Vitamin D status is associated with iron status, but not anemia, in African children

Authors’ affiliations

Centre for Geographic Medicine Research-Coast, KEMRI-Wellcome Trust Research Programme, Kenya Medical Research Institute (KEMRI), Kilifi, Kenya.
KEMRI-Wellcome Trust Research Programme - Accredited Research Centre, Open University, Kilifi, Kenya.
Department of Clinical Biochemistry, Oxford University Hospitals, Oxford, UK.
Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, UK.
Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, UK.
Medical Research Council (MRC) International Statistics Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
African Leadership in Vaccinology Expertise (Alive), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
Groupe de Recherche Action en Sante (GRAS), Ouagadougou 06, 06 BP 10248, Burkina Faso.
Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.
South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia.
Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
South African Medical Research Council/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, University of the Witwatersrand, Johannesburg, South Africa.
Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK.
Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA.
Department of Infectious Diseases and Institute of Global Health Innovation, Imperial College, London, UK.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Department of Paediatrics, University of Oxford, Oxford, UK.

Running title: Vitamin D and iron status in Africa

*Correspondence to:

Reagan M Mogire, Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, PO Box 230, Kilifi, Kenya, e-mail: reaganmoseti@gmail.com Tel: +254 709 983274

Sarah H Atkinson, Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, PO Box 230, Kilifi, Kenya, e-mail; satkinson@kemri-wellcome.org, phone number; +254 709 983000

Funding

This work was funded by Wellcome [grant numbers SHA 110255, TNW 202800, AJM 106289 and AME 064693, 079110, 095778], and with core awards to the KEMRI-Wellcome Trust Research Programme [203077]. AA is supported by the Intramural Research Program of the National Institutes of Health in the Center for Research on Genomics and Global Health (CRGGH). The CRGGH (1ZIAHG200362) is supported by the National Human Genome Research Institute, the National Institute of Diabetes and Digestive and Kidney Diseases, the Center for Information Technology, and the Office of the Director at the National Institutes of Health. RMM is supported through the Developing Excellence in Leadership, Training and Science (DELTAS) Africa Initiative [DEL-15-003]. The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Sciences (AAS)’s Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africa’s Development Planning and Coordinating Agency (NEPAD Agency) with funding from Wellcome [107769] and the UK government. The Gambian work was supported by the UK MRC (U1232661351, U105960371 and MC-A760-5QX00) and DFID under the MRC/DFID Concordat. The views expressed in this publication are those of the authors and not necessarily those of AAS, NEPAD Agency, Wellcome or the UK government. For the purpose of Open Access, the authors have applied a CC-BY public copyright licence to any author accepted manuscript version arising from this submission.
The funders had no role in the study design, data collection, data analysis, data interpretation, or writing of the report.

Conflicts of Interest

The authors report no conflicts of interest.

Abbreviations used: 1,25(OH)₂D, 1,25-dihydroxyvitamin D; 25(OH)D, 25-hydroxyvitamin D; ACT, α₁-antichymotrypsin; CRP, C-reactive protein; DEQAS, Vitamin D External Quality Assessment Scheme; FGF23, fibroblast growth factor 23; HAMP, hepcidin gene; ID, iron deficiency; IDA, iron deficiency anemia; IL6, interleukin 6; IL1B, interleukin 1 beta; IQR, interquartile range; JAK-STAT3, Janus kinase-signal transducer and activator of transcription 3; RCT, randomized clinical trial; sTfR, soluble transferrin receptor; TSAT, transferrin saturation; VDRE, vitamin D response element.
Abstract

Nutritional deficiencies, including vitamin D and iron deficiency, are prevalent among children living in sub-Saharan Africa. Vitamin D inhibits the transcription of the iron hormone hepcidin thus permitting efficient iron absorption, and iron deficiency alters vitamin D metabolism. Studies have reported associations between vitamin D and iron status, but little is known about their association in African populations.

Objective

We aimed to evaluate the association between vitamin D and iron status in African children.

Methods

In this cross-sectional study, we measured biomarkers of iron status, inflammation and 25-hydroxyvitamin D (25(OH)D) levels in 4509 children aged 0.3 months to 8 years from Kenya, Uganda, Burkina Faso, The Gambia and South Africa. We used regression analyses to evaluate the association between vitamin D and iron status.

Results

Stunting, underweight, inflammation and malaria were highly prevalent. Overall prevalence of iron deficiency was 35.1%, while the prevalence of vitamin D deficiency was 0.6% and 7.8% as defined by 25(OH)D levels of <30 nmol/L and <50 nmol/L respectively. Children with 25(OH)D levels <50 nmol/L had an 80% increased risk of iron deficiency (OR 1.80 [95% CI 1.40, 2.31]) and had lower hepcidin levels than those with 25(OH)D levels >75 nmol/L. 25(OH)D levels were positively associated with ferritin, hepcidin and soluble transferrin receptor levels and negatively associated with serum iron and transferrin saturation in multivariable regression analyses. Vitamin D status was not associated with hemoglobin levels or anemia.

Conclusions
These findings suggest that vitamin D deficiency may variably influence different iron compartments and measures of iron status in young African children. Additional research is required to confirm these findings and determine direction of causality. The interplay between vitamin D and iron status should be considered in strategies to manage these nutrient deficiencies in African populations.

