2020). This variant is present only in a specific genotype (Zhao et al. 2020), which Chan et al. define as
coevolutionary variant group 4 (CEVg4). In our previous paper (Miyake et al. 2021), we presented a method to analyze clusters of viral genomes using an autoencoder. Among the clusters classified by this method, those consisting only of genomes with mutations in the nsp13 gene on ORF-1ab (C-type SARS-CoV-2 virus genome). Since the other clusters did not show the said mutation in nsp13, it was considered that the genomes constituting the clusters had some aggregate characteristics. A closer look at the genomic variation revealed that the helicase translated and synthesized from nsp13 had double mutations, P504L and Y541C.

In silico analysis to evaluate protein-drug interactions suggests that helicase, the nsp13 product with the double mutation of P504L and Y541C, has an altered shape of the ATP-binding site (Ugurel et al.). In this paper, along with the analysis of the clusters, we also examined their relationship to disease during the pandemic. The ratio of wild type (WT)/C SARS-CoV-2 virus ratio based on the weekly number of viruses classified by the autoencoder and compared the relationship with the number of infected people and deaths. In the case of the pandemic in Washington State, USA, we found that the type C virus was dominant in the first two months, and that the virus with wild-type helicase became overwhelmingly dominant after May 2020. We will also discuss the involvement of helicases in the current COVID-19 disease.

Methods

We analyzed the coronavirus epidemic in Washington State, U.S.A. from 2020/2/29 to 2020/7/31. Genome sequence data of novel coronaviruses were collected from the NCBI Virus database (downloaded on February 26, 2021). Only complete genome sequences were analyzed (genes with more than two consecutive bases were excluded from the analysis). Cluster analysis of gene sequences using autoencoders was performed using the Tensor-Flow library (downgraded from V2.0 to V1.0), computers equipped with GPUs (NVIDIA Quadoro P-6000) were used. The autoencoder previously classified the genotypes of the human leukocyte antigen A (HLA-A) gene (Miyake et al. 2018): a histogram of the frequency of occurrence of 1,024 5-mer words in the SARS-CoV-2 ORF1ab gene was generated using a four-layer autoencoder (1,000,000 epochs with a batch size of 96) was compressed into a three-dimensional array, which were plotted in
three-dimensional (3D) space as (x, y, z) coordinates. As a result, 31,050 SARS-CoV-2 ORF1ab genes were classified into eight categories (A1, A2, B1, B2, C, D, E1, and E2 types) (Miyake et al. 2021). Epidemiological data were obtained from the Centers for Disease Control and Prevention (CDC) database.

Based on these autoencoder-classified SARS-CoV-2 ORF1ab genes, we examined time courses of weekly ratios of SARS-CoV-2 viral genomes with wild-type (WT) helicase (WT helicase genomes belonging to clusters A1, A2, B1, B2, D, E1 and E2) to those of C-type helicase (C-type genomes belonging to cluster C) that were collected in Washington State. Note that the C genome was collected only during weeks 4-20 starting from February 1, 2020; the period starting from week 21 was excluded from the analysis.

Results

The ORF1ab gene was extracted from the SARS-CoV-2 genome and classified into eight clusters in three-dimensional space by autoencoder. Among them, C-type was located at the far end of the cluster spread. It was a small cluster with relatively clear boundaries. ORF1ab genes of cluster C which have C-type helicase were expanded in March (Fig. 1a) and disappeared after July 3, 2020 (Fig. 1b).

Helicase is an essential enzyme for viral replication, but a special type of mutant was found in the United States in February to July, 2020. This mutant is characterized by the presence of mutations in the nsp13 (helicase) gene of ORF1ab that differ by two bases from the wild type (C17747T (P504L) and A17858G (Y541C)) (Chan et al., 2020). C-type of ORF1ab was consisted only with the mutant genome. The mutant was not found in any other clusters. We will refer to this helicase as helicase-C in this paper. Note that there is also a helicase in which only one of the two mutations was different, but due to the very small number, it was excluded from this analysis. This cluster (category) corresponds to the CEVg4 reported by Chan et al. in their combinatorial analysis of genomic variation (Chan et al., 2020).

