Comparative profiles of SARS-CoV-2 Spike-specific milk antibodies elicited by COVID-19 vaccines currently authorized in the USA

Alisa Fox, Claire DeCarlo, Xiaoqi Yang, Caroline Norris, and Rebecca L. Powell

1 Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1090, New York, NY, 10029, USA

*Corresponding author
Abstract

Three COVID-19 vaccines are licensed for emergency use in the USA: the Pfizer/BioNTech and Moderna/NIH mRNA-based vaccines, and the Johnson & Johnson (J&J)/Janssen human adenovirus (Ad26) vaccine. These vaccines have immunized ~160 million people nationwide, comprising ~53% Pfizer, 39% Moderna, and 8% J&J recipients [1]. Although at varying stages of clinical investigation for use in children, no COVID-19 vaccines are yet available for this population, posing a significant public health concern. One method to protect infants and young children may be passive immunization via antibodies (Abs) provided in the milk of a lactating vaccinated person. Our early work [2] and other recent reports [3-5] examining the milk Ab response to mRNA-based COVID-19 vaccination have demonstrated that unlike the post-SARS-CoV-2 infection milk Ab profile, which is rich in specific secretory (s)IgA, the vaccine response is highly IgG-dominant. In this report, we present a comparative assessment of the milk Ab response elicited by not only the Pfizer and Moderna vaccines, but importantly, the J&J vaccine as well. This analysis revealed that compared to mRNA vaccine recipients, 49% - 63% fewer J&J vaccine recipient milk samples were positive for Spike-specific IgG, with positive samples exhibiting significantly lower mean IgG titers. J&J recipient milk samples contained significantly less specific IgA than Moderna recipient milk samples, which exhibited significantly greater relative IgA increases compared to both Pfizer and J&J recipients. Absolute and relative vaccine-induced secretory Ab titers were similarly low for all groups, though ~25% more Moderna recipients exhibited a relative increase compared to Pfizer and J&J recipients. These data indicate that J&J vaccine poorly elicits Spike-specific Ab in milk compared to mRNA-based vaccines and that this vaccine should be considered a last choice for immunizing those intending to elicit a strong Ab response in their milk. These data also suggest that Moderna vaccine elicits a superior, albeit moderate, milk (s)IgA response, and highlight the need to design vaccines with optimal protection of the breastfeeding infant in mind.
Background

SARS-CoV-2, the causative virus of the COVID-19 pandemic, has infected >188 million people worldwide, causing >4 million deaths. Pediatric COVID-19 tends to present as asymptomatic or mild relative to a typical adult case, with pathology generally being inversely correlated with age; however, ~10% of SARS-CoV-2-infected infants will experience illness requiring advanced care [6, 7]. Importantly, it is evident that even asymptomatic infection can lead to ‘Multisystem Inflammatory Syndrome in Children’ (MIS-C), a rare but potentially deadly inflammatory condition, and/or long-term varying effects of previous SARS-CoV-2 infection commonly labelled as “long COVID” [8-10]. Furthermore, as COVID-19 symptoms do not necessarily correlate with transmissibility, infants and young children are likely responsible for a significant amount of SARS-CoV-2 dissemination [11-14]. Therefore, it is clear that protecting the pediatric population from and mitigating their transmission of SARS-CoV-2 is a critical component of the COVID-19 public health crisis. Fortunately, Numerous COVID-19 vaccine candidates employing a variety of novel and conventional platforms have entered clinical trials globally throughout the pandemic. In the USA, 3 vaccines have been authorized for emergency use, including the Pfizer/BioNTech and Moderna/NIH mRNA-based vaccines, and most recently, the Johnson & Johnson (J&J) human adenovirus (Ad26)-based viral vector vaccine. These vaccines have been used to fully vaccinate ~160 million people nationwide, comprising ~53% Pfizer, 39% Moderna, and 8% J&J recipients [1]. Importantly, none of these COVID-19 vaccines are authorized for use in infants or young children; as such, the passive immunity of the antibodies (Abs) provided by the milk of a lactating COVID-19-vaccinated person may be a critical means of protection for this population in terms of SARS-CoV-2 infection, pathology, and transmission, until effective pediatric COVID-19 vaccines are licensed.
Mature human milk contains ~0.6mg/mL total immunoglobulin (Ig), though there is great variation among women sampled [15]. Milk IgG originates predominantly from serum with some local production in specific cases, though IgG comprises only ~2% of total milk Ab [16]. Approximately 90% of total milk Ab is IgA and ~8% IgM, nearly all in secretory (s) form (sIgA/sIgM; polymeric Abs complexed to j-chain and secretory component (SC) proteins) [16-18]. Nearly all sIgA/sIgM derives from the gut-associated lymphoid tissue (GALT), via the entero-mammary link, though there is also homing of B cells from other mucosal-associated lymphoid tissue (MALT), i.e. the respiratory system to the mammary gland. The SC protein is a cleaved segment of the polymeric immunoglobulin receptor (pIgR) which transports this GALT/MALT-derived Abs into the milk. Relatively few comprehensive studies exist examining the Ab response in milk after vaccination. The few studies that have examined the milk Ab response after influenza, pertussis, meningococcal and pneumococcal vaccination have generally found specific IgG and/or IgA that tends to mirror the serum Ab response, though none of these studies measured secretory Ab or determined if sIgA was elicited, and data regarding the protective capacity of these milk Abs is conflicting or confounded by the effects of placentally-transferred Ab [19-26]. Determining whether or not secretory Abs are elicited in milk after infection or vaccination is critical, as this Ab class is highly stable and resistant to enzymatic degradation in all mucosae - not only in the infant oral/nasal cavity, but in the airways and GI tract as well [16, 27].

