Appropriate relaxation of non-pharmaceutical interventions minimizes the risk of a resurgence in SARS-CoV-2 infections in spite of the Delta variant

Wadim Koslow¹, Martin J. Kühn¹, Sebastian Binder², Margrit Klitz¹, Daniel Abele¹, Achim Basermann¹*, Michael Meyer-Hermann²*

¹ Institute for Software Technology, Department of High-Performance Computing, German Aerospace Center, Cologne, Germany
² Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany

* Shared corresponding authors in alphabetical order: achim.basermann@dlr.de, mmh@theoretical-biology.de

Abstract

We analyze the relaxation of non-pharmaceutical interventions (NPIs) under an increasing number of vaccinations in Germany. For the spread of SARS-CoV-2 we employ a SIR-type model that accounts for age-dependence and includes realistic contact patterns between age groups. The implementation of NPIs occurs on changed contact patterns, improved isolation, or reduced infectiousness when, e.g., wearing masks. We account for spatial heterogeneity and commuting activities in between regions in Germany, and the testing of commuters is considered as a further NPI. We include the ongoing vaccination process and analyse the effect of the B.1.617.2 (Delta) variant, which is considered to be 20% – 60% more infectious than the currently dominant B.1.1.7 (Alpha) variant. We explore different opening scenarios under the ongoing vaccination process by assuming that local restrictions are either lifted in early July or August with or without continued wearing of masks and testing. Our results indicate that we can counteract the resurgence of SARS-CoV-2 despite the Delta variant with appropriate timing for the relaxation of NPIs. In all cases, however, school children are hit the hardest.

Author summary

One of the greatest challenges within the Covid-19 pandemic is to identify the timing and amount of non-pharmaceutical interventions (face masks, travel bans, school closures, etc). In the year 2021 more and more people are vaccinated. When can we finally lift all restrictions and stop wearing masks? In order to provide more insights to this question, we use a mathematical model which is capable of simulating the effects of non-pharmaceutical interventions in Germany while accounting for age-dependent factors as well as commuting activities between regions. We include the vaccination process and analyse the much more infectious Delta coronavirus variant. We simulate scenarios that consider the timing of the return to pre-pandemic contacts as well as when to suspend wearing masks and testing. Our results show that a later opening by 1 August in combination with masks and testing reduces the chance of a further infection wave considerably. In all of our scenarios, the infection manifests in the younger age groups.
Introduction

After one and a half years, the coronavirus disease 2019 (Covid-19) continues to have a tremendous impact on daily life in many countries. Even though the vaccination process is rapidly progressing in Germany, full immunity is still far from achieved. Due to missing vaccine production capacities and logistic challenges, it will take at least a few more months until enough people are vaccinated [1]. Even then, it remains questionable whether the vaccination readiness of the population is sufficiently high in order to reach the herd immunity threshold [2]. However, maintaining compliance with restrictions within the population becomes more challenging as the duration of the pandemic increases, e.g. the risk perception does not vary systematically with case numbers in April 2021 in Germany [3] suggesting strong habituation effects. With a decreasing incidence, relaxation of measures is inevitable and desirable to minimize economic and social costs. Hence, a cautious relaxation of measures in lockstep with increasing vaccination success is generally considered advisable [2,4,5].

The aim of this paper is to simulate different NPI relaxation strategies in Germany and analyze their consequences while the number of vaccinations continues to rise. We specifically investigate the effect on the younger age groups. To this end, we employ our previously developed SIR-type model [6]. In this model, we account for the age-dependence of the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) and include realistic contact patterns between age groups. The implementation of NPIs occurs on changed contact patterns, improved isolation, or reduced infectiousness when, e.g., wearing masks. In order to account for spatial heterogeneity, we use a graph approach and we include high-quality information on commuting activities combined with traveling information from social networks. We expand our model by new compartments to represent the dynamics of the ongoing vaccination process. Additionally, we implement the effect of the B.1.617.2 (Delta) Coronavirus variant, which is considered to be 20% – 60% more infectious than the currently dominant B.1.1.7 (Alpha) variant. We do not intend to provide precise forecasts with our simulations. Instead, we focus on the comparison of different strategies based on our mathematical model that was already validated in [6].

Only few studies analyze the effect of NPIs during the ongoing vaccination process. Patel et al. [7] introduce an agent based SEIR-type model for North Carolina, which simulates different vaccine coverage and efficacy scenarios with NPIs without spatial heterogeneity. Moore et al. use an approach similar to ours for the UK [2,8]. The focus of these studies is on the vaccine efficacy and coverage without distinguishing between different types of NPIs. Bauer et al. [4] and Viana et al. [9] examine NPI relaxation strategies without spatial heterogeneity in the EU and Portugal, respectively. All of these studies are tailored to their specific region, and to our knowledge no such study exists for Germany. Here, Maier et al. [10] discuss the benefits of delaying the second dose of the vaccine without specific focus on NPIs, and the comment [5] generally stresses the lift of restrictions in pace with vaccination. In this paper we want to specifically look at the effect of the timing of NPI release, as well as the subsequent effect of masks and testing while accounting for the impact of school holidays and more contagious variants like the Delta variant in the different age groups.