Keywords

Vitamin D deficiency, iron deficiency, hepcidin, ferritin, soluble transferrin receptor, hemoglobin, serum iron, transferrin saturation, anemia, children, Africa.
Introduction

Vitamin D and iron deficiency are two of the most common nutrient deficiencies worldwide (1, 2). Approximately 23% and 52% of children living in Africa are estimated to have vitamin D and iron deficiency, respectively (3, 4). Vitamin D deficiency has been linked to rickets and many infectious diseases (1) while iron deficiency is a major cause of anemia, impaired development and disability in children (2, 5).

Previous in vitro and animal studies point to a complex interplay between vitamin D and iron metabolism (illustrated in Figure 1). Higher vitamin D status may improve iron status by decreasing levels of hepcidin, the principal iron-regulatory hormone, through the binding of the 1,25-dihydroxyvitamin D (1,25(OH)2D)–vitamin D receptor complex to the vitamin D response element (VDRE) on the hepcidin gene (HAMP) thus inhibiting its transcription (6), and by suppressing pro-inflammatory cytokines (IL6 and IL1B) (7), thus allowing iron absorption. Conversely, iron deficiency may also cause vitamin D deficiency by decreasing the activity of heme-containing vitamin D-activating enzymes such as 25- and 1α-hydroxylase, as demonstrated in rats (8), or by increasing fibroblast growth factor 23 (FGF23) (9, 10), which suppresses the 1α-hydroxylation of vitamin D (11, 12). However, observational studies and clinical trials have reported mixed findings, and there are few studies in Africa or in young children. A study in African preschool children (n = 500) showed that 25-hydroxyvitamin (25(OH)D) levels were positively correlated with hemoglobin levels in a subgroup of Maasai children (13) and pregnant women supplemented with iron had lower 25(OH)D levels than those receiving placebo, although levels did not differ in cord blood (10). Studies in young, hospital-attending Indian and South Korean children (n = 263 and n = 102, respectively) reported mixed findings, as have nationally
representative surveys in older age groups in South Korea (n = 2526), the USA (n = 5456) and Germany (n = 5066) (14-18).

The aim of the current study was to investigate the associations between vitamin D status, iron deficiency, and anemia in 4509 young children living in countries across the African continent.

Methods

Study population

This study included cross-sectional data from young children living in Kenya, Uganda, Burkina Faso, The Gambia and South Africa, as described below.

Kilifi, Kenya (0.3 months–8 years): This is an ongoing community-based cohort aimed at evaluating immunity to malaria in children living in Kilifi, Kenya (19). Children are followed up from birth up to a maximum of 13 years with annual cross-sectional bleeds and weekly monitoring for malaria. 25-hydroxyvitamin D (25(OH)D), iron and inflammatory biomarkers, anthropometry, and malaria parasitemia were measured from a single cross-sectional bleed based on the availability of plasma samples archived at -80°C.

Entebbe, Uganda (1–5 years): The Entebbe Mother and Baby Study (EMaBS) is a prospective birth cohort study that was designed as a randomized controlled trial aimed at evaluating the effects of helminths and anthelmintic treatment on immunological and disease outcomes (20). Blood samples were collected at birth and at subsequent birthdays up to five years of age. 25-hydroxyvitamin D (25(OH)D), iron and inflammatory biomarkers, anthropometry, and malaria parasitemia were measured from a single annual visit based on the availability of stored samples.
Banfora, Burkina Faso (6 months–2.5 years): The VAC050 ME-TRAP Malaria Vaccine Trial was a clinical trial aimed at testing the effectiveness, safety and immunogenicity of a malaria vaccine in infants aged between six and 17 months (21). 25-hydroxyvitamin D (25(OH)D), iron and inflammatory biomarkers, anthropometry, and malaria parasitemia were measured at a single time point.

West Kiang, The Gambia (2–6 years): This study included children aged between two and six years recruited from rural villages in the West Kiang district in The Gambia prior to the malaria season as previously described (22). Biomarkers, anthropometry and malaria parasitemia were measured during a single cross-sectional survey.

Soweto, South Africa (4 months–2.8 years): The Soweto Vaccine Response Study comprised of children who were participating in clinical vaccine trials. Samples for the current study were obtained from infants aged around 12 months. This cohort was not exposed to malaria and did not have anthropometric or hemoglobin measurements (23).

Laboratory assays

25(OH)D levels, iron and inflammatory biomarkers were assayed as previously described (4, 24) and are summarized in Supplementary Methods 1. The assays showed satisfactory performances as monitored by both external quality assurance schemes (including UK National External Quality Assessment Scheme and DEQAS) and 4-hourly internal quality control assessments. Overall coefficient of variation for 25(OH)D measurements ranged from 2.8% to 7.9%. Over the duration of analyses, three sets of external quality assurance (DEQAS) data showed the 25(OH)D assay to have a mean (SD) bias of -2.7% (7.6) against the all-laboratory trended 25(OH)D values, and one of -0.4% (7.7) against the target values.
Malaria parasitaemia was detected by blood film microscopy using the Giemsa staining technique.