Our comprehensive study to assess the SARS-CoV-2-specific Ab response in human milk after infection has so far determined that SARS-CoV-2 infection elicits a robust specific milk IgA response in ~90% of cases, which is very strongly correlated with a robust specific secretory Ab response. This sIgA response is highly durable over time, neutralizing, and dominant compared
to the specific milk IgG response in terms of potency and number of responders [28, 29]. Our early analysis of the milk Ab response to mRNA-based COVID-19 vaccination found Spike-specific IgG to be dominant in milk compared to IgA 14 days after the 2nd vaccine dose, with all samples containing significant levels of specific IgG, with 80% of samples exhibiting high IgG endpoint titers. Conversely, only 50% of post-vaccine milk samples contained Spike-specific secretory Ab, which were of low-titer. Since this report, other groups have confirmed the IgG-dominant milk Ab profile after mRNA-based vaccination, noting that the observed high titers are induced after the 2nd, boosting dose of vaccine [3-5]. It has also been observed that specific milk IgA responses are elicited by the initial, priming dose of vaccine, but poorly boosted after the 2nd dose [4]. mRNA-based vaccination has also been shown to elicit neutralizing activity in milk [3]. No further studies since our early report have assessed the specific secretory Ab response to COVID-19 vaccination, and no studies to date have reported on the milk Ab profile induced by the Ad26-based J&J vaccine.

In this follow-up report of our COVID-19 vaccine studies, we describe the vaccine-elicited, SARS-CoV-2 Spike-specific Ab profile of pairs of milk samples obtained from 50 individual donors within 1 week before vaccination and 14 (Moderna/Pfizer) or 28 days (J&J) after completion of a COVID-19 vaccine regimen. Samples were assayed for specific IgA, IgG, and secretory Ab against the full trimeric SARS-CoV-2 Spike protein.

Methods

Study participants

Individuals were eligible to have their milk samples included in this analysis if they were living in the USA, lactating, had no history of a suspected or confirmed SARS-CoV-2 infection, and
were scheduled to be or had recently been vaccinated with the Pfizer, Moderna, or J&J COVID-19 vaccine. If milk samples were determined to be positive for SARS-CoV-2 IgA prior to vaccination, participants were excluded from this analysis. This study was approved by the Institutional Review Board (IRB) at Mount Sinai Hospital (IRB 19-01243). Once consented into the study, participants were asked to collect approximately 30mL of milk per sample into a clean container using electronic or manual pumps. Milk was frozen in participants’ home freezer until samples were picked up and stored at -80°C until Ab testing.