The paper is structured as follows: First, we introduce the mathematical model. Then, we define scenarios with different relaxation strategies and NPIs. Finally, we present the simulation results and discuss their implications for future decisions on NPI relaxations.
Mathematical model

The base model in this paper corresponds to our previously developed SIR-type model in [6]. In order to sufficiently represent reality with our compartmental model, we use two key ingredients: First, we divide the total population into different age groups that each have their own set of epidemiological parameters as well as their own contact patterns. These patterns represent the connectivity between each age group. Second, we define a graph, where each node represents a single county in Germany with its own SIR model and the edges represent the commuting activity from one county to another. This approach allows us to explicitly consider important spatial information like local infection clusters.

Our original model consists of the following compartments: Susceptible (S), healthy individuals without immune memory of SARS-CoV-2; Exposed (E), who carry the virus but are not yet infectious to others; Carrier (C), who carry the virus and are infectious to others but do not yet show symptoms (they may be pre- or asymptomatic); Infected (I), who carry the virus, are infectious and show symptoms; Hospitalized (H), who experience a severe development of the disease; In Intensive Care Unit (U); Dead (D); and Recovered (R), who cannot be infected again. In the following, the addition of vaccination and the Delta variant is presented.

SIR-type model with vaccination

We expand the model with compartments Partially Vaccinated (S_{pv}), individuals that have received the first dose of the vaccine; Partially Vaccinated Exposed (E_{pv}) who carry the virus despite being partially vaccinated but are not yet infectious to others; Partially Vaccinated Carrier (C_{pv}); Partially Vaccinated Infected (I_{pv}); Partially Vaccinated Hospitalized (H_{pv}); Partially Vaccinated In Intensive Care Unit (U_{pv}).

Additionally, the compartment that we previously defined as “Recovered” will now be considered as “Immune”, since we do not make any distinction between individuals who went through the infection process and those who received the second vaccine dose.

To account for the vaccination, we make a number of simplifying assumptions in our model. We equate fully vaccinated people after three weeks to those who gained immunity by recovering from Covid-19 (100% immune) while in the literature different vaccines show different effectiveness after about 1 week of administering the second dose [11][12]. Partially vaccinated people can still get infected, be infectious to others or experience a severe course of infection [11][12]. Here, we also rather conservatively assume that this reduced protection takes effect 3 weeks after the first dose. We use the probabilities given in the letters section of [11] (14-20 days after first dose) for the chance to get infected, hospitalized, severely infected or dead after the first vaccine dose. We will discuss how we include these chances in detail below for eq. (22).

In order to model commuter testing, we use the compartments C^+ and I^+ from [13] for carriers or infected as well as their partially vaccinated counterparts C_{pv}^+ and I_{pv}^+ who are tested positive while commuting. The compartment C^+ does not have any natural influx and only depends on the number of commuters and testing rates defined between counties on a daily basis. I^+ has only influx from C^+ and can also increase due to testing results.

The model is visualized in Fig. 1. To resolve age-specific disease parameters, we divide the totality of people N into $i = 1, \ldots, n = 6$ different age groups defined in Table 1. Thus, all of our compartments have an age-dependence that we indicate by the subscript i. We also use $Z := \bigcup_{i=1}^{n} Z_i := \bigcup_{i=1}^{n} \{S_i, E_i, C_i, I_i, H_i, U_i, R_i, D_i, \ldots\}$ as a place holder for all age-dependent compartments. We write the whole systems of
Fig 1. SIR-type model with vaccinations. SIR-type model for one German county. We omit the age-dependence index i as well as the compartments C^+ and I^+ for clarity; the blue boxes represent compartments that have been newly added for the vaccination model; see [6] for a full description of the parameters. Here, $C_A = \sum_{j=1}^{n} C_j + C_{pv,j}$ and $I_A = \sum_{j=1}^{n} I_j + I_{pv,j}$.