Definitions

Vitamin D status was defined using 25(OH)D cutoffs of <30 nmol/L, <50 nmol/L and 50–75 nmol/L (25, 26). Inflammation was defined as CRP levels >5 mg/L or ACT >0.6 g/L (27). Iron deficiency was defined using WHO guidelines as plasma ferritin <12µg/L or <30µg/L in the presence of inflammation in children <5 years old, and as <15µg/L or <70µg/L in the presence of inflammation in children ≥5 years old (28). Transferrin saturation (TSAT) was calculated as (serum iron in µmol/L/transferrin in g/L × 25.1) x 100 (29). Anemia was defined as hemoglobin <11 g/dL in children aged <5 years, or hemoglobin <11.5 g/dL in children ≥5 years and iron deficiency anemia as the presence of both iron deficiency and anemia (30). Malaria parasitaemia was defined as the presence of *Plasmodium* parasites in blood. Stunting was defined as height-for-age z-scores (HAZ) <-2 and underweight as weight-for-age (WAZ) <-2 according to 2006 WHO child growth standards (31).

Statistical analyses

Statistical analyses were conducted using STATA 15.0 (StataCorp., College Station, TX). All biomarkers except transferrin and hemoglobin were natural log-transformed to normalize their distribution for regression analyses. Logistic and linear regression analyses were performed to evaluate the associations between vitamin D status (ln-25(OH)D levels and 25(OH)D levels of <50, between 50–75, and >75 nmol/L) and iron deficiency, anemia and individual markers of iron status, where appropriate. Multivariable models were adjusted for study site, age, sex, season and inflammation. Regression models included only observations with values for all the variables included in the model. Since inflammation alters markers of
iron status, we stratified by inflammation in secondary multivariable regression analyses and tested for interactions between inflammation and 25(OH)D levels in predicting individual markers of iron status.

Results

Characteristics of study participants

The study included 1361 Kenyan, 1301 Ugandan, 329 Burkinabe, 629 Gambian and 889 South African children. The characteristics of study participants are presented in Table 1. The children had a median age of 23.9 months (IQR 12.3, 35.9) and 49.1% were girls. Prevalence of stunting, underweight, inflammation and malaria parasitemia were high and varied by country. Overall median 25(OH)D levels were 77.0 (95% CI 76.3, 77.7) nmol/L. Prevalence of vitamin D deficiency was 0.6% and 7.8% using 25(OH)D cutoffs of <30 nmol/L and <50 nmol/L respectively, while 35.4% of children had levels between 50–75 nmol/L. Since few children had 25(OH)D levels <30 nmol/L, the <50 nmol/L cutoff was used for further analyses. Prevalence of iron deficiency, iron deficiency anemia and anemia was 35.1%, 23.0% and 61.6%, respectively. South African children had the highest prevalence of low vitamin D status (25(OH)D <50 nmol/L) and iron deficiency at 13.5% and 42.0%, respectively.

Vitamin D status is associated with iron status

The prevalence of iron deficiency was higher in children with 25(OH)D levels of <50 nmol/L (41.8%; 95% CI 36.7, 47.1) compared to those with levels >75 nmol/L (35.8% [95% CI 33.9, 37.2]). Similarly, the prevalence of vitamin D deficiency was higher in iron deficient children (9.3% [95% CI 7.9, 10.8] compared to those who were iron replete (7.0% [95% CI 6.1, 8.0]) (Supplementary Figure 1). In overall multivariable logistic regression analyses, 25(OH)D
levels <50 nmol/L increased the odds of iron deficiency by 80% (OR 1.80 [95% CI 1.40, 2.31]) compared to 25(OH)D levels >75 nmol/L although associations varied by country. 25(OH)D levels <50 nmol/L showed limited evidence of association with risk of IDA (OR 1.41 [95% CI 0.97, 2.07]) (Table 2). Ferritin levels were similarly lower in children with 25(OH)D levels <50 nmol/L (15.2 µg/L [95% CI 13.4, 17.2]) compared to those with 25(OH)D levels >75 nmol/L (20.5 µg/L [19.6, 21.3]) (Supplementary Table 2).

Children with 25(OH)D levels <50 nmol/L had lower hepcidin levels (5.3 µg/L [95% CI 4.6, 6.1]) compared to those with 25(OH)D levels >75 nmol/L (6.4 µg/L [95% CI 6.1, 6.6]) (adjusted beta -0.30 [95% CI -0.45, -0.16], p <0.0001) in keeping with iron deficiency. However, sTfR, and transferrin levels were lower, and serum iron and TSAT levels were higher, in children with 25(OH)D levels <50 nmol/L compared to those with 25(OH)D levels >75 nmol/L in unadjusted (Figure 2), and adjusted models (Supplementary Table 2) suggesting improved iron status. 25(OH)D levels were highly correlated with all of the iron markers except hepcidin (Supplementary Figure 2) and in linear regression analyses controlling for age, sex, season, inflammation and study site, 25(OH)D levels were positively associated with ferritin, hepcidin, sTfR, and transferrin levels, and negatively associated with serum iron concentrations and TSAT (Figure 3).