ELISA

Levels of SARS-CoV-2 Abs in human milk were measured as previously described [28]. Briefly, before Ab testing, milk samples were thawed, centrifuged at 800g for 15 min at room temperature, fat was removed, and supernatant transferred to a new tube. Centrifugation was repeated 2x to ensure removal of all cells and fat. Skimmed acellular milk was aliquoted and frozen at -80°C until testing. Milk was tested in separate assays measuring IgA, IgG, and secretory-type Ab reactivity (the secondary Ab used in this assay is specific for free and bound human secretory component). Half-area 96-well plates were coated with the full trimeric spike protein produced recombinantly as described [30]. Plates were incubated at 4°C overnight, washed in 0.1% Tween 20/PBS (PBS-T), and blocked in PBS-T/3% goat serum/0.5% milk powder for 1h at room temperature. Milk was used undiluted or titrated 4-fold in 1% bovine serum albumin (BSA)/PBS and added to the plate. After 2h incubation at room temperature, plates were washed and incubated for 1h at room temperature with horseradish peroxidase-conjugated goat anti-human-IgA, goat anti-human-IgG (Fisher), or goat anti-human-secretory component (MuBio) diluted in 1% BSA/PBS. Plates were developed with 3,3',5,5'-
Tetramethylbenzidine (TMB) reagent followed by 2N hydrochloric acid (HCl) and read at 450nm on a BioTek Powerwave HT plate reader. Assays were performed in duplicate and repeated 2x.

Analytical Methods

Milk was defined as positive for Spike Ab if OD values measured using undiluted milk from COVID-19-recovered donors were more than two standard deviations (SD) above the mean ODs obtained from pre-vaccine samples. Endpoint dilution titers were determined from log-transformed titration curves using 4-parameter non-linear regression and an OD cutoff value of 1.0. Endpoint dilution positive cutoff values were determined as above. Mann-Whitney U tests were used to assess significant differences. Correlation analyses were performed using Spearman correlations. All statistical tests were performed in GraphPad Prism, were 2-tailed, and significance level was set at p-values < 0.05.

Results

Fifty pairs of milk samples were obtained from vaccine recipients within 1 week before vaccination and 14 days (Pfizer/Moderna) or 28 days (J&J) after completion of the vaccine regimen. Twenty-three participants had received Pfizer vaccine, 14 had received Moderna vaccine, and 13 had received J&J Vaccine. Milk was used in separate ELISAs measuring IgG, IgA, and secretory Ab binding against recombinant trimeric SARS-CoV-2 Spike [30]. As shown in Fig. 1, OD values were recorded at each 4-fold milk dilution assayed (undiluted to 1/4096 dilution). Titrated milk ODs were used to determine endpoint binding titers. It was found that 100% and 87% of Moderna and Pfizer recipient post-vaccine milk samples, respectively,
contained positive levels of Spike-specific IgG, with endpoint titers surpassing the positive cutoff value (mean endpoint titer = 120 and 180, respectively; Fig. 1a). The mean IgG titers of these mRNA vaccine groups were not significantly different. In contrast, both groups exhibited significantly higher specific milk IgG than milk obtained from J&J vaccine recipients, with only 38% of J&J samples containing positive levels of specific IgG (mean endpoint titer = 10; p<0.0001; Fig. 1a, 3rd panel). It was further determined that 71% and 52% of Moderna and Pfizer recipient post-vaccine milk samples, respectively, contained positive levels of Spike-specific IgA, exhibiting similar mean endpoint titers of 19 and 22, respectively (Fig. 1b). Twenty-three percent of J&J vaccine recipient milk samples contained positive levels of Spike-specific IgA, exhibiting a mean endpoint titer of 15, which was significantly lower than that of the Moderna vaccine group (p=0.025; Fig. 1b, 3rd panel). Finally, it was determined that 43% of both the Moderna and Pfizer recipient post-vaccine milk samples, contained positive levels of Spike-specific secretory Ab, exhibiting similar mean endpoint titers of 12 and 12.6, respectively (Fig. 1c). These endpoint titers were not significantly different from that of the J&J vaccine recipient milk samples (mean endpoint titer=8), 31% of which contained positive levels of Spike-specific secretory Ab, (Fig. 1c, 3rd panel).