equations as

\[
\begin{align*}
\frac{dS_i}{dt} &= -S_i\rho_i \sum_{j=1}^{n} \phi_{i,j} \frac{0.5(C_j + C_{pv,j}) + \tilde{\beta}_j(I_j + I_{pv,j})}{N_j}, \\
\frac{dE_i}{dt} &= S_i\rho_i \sum_{j=1}^{n} \phi_{i,j} \frac{(C_j + C_{pv,j}) + \tilde{\beta}_j(I_j + I_{pv,j})}{N_j} - \frac{1}{T_{E_i}} E_i, \\
\frac{dC_i}{dt} &= \frac{1}{T_{C_i}} E_i - \left(1 - \frac{\mu_{R_i}}{T_{C_i}} + \frac{\mu_{C_i}}{T_{C_i}}\right) C_i, \\
\frac{dC^+_i}{dt} &= -\left(1 - \frac{\mu_{R_i}}{T_{C_i}} + \frac{\mu_{C_i}}{T_{C_i}}\right) C^+_i, \\
\frac{dI_i}{dt} &= \frac{1}{T_{C_i}} C_i - \left(1 - \frac{\mu_{H_i}}{T_{H_i}} + \frac{\mu_{I_i}}{T_{H_i}}\right) I_i, \\
\frac{dI^+_i}{dt} &= \frac{1}{T_{C_i}} C^+_i - \left(1 - \frac{\mu_{H_i}}{T_{H_i}} + \frac{\mu_{I_i}}{T_{H_i}}\right) I^+_i, \\
\frac{dH_i}{dt} &= \frac{\mu_{H_i}}{T_{H_i}} I_i + \frac{\mu_{H_i}}{T_{H_i}} I^+_i - \left(1 - \frac{\mu_{U_i}}{T_{U_i}} + \frac{\mu_{U_i}}{T_{U_i}}\right) H_i, \\
\frac{dU_i}{dt} &= \frac{\mu_{U_i}}{T_{U_i}} H_i - \left(1 - \frac{\mu_{U_i}}{T_{U_i}} + \frac{\mu_{U_i}}{T_{U_i}}\right) U_i, \\
\frac{dS_{pv,i}}{dt} &= -S_{pv,i}\rho_{pv} \sum_{j=1}^{n} \phi_{i,j} \frac{0.5(C_j + C_{pv,j}) + \tilde{\beta}_j(I_j + I_{pv,j})}{N_j}.
\end{align*}
\]
\[\frac{dE_{\text{pv},i}}{dt} = S_{\text{pv},i} \rho_{\text{pv}} \sum_{j=1}^{n} \phi_{i,j} \left(C_{j} + C_{\text{pv},j} + \beta_{j}(I_{j} + I_{\text{pv},j}) \right) - \frac{1}{T_{E}} E_{\text{pv},i}, \]
\[\frac{dC_{\text{pv},i}}{dt} = \frac{1}{T_{E}} E_{\text{pv},i} - \left(1 - \frac{R_{i,\text{pv}}}{T_{C_{i}}} + \frac{R_{i,\text{pv}}}{T_{C_{i}}} \right) C_{\text{pv},i}, \]
\[\frac{dC^{+}_{\text{pv},i}}{dt} = \left(1 - \frac{R_{i,\text{pv}}}{T_{C_{i}}} + \frac{R_{i,\text{pv}}}{T_{C_{i}}} \right) C^{+}_{\text{pv},i}, \]
\[\frac{dI_{\text{pv},i}}{dt} = 1 - \frac{R_{i,\text{pv}}}{T_{C_{i}}} C_{\text{pv},i} - \left(1 - \mu_{H_{i},\text{pv}} + \mu_{H_{i},\text{pv}} \right) I_{\text{pv},i}, \]
\[\frac{dI^{+}_{\text{pv},i}}{dt} = 1 - \frac{R_{i,\text{pv}}}{T_{C_{i}}} C_{\text{pv},i} - \left(1 - \mu_{H_{i},\text{pv}} + \mu_{H_{i},\text{pv}} \right) I^{+}_{\text{pv},i}, \]
\[\frac{dH_{\text{pv},i}}{dt} = \frac{H_{i,\text{pv}}}{T_{H_{i}}} I_{\text{pv},i} + \frac{H_{i,\text{pv}}}{T_{H_{i}}} I^{+}_{\text{pv},i} - \left(1 - \mu_{H_{i},\text{pv}} + \mu_{H_{i},\text{pv}} \right) H_{\text{pv},i}, \]
\[\frac{dU_{\text{pv},i}}{dt} = \frac{U_{i,\text{pv}}}{T_{U_{i}}} H_{\text{pv},i} - \left(1 - \mu_{U_{i}} + \mu_{U_{i}} \right) U_{\text{pv},i}, \]
\[\frac{dR_{i}}{dt} = \frac{R_{i,\text{pv}}}{T_{R_{i}}} \left(C_{i} + C^{+}_{i} \right) + \frac{R_{i,\text{pv}}}{T_{C_{i}}} \left(C_{\text{pv},i} + C^{+}_{\text{pv},i} \right) + \frac{1 - \mu_{H_{i},\text{pv}}}{T_{H_{i}}} (I_{\text{pv},i} + I^{+}_{\text{pv},i}) + \frac{1 - \mu_{U_{i}}}{T_{U_{i}}} H_{\text{pv},i} + \frac{1 - \mu_{U_{i}}}{T_{U_{i}}} U_{\text{pv},i}, \]
\[\frac{dD_{i}}{dt} = \frac{D_{i}}{T_{U_{i}}} (U_{i} + U_{\text{pv},i}). \]

Except for the age-dependent transmission risk \(\rho_{i} \) and the isolation and quarantine of infected \(\beta_{i} \) defined in Table 1, we use the parameter ranges and age groups as gathered and described elaborately in Table 1 & 2]. We use the variables \(T_{i}^{*} \) for the time spent in state \(*_{1} \in Z_{i} \) before transition to state \(*_{2} \in Z_{i} \) and \(T_{i}^{*} \) for the probability of a patient to go to state \(*_{2} \) from state \(*_{1} \). The transmission risk \(\rho_{i} = \rho_{i}(t) \) depends on the base transmission risk \(\rho_{i}^{(0)} \) given in Table 1 and the seasonality \(s_{k}(t) \) in eq. (28), and we define \(\rho_{i}(t) = s_{k}(t)\rho_{i}^{(0)}, \quad i \in \{1, \ldots, 6\}. \)

Note that we include the share of the Delta variant later on by increasing the transmission risk over time in eq. (30).