CRP levels also differed by vitamin D status and were lowest in children with 25(OH)D levels <50 nmol/L, higher in those with levels between 50–75 nmol/ and highest in those with levels >75 nmol/L (Figure 2 H). Since inflammation alters measures of iron status and also differs by vitamin D status, we further stratified by the presence of inflammation and looked for interactions between inflammation and 25(OH)D levels in predicting iron status. We observed that 25(OH)D levels remained highly associated with measures of iron status in the
absence of inflammation in multivariable linear regression analyses (Figure 3). We also found an interaction between inflammation and 25(OH)D levels in predicting ferritin levels, so that in children with inflammation a unit change in 25(OH)D levels was associated with a smaller unit change in ferritin levels than in children without inflammation (Supplementary Table 3).

Vitamin D status is not associated with hemoglobin levels or anemia

Hemoglobin levels did not differ by vitamin D status (Figure 2). Similarly, low vitamin D status (25(OH)D levels <50 nmol/L) was not associated with anemia in overall multivariable logistic regression analyses or in individual study sites, except in The Gambia where it was associated with higher odds of anemia (OR 2.75 [95% CI 1.45, 5.17]) compared to 25(OH)D levels >75 nmol/L (Table 2). Hemoglobin levels were similarly not associated with 25(OH)D levels in multivariable regression analyses (Figure 3).

Discussion

Nutritional deficiencies, including iron deficiency, are highly prevalent among young children living in Africa and may alter the metabolism of other nutrients. In the current study, low vitamin D status (defined here as 25(OH)D levels <50 nmol/L) was associated with an 80% increased risk of iron deficiency and iron deficient children similarly had a higher prevalence of low vitamin D status. Low vitamin D status was associated with reduced levels of ferritin and hepcidin in keeping with increased iron deficiency, but was also associated with reduced sTfR and transferrin levels and increased TSAT and serum iron levels suggesting improved iron status in these iron compartments. These associations were observed after adjusting for inflammation in multivariable models and in the absence of inflammation. We found limited evidence of increased risk of iron deficiency anemia in
vitamin D deficient children, and no evidence of association between vitamin D status and anemia or hemoglobin levels.

Low vitamin D status was associated with increased risk of iron deficiency and low ferritin levels in young African children in this study. This finding varied by country, with the strongest association observed in South African children. These findings are consistent with a nationally representative survey of 2526 children and young adults aged between 10 to 20 years from South Korea, which showed that vitamin D deficiency (25(OH)D levels <37.5 nmol/L) was associated with a 94% increased odds of iron deficiency (OR 1.94 [95% CI, 1.27–2.97]) (15). Vitamin D deficiency was also associated with increased risk of iron deficiency in a national survey of women in South Korea (n=10,169) (32), female athletes in Poland (n=219) (33) and pregnant women in Indonesia (n=203) (34). However, four other observational studies including a national survey of 5066 German adolescents (aged from 11 to 17 years) found no association between vitamin D status and ferritin levels (Supplementary Table 4). Vitamin D supplementation also had no effect on ferritin levels in 14 out of 15 clinical trials (Supplementary Table 5). We found that 25(OH)D levels more strongly influenced ferritin and other iron measures in the absence of inflammation, suggesting that inflammation may attenuate the effect of vitamin D status on these markers of iron status, perhaps explaining the stronger association observed in South African children. We observed limited evidence of association between low vitamin D status and increased odds of iron deficiency anemia. In contrast, five studies have reported a positive association between vitamin D deficiency and iron deficiency anemia (Supplementary Table 4), although the causes of anaemia in African children are likely to be different from those in these studies.

In the current study, 25(OH)D levels were inversely associated with hepcidin levels in multivariable models and hepcidin levels were lower in children with low vitamin D status.
compared to those with 25(OH)D levels >75 nmol/L. In agreement, Japanese patients with rheumatoid arthritis with 25(OH)D levels <75 nmol/L had lower hepcidin levels than those with 25(OH)D levels >75 nmol/L (35), although another study in patients with inflammatory bowel disease found higher hepcidin levels (n=69), and no association was observed in healthy Mexican adults (n=783) (Supplementary Table 4) (36). In contrast to our study, four out of nine clinical trials conducted in the USA and Japan, including two in healthy adults, reported that vitamin D supplementation (with doses ranging from 3000 – 250,000 IU per day) decreased hepcidin levels, while five other trials (with doses ranging from 1000 IU to 10,000 per day) did not report any effects (Supplementary Table 5). In vitro and animal studies indicate that vitamin D can decrease hepcidin levels by either directly inhibiting transcription of the hepcidin gene (HAMP), suppressing the production of pro-inflammatory cytokines IL-6 and IL-1B, or by activating the JAK-STAT3 pathway (Figure 1) (6, 7, 37).

The converse finding of lower hepcidin levels in vitamin D deficient children in our study is likely due to the increased prevalence of iron deficiency in the vitamin D deficient children since iron deficiency is known to exert a powerful inhibitory effect on hepcidin expression in African children (38).