The classification of the clusters as in Fig.1 were plotted against the time axis and the distance of the 3D data from the center for nine states in the United States (Fig. 2).
Each cluster was plotted in a different color (A1, red; A2, pink; B1, green; B2, light green; C, purple; D, orange; E1, blue; E2, light blue). The vertical axis is the distance of the 3D data used in the autoencoder classification (The nucleotide sequence (29903 nt in the reference sequence) was compressed into 3 dimensions by autoencoder analysis. The genomes in the cluster were easily identifies by their positions. Weekly numbers of helicase-C genomes in the United States, Washington State, and Australia were shown in Fig. 3.

The usefulness of the autoencoder classification method is that it can automatically classify the genomes into clusters without knowing the differences in gene sequences beforehand, it can handle a huge number of genomes, and it is easy to understand the temporal variation. In other words, it is a way to spatially represent the "artificial intelligence recognition" of the full-length sequence of genes. The classification of clusters depends on where the boundaries are drawn, so there can be some differences in the number of genes included in some cases.

The country subcategories of helicase-C SARS-CoV-2 genomes were 1,460 (97.6%) in the United States, 32 (2.1%) in Australia, 2 in the United Kingdom, 1 in Peru, and 1 in Puerto Rico (country data were taken from NCBI Virus Database). Australia and less countries were not examined in this study due to small sample size.

In the U.S., helicase-C has been detected in areas where the SARS-CoV-2 outbreak has caused infections, such as California, New York, and Washington State. In the U.S., the state of Washington had the highest number of database-registered helicase-C genomes at 68.9% (67.4% worldwide) throughout the period of February to June. This is followed by California (10.5%). Other states were Minnesota (2.8%), Utah (2.8%), Florida (1.5%), and Massachusetts (1.4%). The portion of the infections and the high mortality rate in Washington State is remarkable. Washington State was thought to be the single source of the outbreak and that it spread to other states.

In Washington State, helicase-C SARS-CoV-2 genomes were initially predominant in the four–eight weeks from February 1, 2020. The WT/C-type helicase ratio logarithmically increased with a kink at nine weeks when the dominance of WT helicase genomes was initiated (Fig. 4a). For comparison, weekly numbers of cumulative
COVID-19 cases and deaths in Washington State (obtained from the Center for Disease Control and Prevention (CDC) webpage) were shown (Fig. 4b). Weekly numbers of cumulative cases also logarithmically increased with a kink at nine weeks when the growth rate markedly decreased. The cumulative number of deaths showed a one-week lagged kink (week 10) in the logarithmic increase, with a marked decrease in the late phase. The coincidence of sinks in WT/C helicase ratios, cases, and deaths in Washington State with a 1-2 week lag suggests that the change in dominance of the SARS-CoV-2 helicase-C genome to the WT helicase-C genome may be responsible for the decrease in cases and deaths.

Discussion

In the cluster analysis using the autoencoder, the genome of SARS-CoV-2 with helicase C could be extracted as one cluster. The other genomes with helicase WT were distributed in several clusters. These results indicate that the autoencoder can identify the ORF1ab gene of SARS-CoV with only two mutations in the helicase. Although the genomic sequence of the helicase is highly conserved in nature, mutations in such a highly conserved sequence may form specific clusters that are clearly separated by autoencoder analysis. The ability of autoencoders to extract genomes with significant mutations in specific gene regions as separate clusters will be beneficial not only for helicases but also for a variety of other application.

Type-C SARS-CoV-2 virus (hereafter referred to as "type-C virus") was first discovered in Washington State on February 20 (Chan et al. 2020), in June (after week 21), the number of type-C virus collections has decreased significantly. The last virus was obtained in Florida on July 2. In the early stages of the pandemic (4-8 weeks counting from February 1, 2020), type-C virus initially predominated and may have contributed to the number of COVID-19 cases. By weeks 10-20, the WT helicase genome predominated. Looking at the semilog plot in Fig. 4, it is understood that the ratio of deaths/infected cases was considerably larger in the early phase than in the later phase. The inflection point of the number of infected and deaths was off by almost a week. Assuming a one-week gap between infection and outcome/death, the ratio of deaths/infected may have been temporarily more than twice as high in the early phase (4-8 weeks) as in the late
phase. In the late phase (10-20 weeks), this ratio was consistently less than 6%. In the later stages, this ratio was consistently less than 6%. If this large difference is dependent on the type of virus, it should be fully considered as a preparation for future viral diseases. The emergence, disappearance, and pathogenesis of type-C virus A detailed analysis of the mechanisms, mortality dependence, and other factors may be useful as a key to developing effective treatments and antiviral measures.