In order to derive the conditional probabilities \(\mu_{i,\text{pv}}^{*} \) for the partially vaccinated, we first define the probabilities

\[P(I_{\text{pv}}) = p_{I} P(I) \]
\[P(H_{\text{pv}}) = p_{H} P(H) \]
\[P(U_{\text{pv}}) = p_{U} P(U) \]
\[P(D_{\text{pv}}) = p_{D} P(D) \]

to get infected, hospitalized, severely infected or dead after having already received the first vaccine dose. Here, \(p_{*} \in I, H, U, D \) is a reduction factor given in the letters...
section of [11] and is listed in Table 1. Further, \(P(*) \), \(* \in I, H, U, D \) is the probability for an unvaccinated and susceptible individual to end up in the respective compartment. For example, the parameter \(p_I = 0.52 \) means that a healthy individual who has received their first dose of vaccination is 48% less likely to get infected than an individual who has not received any vaccination yet.

We do not explicitly require values for \(P(*) \) or \(P(\ast_{pv}) \) but use the conditional probabilities

\[
\begin{align*}
\mu_{I, pv}^{H} &= P(H_{pv} \mid I_{pv}) = \frac{P(H_{pv})}{P(I_{pv})} = \frac{p_H P(H)}{p_I P(I)} = \frac{p_H}{p_I} P(H \mid I) = \frac{p_H}{p_I} \mu_{I}^{H} \\
\mu_{H, pv}^{U} &= P(U_{pv} \mid H_{pv}) = \frac{P(U_{pv})}{P(H_{pv})} = \frac{p_U P(U)}{p_H P(H)} = \frac{p_U}{p_H} P(U \mid H) = \frac{p_U}{p_H} \mu_{H}^{U} \\
\mu_{U, pv}^{D} &\approx \mu_{U}^{D}.
\end{align*}
\]

In our model, people only die after admission to ICU. The case fatality rate (CFR) after one dose of vaccination is therefore calculated by the chain of reduced probabilities of being hospitalized, then going to the ICU, and finally dying. The probabilities against severe courses (hospitalization and ICU) are significantly reduced. However, the probability of dying from the ICU is not reduced. Here, we presume that the once vaccinated only go to ICU if they have pre-existing conditions and then have the same chance of dying in the ICU as the unvaccinated. Hence, the reduced CFR is calculated by the reduced probabilities before going to the ICU, not by the mortality in the ICU itself. Since vaccinated and unvaccinated individuals die with the same probability in the ICU, the distinct parameter \(\mu_{U, pv}^{D} \) does not appear in our equations \([1]–[20]\) or in Figure 1.

<table>
<thead>
<tr>
<th>Table 1. Additional or adjusted parameters in comparison to the full list given in [6, Table 2].</th>
</tr>
</thead>
<tbody>
<tr>
<td>range in age group</td>
</tr>
<tr>
<td>param.</td>
</tr>
<tr>
<td>(p_{I}^{H})</td>
</tr>
<tr>
<td>(k)</td>
</tr>
<tr>
<td>(\tilde{\beta})</td>
</tr>
<tr>
<td>(p_I)</td>
</tr>
<tr>
<td>(p_H)</td>
</tr>
<tr>
<td>(p_U)</td>
</tr>
<tr>
<td>(p_D)</td>
</tr>
</tbody>
</table>

The system of nonlinear ordinary differential equations \([1]–[20]\) is solved using the adaptive Runge-Kutta-Fehlberg45 (RKF45) method \([14]\). We use Monte Carlo runs with 1000 simulations with epidemiological parameters sampled from a uniform distribution based on the ranges from Table II and [6 Table 2].

Vaccination strategy

The start values for the number of partially and fully vaccinated people are taken from the RKI database \([15]\). The values are taken 21 days prior to the start date of the simulation to account for the time that it takes for the vaccine to be effective \([11]\). Also based on the daily vaccine capacities provided by the RKI database \([15]\), we transfer individuals to other compartments during the simulation. Thus, a portion of the susceptible population \(S \) is transferred to the partially vaccinated compartment \(S_{pv} \).
Similarly, a portion of the partially vaccinated population S_{pv} is transferred to the immune compartment R.

Let $V(t)$ be the number of available vaccines on day t. For $V(t)$, we assume that the vaccination capacity stays constant from the beginning of the simulation. Then, $D_1(t)$ denotes the number of individuals that receive their first shot of the vaccine on day t. We calculate the number of people $D_2(t)$ that receive their second vaccine dose on day t by

$$D_2(t) = D_1(t - t_{gap}),$$

and the number of new partially vaccinated people based on what is left over from $V(t)$, namely

$$D_1(t) = V(t) - D_2(t).$$

Here, t_{gap} is the number of days between the administration of the first and second dose of the vaccine. In our simulation this is set to 51 days, as the weighted average of the vaccination gap of the different vaccine types that are currently in use in Germany [15].

This is done for each age group separately and the distribution of the vaccines is evenly divided between them based on the population within each age group. As the prioritization for older people has been in effect in Germany until June, most people of these prioritized age groups have at least already received their first vaccine dose by the beginning of our simulation. The age groups 0–4 and 5–14 years are excluded from receiving any vaccines due to a lack of studies and since the vaccination commission in Germany has not recommended it yet [16]. Additionally, as soon as 80% of vaccine saturation is reached within an age group, it will no longer receive any vaccinations and all leftover doses are instead evenly divided between the other age groups, while still being excluded from the two young age groups.