Low vitamin D status was however associated with improved iron status for other markers of iron status, that is, increased serum iron and TSAT and decreased transferrin and sTfR levels compared to 25(OH)D levels >75 nmol/L. A single study investigating the association between TSAT and 25(OH)D levels observed that higher 25(OH)D levels were associated with increased TSAT in healthy adolescent Saudi boys, although not in girls or in pooled analyses (39). A clinical trial of 125 Saudi children also reported that 1000 IU of vitamin D supplement per day decreased TSAT (40), although five other trials observed no effect (Supplementary Table 5). In contrast to our study, seven observational studies reported no association between vitamin D status and serum iron levels and two found that low vitamin D
status was associated with reduced serum iron levels (Supplementary Table 4). Clinical trials of the effect of vitamin D supplementation have reported mixed associations with one trial reporting decreased and one increased serum iron levels in the treatment group, and others no association (Supplementary Table 5). In contrast to our study, vitamin D deficiency was associated with increased sTfR levels in two observational studies involving children and adolescents in Germany (16) and in Polish athletes (33). However, vitamin D supplementation had no effect on sTfR or transferrin levels in three clinical trials (Supplementary Table 5). There may be a few explanations for the higher serum iron and TSAT and lower sTfR levels observed in vitamin D deficient children in the current study. It is possible that the lower hepcidin levels observed in vitamin D deficient children may have led to increased iron absorption (41) resulting in higher serum iron levels and TSAT and higher vitamin D status has been suggested to promote erythropoiesis (42) which may explain lower sTfR levels in vitamin D deficient children.

In the current study, low vitamin D status was not associated with hemoglobin levels or anemia. In agreement with our study, two studies involving healthy children from China (n = 1218, aged 0.5 – 14 years) and Jordan (n= 203, aged 0.5 – 3 years) did not find an association between vitamin D status and hemoglobin levels or anemia, although other observational studies (18 out of 22), including one in school going children aged between 3–5 years in Kenya, reported a positive association (Supplementary Table 4). A systematic review and meta-analysis of seven observational studies with 5183 participants showed that vitamin D deficiency was associated with 84% higher odds of anemia (OR 2.25, 95% CI 1.47-3.44) (43). Clinical trials that investigated the effect of vitamin D interventions on hemoglobin levels or anemia status have also reported mixed findings with many studies showing no effect (Supplementary Table 5). Hemoglobin levels are influenced by many factors, including...
malaria, undernutrition and sickle cell disease, in African children and this may explain why we did not observe an association between vitamin D status and anemia in our study. Conversely, iron status is also likely to have influenced vitamin D status and we observed a higher prevalence of low vitamin D status in children with iron deficiency. Since our study was observational we were unable to ascertain the direction of causality between vitamin D and iron status. Iron deficiency may lead to vitamin D deficiency via a number of pathways including by reducing the activity of heme-containing vitamin D metabolizing enzymes such as 25-hydroxylase and 1-alpha-hydroxylase (8) or by reducing vitamin D absorption in the gastrointestinal tract through impairing epithelial function (44) (Figure 1). Iron deficiency has also been shown to increase levels of fibroblast growth factor 23 (FGF23) levels (9, 10) which suppresses 1α-hydroxylase activity (11, 12). Heldenberg and colleagues have also reported that intramuscular administration of iron dextran or iron-fortified formula milk in 25 infants with iron deficiency anemia resulted in increased 25(OH)D levels, although no placebo group was included (45). In contrast, pregnant Kenyan women (n = 433) supplemented with iron from 13–23 weeks of gestation until 1 month postpartum had lower 25(OH)D levels than those who received a placebo, although no differences were observed in cord blood (10). In addition, another study found no effects of iron fortified juice on 25(OH)D levels in 41 iron deficient women (46).

Our study had a number of strengths. To the best of our knowledge, this is the first study to investigate the association between vitamin D status and iron deficiency in African children. Children living in sub-Saharan Africa have a high burden of iron deficiency, undernutrition and infectious diseases, which might explain why some of our findings differed from studies in European populations. Additionally, we included a large number of healthy children (n = 4509) living in five different countries across Africa. We also measured a wide range of iron...
biomarkers which enabled us to evaluate how vitamin D status is associated with various
aspects of iron status. However, our study had some limitations. First, the study was cross-
sectional, hence we could not evaluate temporal changes in the observed associations or
determine the direction of causality and there may have been other unmeasured confounders
that influenced our findings. Secondly, we only included young children in our study which
may limit the generalizability of our findings to other age groups. Our findings also varied by
country, which may be because different factors influence iron and vitamin D status across
the African continent. We also did not collect information that may have influenced vitamin
D or iron status such as dietary intake, sunlight exposure or hookworm infections.

In conclusion, our findings suggest that vitamin D status is linked with iron status in young
African children, with the direction of association varying depending on the iron status
marker. Low vitamin D status was associated with iron deficiency as indicated by reduced
ferritin and hepcidin levels, although reduced sTfR and increased serum iron and TSAT
suggests that these children may be more iron replete. There is a need for further studies to
understand the associations between vitamin D and iron deficiency and determine causality
and putative mechanisms of action in African populations.

Acknowledgements: The authors would like to thank the teams at the KEMRI-Wellcome
Trust Research Programme in Kenya, UVRI/MRC Entebbe Mother and Baby Study in
Uganda, the Malaria Vectored Vaccines Consortium (MVVC) in Burkina Faso, the
Respiratory and Meningeal Pathogens Unit (RMPRU) in South Africa, and the MRC Unit
in The Gambia at London School of Hygiene and Tropical Medicine in The Gambia. In
addition, the authors wish to specifically express their gratitude to Jedidah Mwacharo and Barnes Kitsao at the KEMRI-Wellcome Trust Research Programme for assisting in sample retrieval.