Given the availability of pre-vaccine samples for all participants included in this study, and the stringent nature of our positive cutoff values that are a reflection of the natural human variation of ‘background’ Ab activity of SARS-CoV-2-naïve milk, we next sought to compare individual samples pre- and post- vaccine ELISA data, classifying >2-fold increase in endpoint titer as a significant change in Ab reactivity on an individual basis (Fig 2). This analysis determined that 100% of both the Moderna and Pfizer recipient milk samples exhibited a significant increase in
IgG reactivity against Spike after vaccination, while only 62% of J&J recipient milk samples exhibited this effect (Fig. 2a). In terms of IgA reactivity, 93% of Moderna recipient milk samples exhibited a notable increase, compared to 74% of Pfizer recipients and 54% of J&J recipients (Fig. 2b). Finally, examining the secretory Ab data, 86% of Moderna recipient milk samples exhibited > 2-fold increase in endpoint titer, while only 61% of Pfizer and J&J recipient milk samples exhibited such an increase (Fig. 2c). Using these data, the mean relative fold increase in Ab reactivity from pre-vaccine to post-vaccine was compared among the vaccine groups. It was found that Moderna and Pfizer recipients exhibited similar increases in Spike-specific milk IgG reactivity (mean endpoint titer increases = 90x and 108x, respectively), while J&J recipients exhibited significantly lower IgG titer increases (mean=12.4x; p<0.0001; Fig. 2d). Moderna vaccine recipients exhibited significantly greater increases in Spike-specific milk IgA reactivity compared to Pfizer vaccine recipients (mean endpoint titer increase=22x versus 5.9x; p=0.0078; Fig. 2d). Moderna group increases were also significantly higher compared to J&J recipient milk samples, which exhibited a mean endpoint titer increase of 3.8x (p=0.0013). Pfizer and J&J groups were not significantly different. All 3 groups exhibited similarly small increases in specific secretory Ab reactivity post-vaccine (mean endpoint titer increase = 5.3x - 6.3x; Fig 2d).

ELISA endpoint binding titers for each assay were compared in separate Spearman correlation analyses for each vaccine group (IgG v IgA; IgA v SC; IgG v SC). Moderna recipient milk IgG and IgA titers were not correlated, while Pfizer recipient milk IgG and IgA titers were shown to exhibit low degree of positive correlation (r=0.47; p=0.024; Fig. 3a, 2nd panel). In contrast, J&J recipient milk IgG and IgA titers were shown to exhibit a moderately strong positive correlation (r=0.76; p=0.0033; Fig. 3a, 3rd panel). Notably, the Moderna and Pfizer recipient milk IgA and
secretory Ab titers were found to exhibit a moderately strong positive correlation ($r=0.71$ and 0.70; $p=0.0058$ and 0.0002, respectively), while the J&J recipient milk IgA and secretory Ab titers exhibited a very strong degree of positive correlation ($r=0.86$; $p=0.0003$; Fig. 3b). Similar to the IgG v IgA data, Moderna recipient milk IgG and secretory Ab titers were not correlated, and Pfizer recipient titers were weakly correlated ($r=0.46$; $p=0.033$; Fig. 3c, 2nd panel), and J&J recipient milk IgG and secretory Ab titers were shown to exhibit a moderately strong positive correlation ($r=0.70$; $p=0.0097$; Fig. 3c, 3rd panel).

Discussion

Currently, 3 COVID-19 vaccines are authorized for emergency use in the USA, and in most metropolitan areas, potential vaccine recipients are likely to have a choice of vaccine type [31]. Though certainly the priority is to vaccinate all eligible people as quickly as possible, the availability of multiple COVID-19 vaccines has raised the question globally, particularly the more vaccine-hesitant, as to which vaccine is best [32]. There is currently a lack of pertinent data, particularly for specific populations such as breastfeeding women, that might be used to make an informed decision. The Pfizer and Moderna COVID-19 vaccines are both 2-dose regimens, intended to be delivered 3 and 4 weeks apart, respectively, and both consist of lipid-encapsulated, full length Spike mRNA, both incorporating virtually identical trinucleotide cap analogs, optimized Spike sequences, and N1-methylpseudouridine; however, their lipid carriers differ and the Pfizer vaccine consists of 30ug of RNA while Moderna includes 100ug [33]. The J&J vaccine is a recombinant, replication-incompetent Ad26 vector encoding full-length SARS-CoV-2 spike, authorized as a single dose regimen. Notably, J&J vaccine has less stringent cold-
chain requirements, and therefore, beyond the appeal of a single dose, this vaccine may be more accessible to certain rural or otherwise vulnerable populations.

Published immunogenicity data of these vaccines, though not assessed together in a single study, demonstrated that all 3 regimens elicited positive specific serum IgG titers in 100% of participants, with titers ~10-20x higher for the mRNA vaccines compared to the J&J vaccine; however, neutralization potencies were not hugely different among the vaccine types [34-36]. IgA titers were not been measured as part of clinical data, though a few recent reports have described the vaccine-induced serum IgA response to the mRNA vaccines, which appear moderate after the 1st dose and do not appear to be significantly boosted after dose 2 [3, 4]. In terms of vaccine efficacy, the mRNA vaccines were reported as achieving a 94-95% relative risk reduction (RRR), while J&J was reported as yielding a 67% RRR; however, as the clinical trials were performed at sites with varying levels of absolute risk, and particularly in the case of J&J vaccine, in the context of an increasing number of SARS-CoV-2 variants of concern, vaccine efficacies cannot be directly compared [37].