Seasonality & NPIs

We keep the seasonality factor from [6], namely

$$s_k(t) := 1 + k \sin \left(\pi \left(\frac{t}{182.5} + \frac{1}{2} \right) \right),$$

which adjusts the base transmission risk in eq. (21), where t is the day of the year and $k \in [0.1, 0.3]$. The chosen parameter k will yield scenarios with modest seasonal influences, i.e. a relative reduction of $18.2\% - 46.2\%$ in transmissibility between winter and summer. With seasonality, we account for increased outdoor contacts during the summer, as opposed to more indoor contacts during the winter and other epidemiological factors regarding seasonality. A recent study [17] shows that the seasonality effect could be slightly higher, i.e. $42\% (25\%-53\% \text{CI})$ which corresponds to $k = 0.26$. Note that a higher seasonality would dampen the infection numbers, but the exact value remains under discussion as per-country comparison of transmissibility between seasons by statistical models as seen in [17] may include behavioral and other changes over the course of the pandemic that are not related to seasonal changes.

We define two sets of locally employed NPIs that lead to a reduction in contacts at home, school, work and other activities. These NPIs are implemented on a regional level and are defined by two different levels of strictness which take effect when the incidence values of an area reach 35 and 100, respectively. This corresponds to an average contact reduction of 56% for incidence values above 35 and 76% for incidences above 100. All NPIs dampen the contact frequencies between age groups based on contact patterns before and during the pandemic; see [6] for further details. In addition we update the school holidays during the summer for each state, which is implemented similar to a
school lockdown during this time. This means that all pupils as well as school personnel will have reduced contact rates during this time.

The contact frequency matrix \(\Phi = (\phi_{i,j})_{i,j=1,...,n} \) represents the (mean) daily contacts of a person of age group \(i \) with people from age group \(j \). The range of contact patterns depends on the NPIs. The baseline and minimum number of contacts \(\phi_{B,i,j} \) and \(\phi_{M,i,j} \) is obtained from \[18,19\] as described in \[6,\ Sec. 3.2\]. The resulting number of contacts according to the NPIs then reads

\[
\phi_{i,j} = \sum_{* \in \{H,S,W,O\}} \left(\phi_{B,*,i,j} - \left(1 - \prod_{l=1}^{2} (1 - r_{*,i,j}^{(l)}) \right) (\phi_{B,*,i,j} - \phi_{M,*,i,j}) \right). \tag{29}
\]

Here, \(* \in \{H,S,W,O\}\) refers to the four locations of contact \textit{home}, \textit{school}, \textit{work}, and \textit{other}, and \(r_{*,i,j}^{(l)} \in [0,1] \) is the reduction factor in effective contacts as induced from political decisions. The superindex \(l \) is the intervention level. With \(l = 1 \) we describe interventions that yield direct contact reduction such as gathering bans. With \(l = 2 \) we include protective effects from, e.g., face masks and distancing. In our simulations, wearing masks equates to a \(20\% \) to \(40\% \) reduction in contacts in the categories school, work and other. Testing implies that every commuter is tested once a week and will be isolated if tested positive.

Alpha and Delta variant

To account for the Alpha variant in Germany \[20,\ Report of Apr. 7\], we use a \(1.4 \) times increased value for the transmission risk \(\rho_i \) \[21\] compared to the wild-type considered in \[6\]. The Delta variant of SARS-CoV-2 has already reached Germany and made up approximately \(48\% - 59\% \) of the different variants by July 4 \[22,\ Situation Report of July, 7\]. Since Delta is \(20\% - 60\% \) more infectious than the currently dominant Alpha variant, it is safe to assume that Delta will continue to increase its share exponentially as it did in the UK \[23\]. We assume that its share \(\sigma_{\delta} \) doubles each week, so

\[
\sigma_{\delta} = \min(1, \frac{2^t}{100}).
\]

Our model reflects this development by increasing the infectiousness \(\rho_i = \rho_i(t) \) from contacts at each day \(t \). Including the seasonality \(s_k(t) \) by eq \[21\] and \[28\], we obtain

\[
\rho_i(t) = (1 - \sigma_{\delta}) \cdot s_k(t) \rho_i^{(0)} + \sigma_{\delta} \cdot 1.4 \cdot s_k(t) \rho_i^{(0)}, \tag{30}
\]

where \(\rho_i^{(0)} \) is the base transmission risk of the Alpha variant for age group \(i \) as given in Table \[1\].

Results

All of our simulations begin on 6 June 2021 and run for 90 days. The number of individuals at the start of the simulations are extrapolated from the RKI-database \[24\] and DIVI-database \[25\]. Our aim is to analyze the effect of different relaxation strategies of NPIs. Therefore, we define the following scenarios:

1. Timing of removal of locally employed NPIs: Regional NPIs are canceled either on the first of July or the first of August. Lifting these means that the contact patterns of all people revert to the way it was before the pandemic.

2. Testing commuters: Whether or not commuters are tested for infections once a week. Commuters will be isolated if tested positive.
3. Wearing masks: whether or not masks will continue to be worn after regional NPIs are lifted. In our simulations wearing masks equates to a 20% to 40% reduction in contacts in the categories school, work and other.