Ethics approval and consent to participate

Informed written consent was obtained from all children’s parents or guardians before inclusion in the study. Ethical approvals were granted by the Scientific Ethics Review Unit of the Kenya Medical Research Institute (KEMRI/SERU/CGMR-C/046/3257) in Kenya, the Uganda Virus Research Institute (GC/127/12/07/32) and Uganda National Council for Science and Technology (MV625) in Uganda, by Ministere de la Recherche Scientifique et de l’Innovation (reference 2014-12-151) in Burkina Faso, the Gambian Government and the Medical Research Council Ethics Review Committee in The Gambia (874/830), the University of Witwatersrand Human Research Ethics Committee (M130714) in South Africa and in the UK by the London School of Hygiene and Tropical Medicine (A340) and the Oxford Tropical Research Ethics Committees (39-12, 41-12, 42-14, and 1042-13).

Authorship contributions

RMM, JMM, AA, TNW and SHA conceived and designed the study. Data was obtained by all the authors and analysed by RMM, JMM, and SHA. RMM and SHA wrote the first draft of the manuscript. RMM, JMM, AJM, EMW, WK, AWM, FMN, CC, SBS, AD, ABT, SAL, AM, SAM, AMP, PB, JMP, AME, AA , TNW, SHA contributed to data interpretation, reviewed successive drafts and approved the final version of the manuscript. The sponsors played no role in the study design, data collection, data analysis, data interpretation or writing of the report.

Conflict of Interest Disclosures
Authors declare no conflict of interest.

Data availability

The data and analyses scripts underlying this article are available in Harvard Dataverse at https://doi.org/10.7910/DVN/A78P8B and applications for data access can be made through the Kilifi Data Governance Committee cgmrc@kemri-wellcome.org.

Figure legends

Figure 1. Metabolism of vitamin D and iron is interlinked. 1,25(OH)2D may influence iron status by reducing hepcidin levels through directly binding to the vitamin D response element (VDRE) in the promoter region of the hepcidin gene (*HAMP*), decreasing pro-inflammatory cytokines (e.g. IL6, IL1B) and supporting erythropoiesis (6, 7, 37, 47). Low iron status may also influence vitamin D status by decreasing the activity of vitamin D metabolising enzymes (25- and 1α-hydroxylase) (8) and increasing FGF23 (48). High levels of FGF23 suppress 1α-hydroxylase activity thus reducing 1,25(OH)2D levels (14, 16).

Abbreviations: sTfR, soluble transferrin receptor; DMT1, divalent metal transporter 1; DBP vitamin D binding protein; Cp, ceruloplasmin; FGF23, fibroblast growth factor 23; RBC, red blood cell; 7-DHC, 7-dehydrocholesterol.

Figure 2. Boxplot of iron markers and CRP levels by vitamin D status categories. Children with 25(OH)D levels <50 nmol/L had lower levels of ferritin (A), hepcidin (B), sTfR (C), transferrin (D), and higher serum iron levels (E) and TSAT (F) compared to children with 25(OH)D levels >75nmol/L. CRP levels (H) were lower in the group with 25(OH)D levels <50 nmol/L. P values were obtained from two-sample Wilcoxon rank-sum (Mann-Whitney) test. Median (IQR) values and associated p values are presented in Supplementary Table 2. Abbreviations: TSAT, transferrin saturation; sTfR, soluble transferrin receptor. Test of significance p value; not significant (ns) > 0.05; * <0.05, ** <0.01, *** 0.001.

Figure 3. Effect of 25(OH)D levels on iron markers overall (dark grey) and in children with and without inflammation (black and light grey lines respectively). Both the dependent and independent variables (except transferrin and hemoglobin) were log-transformed before inclusion in the linear model. Thus the beta values may be interpreted as follows: a 1% change in 25(OH)D levels corresponds to a beta % change in the individual iron markers. All models were adjusted for age, sex, season, and study site and the overall model was additionally adjusted for inflammation. Inflammation was defined as CRP > 5 mg/L or ACT >0.6 g/L (ACT, but not CRP was available for The Gambia). Error bars indicate 95% confidence intervals. Abbreviations: TSAT, transferrin saturation; sTfR, soluble transferrin receptor.
Supplementary Figure 1. Prevalence of iron status by vitamin D status categories (i) and prevalence of vitamin D status by iron status categories (ii). Iron deficiency was defined as plasma ferritin <12µg/L or <30µg/L in the presence of inflammation in children <5 years old, or <15µg/L or <70µg/L in the presence of inflammation in children ≥5 years old. Inflammation was defined as CRP > 5 mg/L or ACT >0.6 g/L (ACT, but not CRP was available for The Gambia). A chi-squared test ($prtest$) was used to test the significance in difference in proportion of low vitamin status (25(OH)D levels <50 or 50–75 nmol/L) within each category with the first category as the reference.