This present analysis of the milk Ab response to COVID-19 vaccination has furthered our initial finding that Spike-specific IgG is dominantly elicited by 14 days after the 2nd dose of an mRNA-based vaccine, and that both Moderna and Pfizer perform equally in this regard. Importantly, these data demonstrate that J&J vaccine elicits far less IgG in milk, with far fewer vaccinees exhibiting positive levels of specific milk IgG or notable increases in reactivity compared to baseline levels pre-vaccine. Though specific milk IgA production is only moderate for all vaccine types, confirming our previous preliminary mRNA vaccine data and that of others, Moderna recipient milk appears to contain the highest levels of IgA, which is considerably more pronounced when examining individual relative increases compared to pre-vaccine samples. The
increased specific IgA production by Moderna recipients, which may be due to differential class switching to IgA after the longer 28 day interval between doses compared to Pfizer vaccine, has been noted previously in serum, and our present data demonstrates the effect is similar in milk [3]. Again, J&J recipient data suggest that in terms of mean milk IgA level and/or percent of responders, this vaccine type does not perform well relative to mRNA vaccines. Finally, measuring the critically important secretory Ab response, levels are low and responders are few for all vaccine types studied, though the Moderna group included 25% more responders with notable increases in secretory Ab activity compared to baseline levels.

Generally, our IgG versus IgA correlation analysis of the mRNA vaccine data found these titers were at best only mildly related, with Moderna recipients exhibiting no apparent relationship; notably, these data were nearly identical for the IgG versus secretory Ab analysis. This finding is likely in part a reflection of the strong IgG and poor IgA boosting by the 2nd mRNA vaccine dose noted previously [4]. In contrast, J&J recipient milk samples exhibited a relatively strong correlation between IgG and IgA reactivities, suggesting that if a measurable milk Ab response is generated by the J&J vaccine in a given individual, it is likely to exhibit balanced IgG/IgA class-switching. In terms of our analysis of the relationship between vaccine-induced IgA and secretory Ab, which is a proxy measure for assessing the potency of the sIgA response, the increased number of samples compared to our early report facilitated the determination that there was a moderately strong correlation between IgA and secretory Ab elicited by the mRNA vaccines [2]. This suggests that much of the IgA measured in milk is sIgA; however, compared to our post-infection data, the correlation is considerably weaker, suggesting that considerably more vaccine-induced monomeric IgA, like IgG, is entering the milk via passive transfer from serum, with mucosal-origin plasma cells producing dimeric IgA also transiting to the mammary
gland to secrete sIgA into the milk [28]. J&J recipient milk samples demonstrated a stronger and highly significant correlation between IgA and secretory Ab titers, possibly indicating that despite the low levels and number of responders exhibiting an IgA or secretory Ab response, if these responses in milk are measurable, they are more likely to be mucosally-derived sIgA, with little serum-derived monomeric IgA entering the milk.

Intramuscular (IM) vaccines have been shown previously to generate mucosal Ab, including Abs in milk, though whether IM vaccination tends to elicit secretory Abs, which would be expected to be the most protective class in a mucosal environment, has generally not been addressed [19-26]. Though secretory Abs are vital to the milk Ab defense system, monomeric, non-secretory Abs, originating from serum as well as locally, likely also contribute to the milk Ab defense system, particularly in the case of vaccination [38]. The data presented herein indicate that J&J vaccine poorly elicits Spike-specific Ab in milk compared to mRNA-based vaccines, and suggest that Moderna vaccine elicits a superior milk (s)IgA response, though secretory Ab titers were low for all vaccine types studied. In areas where COVID-19 vaccines are freely available, in terms of potential passive immunization of infants and young children via breastfeeding or milk sharing, these data suggest that Moderna vaccine is the most ideal, while J&J vaccine should be considered a last resort.