The combination of the above three options leads to 8 different scenarios. Each scenario consists of Monte Carlo runs with 1000 simulations. In the following, we focus on four out of the eight scenarios, where we combine masks and testing, since their impact proves not to be significant enough on their own.

We assume that Delta will make up more than 50% of the different variants within 40 days on the 16th of July and over 80% just 4 days later on the 20th of July. In England, infection numbers began to rise again from day to day when Delta made up 80%. We expect to see a similar effect in our simulations. If all NPIs are lifted too soon, we expect that the new Delta variant will lead to a significant increase in the number of infections despite the ongoing vaccination process and especially in the younger age groups. Even the summer school holidays during the simulation period might not be enough to counteract the much more infectious variant.

As a basis for further analysis, we first consider Figure 2, where we depict the number of people who have received their first dose of the vaccine, the people who are immune to the virus, and the number of pupils on vacation in Germany. After a short rise, the number of only once vaccinated individuals \(D_1(t)\) in eq. (27) drops from about 22 million on 16 July to about 11 million on 26 July. Individuals that wait for their second dose of vaccine are prioritized due to eq. (26). By 26 July, however, not many of them are left. Hence, more people can get their first dose of vaccine which leads to a slow rise until 15 August. Afterwards it drops again, since by that point the vaccine saturation of 80% is reached within the eligible age groups. The number of people immune to the virus, as shown in the middle of Fig. 2, almost linearly increases from July to September. The increase is a little steeper in between 6 July and 26 July. Since all regions in Germany have individual dates for their summer holidays, we provide the number of pupils on holiday on the right of Fig. 2. From 16 June onward more and more pupils will be on holiday with the maximum reached by the end of July.

We start analyzing the scenario with the weakest set of NPIs, namely a lifting of the regional NPIs in July, without wearing masks and no testing (Scenario 1). This basically equates to returning to the exact state that we had before the pandemic. The number of infected, ICU admissions and deaths during the simulation are depicted in Figure 3 (top) for an assumed 40% more infectious Delta variant. We observe that the

1: Although the number of people that recover from the infection is different between each simulation, the immune compartment is mostly dominated by the number of fully vaccinated people.
Fig 3. Results of Scenario 1: Early opening in July, no masks, no testing. The median of 1000 runs is shown in blue; the gray dotted lines are the 25% and 75% percentiles. The top row shows results with an assumed 40% more transmissible Delta variant compared to 60% in the bottom row.

Early opening leads to a rise of infections from about 6-16 July onward. This leads to a continuous increase in the number of deaths. ICU admissions first decrease but start to rise as well by the end of July. If we assume that Delta is 60% more infectious (Fig. 3 bottom), there are about five times as many infected people as if we assume a 40% higher infectiousness of Delta by the end of the simulation. In Figure 4 (top) we depict the incidence (number of infections per 100,000 individuals) for the 6 age groups for Delta-40%. In all age groups the incidences continuously rise. Despite the school holidays the 5-14 year olds are affected the most since they are excluded from vaccination. The 0-4 year olds are hit less due to a reduced infection risk. The 15-34 and 35-59 year olds have the same vaccination prioritization and nearly the same incidence. Vaccination saturation in an age group is reached when 80% are vaccinated: Hence, the 60-79 year olds are protected best. We see a slow rise in the incidence for the age group 80+ since they have a higher risk of infection. In the median the rise in the incidences is moderate. However, the 75%-percentile shows us the substantial risk of the fourth infection wave. And this wave will hit the youngest age groups with incidences between 1000 and nearly 2000, respectively. With Delta-60% as shown in Figure 4 (bottom) the 5-15 year olds have incidences of 375 by the end of the simulation in the median. Except for the two oldest groups (prioritized for vaccination), incidences rise up to 150 in the rest of the population.

Scenario 2 also dismisses all regional NPIs in July, but masks will continue to be worn and commuters are regularly tested for the virus (Fig. 5 top). In contrast to Scenario 1, these continued NPIs lead to a decrease in the number of infections and also in the ICU capacities while the death count during the simulation time remains similar due to changes in the age structure of infection chains. Interestingly, after 6 June the 75% percentile for the number of infections shows a slight increase, reaches a local
Fig 4. Age resolved results of Scenario 1: Early opening in July, no masks, no testing and 40% (top) or 60% (bottom) higher transmissibility of Delta. The solid lines are the median of 1000 runs; the dotted lines are the 25% and 75% percentiles. The median incidence values of the last timestep are 29.9, 68.6, 28.8, 27.8, 9.2, 14.5 (top) and 155.9, 375.0, 149.9, 139.0, 44.7, 75.5 (bottom) from young to old.
Fig 5. Results of Scenario 2: Early opening in July, but masks will continue to be worn and commuters are tested for the virus once a week. The median of 1000 runs is shown in blue; the gray dotted lines are the 25% and 75% percentiles. The top row shows results with an assumed 40% more transmissible Delta variant compared to 60% in the bottom row.