Supplementary Figure 2. Scatter and regression plots of markers of iron status and C-reactive protein against log 25(OH)D levels. Abbreviations: TSAT, transferrin saturation; sTfR, soluble transferrin receptor; CRP, C-reactive protein.
References

Table 1. Characteristics of study participants

<table>
<thead>
<tr>
<th>Participant characteristics</th>
<th>Overall</th>
<th>Kenya</th>
<th>Uganda</th>
<th>Burkina Faso</th>
<th>The Gambia</th>
<th>South Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total participants, n/total (%)</td>
<td>4509</td>
<td>1361/4509 (30.2%)</td>
<td>1301/4509 (28.9%)</td>
<td>329/4509 (7.3%)</td>
<td>629/4509 (13.9%)</td>
<td>889/4509 (22.9%)</td>
</tr>
<tr>
<td>Median age in months (IQR)</td>
<td>23.9 (12.3, 35.9)</td>
<td>19.8 (12.7, 36.8)</td>
<td>24.0 (23.9, 35.9)</td>
<td>23.4 (19.7, 26.4)</td>
<td>46.6 (35.2, 58.7)</td>
<td>12.0 (11.9, 12.1)</td>
</tr>
<tr>
<td>Females, n/total (%)</td>
<td>2216/4509 (49.1%)</td>
<td>671/1361 (49.3%)</td>
<td>641/1301 (49.3%)</td>
<td>161/329 (48.9%)</td>
<td>297/629 (47.2%)</td>
<td>446/889 (50.2%)</td>
</tr>
<tr>
<td>Malaria parasitaemia(^1), n/total (%)</td>
<td>445/3293 (13.5%)</td>
<td>227/1082 (20.8%)</td>
<td>89/1280 (6.9%)</td>
<td>64/303 (21.1%)</td>
<td>65/628 (10.4%)</td>
<td>n/a</td>
</tr>
<tr>
<td>Inflammation(^2), n/total (%)</td>
<td>1019/4469 (22.8%)</td>
<td>363/1344 (27.0%)</td>
<td>306/1285 (23.8%)</td>
<td>109/322 (33.9%)</td>
<td>85/629 (13.5%)</td>
<td>156/889 (17.6%)</td>
</tr>
<tr>
<td>Stunting, n/total (%)(^3)</td>
<td>581/2289 (25.4%)</td>
<td>99/208 (47.6%)</td>
<td>203/1282 (15.8%)</td>
<td>103/307 (33.5%)</td>
<td>176/492 (35.8%)</td>
<td>n/a</td>
</tr>
<tr>
<td>Underweight, n/total (%)(^4)</td>
<td>389/2487 (15.6%)</td>
<td>102/389 (26.2%)</td>
<td>103/1296 (8.0%)</td>
<td>58/309 (18.8%)</td>
<td>126/493 (25.6%)</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Vitamin D status

| Median 25(OH)D (nmol/L) | 77.0 (76.3, 77.7) | 81.9 (80.4, 83.3) | 78.3 (77.0, 79.5) | 77.3 (75.0, 79.6) | 70.4 (69.0, 71.9) | 72.8 (71.2, 74.5) |

| 25(OH)D > 75 nmol/l | 2485/4509 (55.1%) | 815/1361 (59.9%) | 756/1301 (58.1%) | 186/329 (56.5%) | 265/629 (42.1%) | 463/889 (52.1%) |

| 25(OH)D 50–75 nmol/l | 1674/4509 (37.1%) | 464/1361 (34.1%) | 479/1301 (36.8%) | 123/329 (37.4%) | 302/629 (48.0%) | 306/889 (34.4%) |

| 25(OH)D < 50 nmol/l | 350/4509 (7.8%) | 82/1361 (6.0%) | 66/1301 (5.1%) | 20/329 (6.1%) | 62/629 (9.9%) | 120/889 (13.5%) |

| 25(OH)D < 30 nmol/l | 28/4509 (0.6%) | 4/1361 (0.3%) | 5/1301 (0.4%) | 0 (0%) | 2/629 (0.3%) | 17/889 (1.9%) |

Iron status

| Iron deficiency\(^5\), n/total (%) | 1546/4399 (35.1%) | 491/1322 (37.1%) | 433/1240 (34.9%) | 115/319 (36.1%) | 134/629 (21.3%) | 373/889 (42.0%) |

| Iron deficiency anemia\(^6\), n/total (%) | 661/2880 (23.0%) | 207/791 (26.9%) | 209/1182 (17.7%) | 96/304 (31.6%) | 107/623 (17.2%) | n/a |

| Anemia\(^7\), n/total (%) | 1829/2971 (61.6%) | 556/793 (70.1%) | 623/1241 (50.2%) | 274/314 (87.3%) | 376/623 (62.4%) | n/a |

Biomarker medians (IQR)

| Ferritin (µg/L) | 20.5 (10.4, 39.5) | 21.4 (10.2, 46.4) | 20.8 (10.0, 40.6) | 20.9 (10.2, 45.1) | 25.7 (15.3, 42.3) | 16.6 (9.1, 27.9) |

| Haptoglobin (µg/L) | 7.2 (2.7, 16.1) | 6.2 (2.2, 14.3) | 7.2 (3.0, 15.9) | 5.8 (2.2, 14.3) | 7.9 (2.8, 16.6) | 8.7 (3.7, 18.8) |

| sTfR (mg/L) | 11.3 (6.0, 16.8) | 17.2 (13.7, 22.7) | 7.0 (4.7, 10.0) | 17.3 (12.8, 24.7) | 3.2 (2.7, 4.2) | 11.3 (8.9, 13.8) |

| Transferrin (µg/L) | 2.8 (2.4, 3.1) | 2.8 (2.4, 3.1) | 2.7 (2.4, 3.1) | 2.7 (2.4, 3.1) | n/a | 2.8 (2.4, 3.1) |

| Iron (µmol/L) | 7.0 (4.8, 10.5) | 6.7 (4.6, 9.8) | n/a | 6.1 (4.2, 8.7) | 8.7 (6.1, 12.3) | n/a |

| TSAT (%) | 10.4 (6.7, 16.2) | 9.4 (6.2, 14.8) | n/a | 9.2 (5.9, 14.1) | 13.2 (8.6, 19.4) | n/a |

| Hemoglobin (g/dL) | 10.6 (9.6, 11.5) | 10.4 (9.4, 11.2) | 11.0 (10.1, 11.9) | 9.7 (8.9, 10.5) | 10.8 (9.9, 11.5) | n/a |