All C-type viruses contain a variant of the helicase, helicase-C, which is highly suspected as a cause of serious disease. Helicase is a protein that unwinds nucleic acids and is essential for viral genome replication. Adedeji et al. found that helicase activity was enhanced in the presence of nsp12 in the SARS-CoV epidemic of 2002-2003 (Adedeji et al. 2012). Kindler et al. (Kindler et al. 2017; Ancar et al. 2020) and Deng et al. (Deng et al. 2017; Deng and Baker 2018) considered the following scheme. The viral RNA forms a double-stranded structure at the poly-U sequence. If the virus can use RNA-degrading enzymes (EndoU) to cleave its own RNA-poly U sequence, the immune response of the host cell is inactivated. The structure and interactions of the proteins discussed here are being studied. Pillon et al. published the four-dimensional protein structure of SARS-CoV-2 nsp15 using Cryo-EM (Pillon et al. 2021). Perry et al. also studied that nsp 15 protein is surrounded by nsp14, 16, nsp7, 8, and 12 proteins, as well as nsp13 (helicase) using Cryo-EM (Perry et al. 2021).

Several researchers have pointed out that helicas...
We should like to express our sincere thanks to Dr. Tomonori Kimura of NIBIOHN for support and discussions. Thanks are to Hayao Nakamura, Yuta Nitada and Shunsuke Baba for programming and computer operation. This work was supported partially by Global Center for Medical Engineering and Informatics, Osaka University, Hitz Research Alliance Laboratory, Nihon Unisys, Ltd. and Japan Agency for Medical Research and Development (Grant Number 20bm0804008h0004.PI. Prof. S. Miyagawa).

References

Centers for Disease Control and Prevention (CDC, Official Updates Coronavirus - COVID-19 in United States): https://coronavirus.dc.gov/?gclid=Cj0KCQiA5vb-BRCCRARIsAJBKc6L-50jCtxFFaFZe05Os84e-Mb6dLiWHBeplx9bJdHXF2rABJmLpyyIaAmxBEALw_wcB.

Figures

Fig. 1. Autoencoder clustered 3D view of ORF1ab gene of SARS-CoV-2 (March and July 2020).

The number of C-type ORF1ab genes expanded rapidly in March, and new appearances stopped as of July 3, 2020. (a) ORF1ab gene that appeared in March 2020 (purple). (b) ORF1ab gene that appeared in July 2020 (yellow-green). Shown in gray as background is the cluster of ORF1ab genes for the period 19/12/2019-2021/2/16.
Eight clusters classified by the autoencoder of the SARS-CoV-2 ORF1ab gene in nine U.S. states (WA, CA, UT, FL, MA, NY, MN, WI, ME) plotted in different colors by collection date (A1, red; A2, pink; B1, green; B2, light green; C, purple; D, orange; E1, blue; E2, light blue). Cluster C with helicase C appeared in February and disappeared after July 3, 2020.

Fig. 2. Evolution of clusters in nine US states.
Fig. 3. Transition of C-type SARS-CoV-2 in USA, Washington State and Australia.

Weekly numbers of autoencoder-classified SARS-CoV-2 ORF1ab genes in USA, Washington State, and Australia are shown by number of weeks from February/01/2020.
Fig. 4. Ratio of the numbers of wild-type and C-type helicase SARS-CoV-2 viruses collected in Washington State in USA.

(a) The ratio of wild-type/C-type helicase SARS-CoV-2 genomes (green) showed logarithmic increases with a kink around nine weeks from February 1, 2020 in Washington State in USA. The first half corresponds to the period when the C-type helicase viruses rapidly increased, and the second half to the period when the wild-type
helicase viruses became predominant. Total deaths (orange) and total cases (blue) also showed logarithmic increases with kinks around ten and nine weeks, respectively.