maximum by the end of June, decreases, reaches a local minimum by 20 July and after a slow rise begins to drop again. This corresponds to Fig. [2] The school holidays start on 16 June and more and more schools will close with the maximum reached by the end of July. On 20 July the Delta variant, however, reaches 80% and leads to rising infection numbers until the vaccination effect probably takes hold and the numbers drop again after 5 August. Even with Delta-60% (Fig. [5] bottom), continued wearing of masks and testing leads to a decrease in infection numbers when we revert to the pre-pandemic contact patterns in July. However, the 75% percentile begins to rise, as soon as the Delta Variant hits a share of about 80% by July 20, and vaccination will not be enough to counteract this development. This rise is then also prominent in the number of ICU patients two weeks later. In Figure [6] (top-left) we see that the median for all age groups is fairly low by the end of the simulation. However, the 75% percentiles are relatively large, especially for the 5-14 year olds, that reach an incidence value of about 40 by the end of the simulation. For Delta-60% (Fig. [6] top-right), we still reach low incidences in the median, but the 75% percentile increases in all age groups. Again, the 5-14 year olds are hit hardest with incidences of up to 300.

Scenario 3 postpones the relaxation of all regional NPIs to the first of August and then immediately also lifts wearing of masks as well as testing of commuters. Figure [7] on the top shows a clear downward trend in case numbers as well as in ICU admissions. Again, the 75% percentile shows a slow rise at the beginning, but the ongoing NPIs prevent a rise even when Delta becomes dominant on 20 July. In the median, this also holds for Delta-60% (Fig. [7] bottom). The 75% percentile, however, still rises when the Delta Variant hits a share of 80%. The increase is slow at first and gets steeper by 15 August when the number of pupils on vacation begin to drop. Again, this leads to an increase in the number of ICU admissions. In the median, the later opening leads to a decrease in the infection numbers in all age groups (Fig. [6] top-left) for Delta-40%.
Fig 6. Age resolved infected on September 3 for all scenarios. Top: incidence values (number of infections per 100,000 individuals) for each scenario for Delta 40% (left) and 60% (right). The transparent bars are the 75% percentiles (omitted for Scenario 1) and the solid bars are the median values that are also shown in the table below plot. A reference from 1 July is included for comparison. Bottom: infection ratios between age groups for Delta 40% (left) and 60% (right) for all scenarios and the reference from 1 July. Note that both reference values are only calculated for Delta-60%, since the difference to Delta-40% is negligible at that point in time.
Fig 7. Results of Scenario 3: Late opening in August, no masks, no testing. The median of 1000 runs is shown in blue; the gray dotted lines are the 25% and 75% percentiles. The top row shows results with an assumed 40% more transmissible Delta variant compared to 60% in the bottom row.

However, the 75%-percentile stagnates at an incidence of 10 in the youngest age group and rises for the 5-14 year olds when the summer holidays come to an end, compared to the reference incidence values on July 1. For Delta-60% (Fig. 6, top-right), this rise in the 75%-percentile is seen in all age groups and especially for the youngest two.

In Scenario 4, we analyze the most strict set of NPIs. In addition to a late opening in August, we keep the mask mandate and test commuters once per week until the end of the simulation. As expected, this scenario has the greatest chance of successfully preventing another wave of infections. Figure 8 on the bottom shows that even in the worst case predicted by the 75%-percentile with Delta-60%, the number of infections drop after 5 August, despite the opening. The age resolved results (Fig. 6, top-left) for Delta-40% show this decrease in all age groups, compared to the reference incidence values on July 1. With Delta-60% (Fig. 6, top-right) there remains a risk with the 75%-percentile that the decrease in infection numbers is very slow: Even though the incidence values for the older age groups have fallen significantly since July 1, the incidence has only decreased by about 10% for the 5-15 year olds.

In Figure 8 (bottom) we see that even though the incidence values are very different between each Scenario by the end of the simulation, the age distributed ratios are largely the same across all four scenarios. This holds for Delta-40% (bottom-left) as well as Delta-60% (bottom-right). A clear shift can also be seen in the ratios from the older to the younger age-groups, compared to the reference ratios in July 1.

Discussion

With ongoing vaccination in Germany counteracted by the possible spread of new SARS-CoV-2 variants, we are faced with the decision on when regional NPIs can be safely lifted or NPIs like face masks and testing can be relaxed. This question is
investigated in our paper, and we provide a qualitative answer by comparing different scenarios under the assumption that the Delta variant will be dominant in a few weeks.

Our results show that an opening with the removal of all NPIs would be too early in July and might lead to another wave of infections (Scenario 1). Due to the high discrepancy between the confidence intervals in Fig. 3, it is hard to predict the magnitude of this new wave. However, we can safely assume that the number of infections will grow even faster after the end of the simulation by the end of August as these results are damped by the summer school holidays between July and September. Fortunately, the school holidays function similar to a partial school closure. These are particularly effective since pupils are not yet vaccinated in Germany and for all scenarios the incidences are highest in the age group 5-14. Although this age group contributes the most from the school holidays, this is also the age group that will not be vaccinated any time soon. In particular, because vaccination of this age-group is currently not recommended in Germany. The same holds for the 14-15 year olds but as they are part of a much larger age group in our model, this is less visible.