25(OH)D, 25-hydroxyvitamin D; IQR, interquartile range; n/a, not available; CRP, C-reactive protein; sTfR, soluble transferrin receptors; TSAT, transferrin saturation. \(^1\)Malaria parasitaemia was defined as presence of *Plasmodium* parasitaemia on blood film; \(^2\)inflammation as CRP > 5 mg/L or ACT > 0.6 g/L (ACT, but not CRP was available for The Gambia); \(^3\)stunting as height-for-age Z score < -2 and \(^4\)underweight as weight-for-age Z score < -2; \(^5\)iron deficiency as either plasma ferritin <12µg/L or <30µg/L in the presence of inflammation in children <5 years old, or <15µg/L or <70µg/L in the presence of inflammation in children ≥5 years old; \(^6\)iron deficiency anemia as the presence of both iron deficiency and anemia; \(^7\)anemia as hemoglobin <11 g/dL in children aged <5 years, or hemoglobin <11.5 g/dL in children ≥5 years. \(^*\)Anthropometric and hemoglobin measurements were not available for the South African children and they were not available.
exposed to malaria.

Table 2. Effects of vitamin D status on iron deficiency, iron deficiency anemia and anemia

<table>
<thead>
<tr>
<th>Vitamin D status categories based on 25(OH)D levels</th>
<th>Proportion, n/total (%)</th>
<th>Overall</th>
<th>Kenya</th>
<th>Uganda</th>
<th>Burkina Faso</th>
<th>The Gambia</th>
<th>South Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>>75 nmol/L (reference)</td>
<td>2485/4509 (55.1%)</td>
<td>2425/4399</td>
<td>794/1322</td>
<td>725/1240</td>
<td>178/319</td>
<td>265/629</td>
<td>463/889</td>
</tr>
<tr>
<td>50–75 nmol/L</td>
<td>1674/4509 (37.1%)</td>
<td>1632/4399</td>
<td>450/1322</td>
<td>452/1240</td>
<td>122/319</td>
<td>302/629</td>
<td>306/889</td>
</tr>
<tr>
<td><50 nmol/L</td>
<td>350/4509 (7.8%)</td>
<td>342/4399</td>
<td>78/1322</td>
<td>63/1240</td>
<td>19/319</td>
<td>62/629</td>
<td>463/889</td>
</tr>
<tr>
<td>Iron deficiency</td>
<td></td>
<td>1.11 (0.97, 1.28)</td>
<td>0.86 (0.65, 1.13)</td>
<td>0.95 (0.73, 1.23)</td>
<td>1.12 (0.66, 1.90)</td>
<td>0.82 (0.54, 1.24)</td>
<td>2.45 (1.78, 3.37)</td>
</tr>
<tr>
<td>Iron deficiency anemia</td>
<td></td>
<td>0.93 (0.77, 1.14)</td>
<td>0.91 (0.61, 1.38)</td>
<td>0.91 (0.67, 1.25)</td>
<td>1.12 (0.57, 1.76)</td>
<td>0.98</td>
<td>1.80 (1.40, 2.31)</td>
</tr>
<tr>
<td>Anemia</td>
<td></td>
<td>1.00 (0.84, 1.18)</td>
<td>0.65 (0.45, 0.93)</td>
<td>1.08 (0.84, 1.39)</td>
<td>1.37 (0.65, 2.88)</td>
<td>1.35 (0.96, 1.91)</td>
<td>1.30 (0.94, 1.80)</td>
</tr>
</tbody>
</table>

25(OH)D, 25-hydroxyvitamin D; n/a, not available. Odds ratios and p values were obtained from multivariable logistic regression analyses adjusted for age, sex, season, inflammation and study site. 25(OH)D and CRP levels were ln-transformed to make them normally distributed. 1Iron deficiency was defined as either plasma ferritin <12µg/L or <30µg/L in the presence of inflammation in children <5 years old, or <15µg/L or <70µg/L in the presence of inflammation in children ≥5 years old; 2iron deficiency anemia as the presence of both iron deficiency and anemia; 3anemia was defined as hemoglobin <11 g/dL in children aged <5 years, or hemoglobin <11.5 g/dL in children ≥5 years; inflammation as CRP > 5 mg/L or ACT >0.6 g/L (ACT, but not CRP was available for The Gambia).
i. Prevalence of iron status by categories vitamin D status

A. Iron deficiency

B. Iron deficiency anemia

C. Anemia

ii. Prevalence of vitamin D status by categories iron status

A. Iron deficiency

B. Iron deficiency anemia

C. Anemia