Acknowledgements

We are indebted to our milk donors. Spike protein was gifted by the Krammer Lab. This work was supported by the NIH/NIAID and the Icahn School of Medicine at Mount Sinai.
Figure Legends

Figure 1. The COVID-19 vaccine-induced SARS-CoV-2 Spike-specific milk antibody response. Plates were coated with full-length recombinant trimeric SARS-CoV-2 Spike. Milk was titrated and added to the plate. Plates were washed and blocked and incubated with appropriate secondary antibody. Titration curves were plotted and used to calculated endpoint titers. (A) IgG titration curves (top panel) and endpoint titers (bottom panel). (B) IgA titration curves (top panel) and endpoint titers (bottom panel). (C) Secretory antibody titration curves (top panel) and endpoint titers (bottom panel). Dotted lines indicate positive cutoff values. Responders (%): Percent of participants receiving this vaccine type exhibiting positive endpoint titers. ****p<0.0001; *0.009<p<0.05. Mean values are shown in scatter plots.

Figure 2. Relative increases in milk antibody reactivity to SARS-CoV-2 Spike elicited by COVID-19 vaccination. Endpoint titers were determined as in Fig. 1 for pairs of milk samples obtained from participants within 1 week before and 14 (Pfizer/Moderna) or 28 (J&J) days after completion of a vaccine regimen. Pre-vaccine and post-vaccine endpoint titers are shown for: (A) IgG reactivity. (B) IgA reactivity. (C) Secretory antibody reactivity. Left panel, Moderna vaccine; center panel, Pfizer vaccine; right panel, J&J vaccine. Each plot indicates the percent of vaccine recipients exhibiting > 2-fold increase in specific endpoint titer between pre- and post-vaccine milk samples. (D) Fold increases in endpoint titers are shown for each vaccine group as indicated. ****p<0.0001; **0.0001<p<0.009. Mean values with SEM are shown.

Figure 3. Correlation analyses. Endpoint titers calculated in Fig.1 were used in 2-tailed Spearman correlation tests. (A) Correlation analysis of IgA versus IgG reactivity. (B) Correlation analysis of IgA versus secretory antibody reactivity. (C) Correlation analysis of IgG versus secretory antibody reactivity. Left panel, Moderna vaccine; center panel, Pfizer vaccine; right panel, J&J vaccine.
References

1. COVID Data Tracker. 2021, Centers for Disease Control and Prevention.
16. Demers-Mathieu, V., et al., Comparison of Human Milk Immunoglobulin Survival during Gastric Digestion between Preterm and Term Infants. Nutrients, 2018. 10(5).
29. Fox, A., et al., The Spike-specific IgA in milk commonly-elicited after SARS-Cov-2 infection is concurrent with a robust secretory antibody response, exhibits neutralization potency strongly correlated with IgA binding, and is highly durable over time. medRxiv, 2021: p. 2021.03.16.21253731.
32. Lacsa, J.E.M., COVID-19 vaccine hesitancy: 'best vaccine is the one that is available' versus 'waiting for what is good is the best option'. J Public Health (Oxf), 2021.
A Correlation between milk IgG and IgA reactivity to SARS-CoV-2 Spike after Moderna Vaccine

B Correlation between milk IgA and secretory antibody reactivity to SARS-CoV-2 Spike after Moderna Vaccine

C Correlation between milk IgG and secretory antibody reactivity to SARS-CoV-2 Spike after Moderna Vaccine

D Correlation between milk IgG and secretory antibody reactivity to SARS-CoV-2 Spike after Pfizer Vaccine

E Correlation between milk IgA and secretory antibody reactivity to SARS-CoV-2 Spike after Pfizer Vaccine

F Correlation between milk IgG and secretory antibody reactivity to SARS-CoV-2 Spike after J&J Vaccine

G Correlation between milk IgA and secretory antibody reactivity to SARS-CoV-2 Spike after J&J Vaccine

H Correlation between milk IgG and secretory antibody reactivity to SARS-CoV-2 Spike after J&J Vaccine

<table>
<thead>
<tr>
<th>Correlation</th>
<th>r</th>
<th>P (two-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.2168</td>
<td>0.4990</td>
</tr>
<tr>
<td>B</td>
<td>0.7099</td>
<td>0.0058</td>
</tr>
<tr>
<td>C</td>
<td>0.006993</td>
<td>0.9910</td>
</tr>
<tr>
<td>D</td>
<td>0.4654</td>
<td>0.0242</td>
</tr>
<tr>
<td>E</td>
<td>0.6658</td>
<td>0.0010</td>
</tr>
<tr>
<td>F</td>
<td>0.7818</td>
<td>0.0064</td>
</tr>
<tr>
<td>G</td>
<td>0.7017</td>
<td>0.0097</td>
</tr>
<tr>
<td>H</td>
<td>0.4458</td>
<td>0.0330</td>
</tr>
</tbody>
</table>