Even with an early unrestricted opening, the rise in ICU admissions and deaths is far less severe than the rise in the number of infections. This is due to the vaccine prioritization strategy in Germany: People older then 60 years have a much higher chance of experiencing a severe infection but will have received their second vaccine dose by the end of June, which makes them immune to the virus. This effect is included in our simulations due to the age resolved nature of our model. It should be noted, however, that even with a lower death toll, there may be significant costs to public health by long-term consequences such as post-covid syndrome (PCS) that prevents approximately 11% of non-hospitalized patients from returning to work more than half a year after their infection [20]. Additional measures like wearing masks and testing commuters after the opening in July (Scenario 2) help to reduce the number of cases.

Fig 8. Results of Scenario 4: Late opening in August, while wearing masks and testing commuters once a week. The median of 1000 runs is shown in blue; the gray dotted lines are the 25% and 75% percentiles. The top row shows results with an assumed 40% more transmissible Delta variant compared to 60% in the bottom row.
substantially.

Postponing the relaxation of regional NPIs to the first of August also has a great benefit to the reduction of case numbers. This is due to the ongoing vaccination process. By the first of July, only about 20 million people are fully vaccinated in our scenarios, whereas there are about 35 million by the first of August as shown in Figure 2. In addition, the overall transmission of the virus is reduced further with the late opening, since the two age groups that are over 60 years old will be almost completely (80%) vaccinated, as they have a naturally higher risk of getting infected then people from younger age groups [27]. However, if we dismiss wearing masks and testing immediately (Scenario 3) and if we assume that Delta is 60% more infectious, we might still see a rise in the number of infections when Delta is accountable for 80% of the infections on 20 July. The safest scenario in our simulations is the fourth one where we open by the first of August but continue to wear masks and test commuters. In that case, another infection wave is rather unlikely even with the new Delta variant. Even though the difference in the median of Scenarios 2 through 4 is fairly negligible, there is still a real world risk of another wave of infections based on the increase in case numbers of the higher percentiles.

In all of our scenarios we see a clear shift of infections from the older to the younger age groups and especially to the school children. The quantity of this shift depends on Delta’s infectiousness and NPIs but in the worst cases the age group 5-14 is overrun by an infection wave.

Our modeling approach aims at providing a data-based comparison of different scenarios for lifting regional NPIs with or without the continuation of additional wearing of masks and testing. Limitations of our approach include the assumptions that we have to make for the Delta variant. Our models do not account for lower efficacy of the vaccine in protecting against the Delta variant. Due to the much higher transmission, the new Delta variant will have a profound impact on the course of the pandemic but more real-world data is required to exactly quantify Delta’s contribution. Furthermore, we do not model testing of pupils or general individuals. We restrict this to the commuters who have a high chance of spreading the virus from one region in Germany to another. This approximates the testing of the working community in Germany. Due to the summer holidays, the testing of pupils is less relevant. Furthermore, we do not consider border regions, i.e., the impact of systematically higher incidences in a neighbouring country. We also cannot account for all travelling activities during the holidays. Some parameters in our model require further investigation; after each dose we assume a time period of three weeks for the effect of vaccination to take hold which is quite conservative as other studies show effects after two weeks [28] or even after 6-8 days [29]. Further, the 100% immunity after the second vaccination is also only an approximation that we need to relax for the Delta variant, and we need to investigate its influence. The reduction factors for the infection risks after each dose need to be further evaluated for the different vaccine varieties and adopted accordingly.

Another limitation of our work is the exact quantification of the strength of distinct NPIs. While the timing at which the NPIs are lifted is fairly straightforward and testing can be achieved by isolating a portion of the infected commuting population, other NPI related effects e.g. wearing masks or social distancing are achieved by reducing the number of contacts. The effect of wearing masks corresponds to a contact reduction in schools, at work or at other leisure activities which was sampled from a uniform distribution between 20% - 40% in our simulation and can therefore be replaced by other NPIs that yield the same amount of contact reduction.

We do not aim to predict exact infection numbers, but we provide a comparative evaluation of how the timing of NPI dismissals increase or reduce the likelihood of a further spread SARS-CoV-2 in the light of the Delta variant and vaccination. So far, our
results indicate that a postponed lifting of NPIs by 1 August while still wearing masks and testing commuters provides a fair chance of avoiding a fourth wave. However, the estimate is conservative in many aspects and even then many Monte Carlo simulations with a rising fourth wave exist. If we open by 1 July already, additional NPIs are advisable, but a high risk of another infections wave remains. Our scenarios present different manifestations of the current race of vaccinations against Delta variant. The winner depends on continuation of NPIs, vaccination speed, and the properties of Delta. But in all scenarios, it is the school children who have not yet been vaccinated in whom a fourth wave triggers the highest numbers of infections, despite the school vacations.

Conclusion

In this study we analyzed different strategies for removing the restrictions of non-pharmaceutical interventions that were in effect during the SARS-CoV-2 pandemic, while accounting for the new Delta variant and the ongoing vaccination process. We have shown that at the current rate of vaccination, there is still a great risk of another wave of infections if NPIs are lifted too early. The severity of these infections will be significantly reduced compared to previous waves due to the prioritization of the older population during the vaccination process. Nevertheless, under the assumption that the Delta variant takes over, it seems advisable to keep wearing masks and testing in place for some further time after lifting all other restrictions to ensure the population’s safety. Due to the many uncertainties regarding the simulated results e.g. the true risk of infection of the new Delta variant, as well as the speed at which it will take over, the seasonality or even the compliance of the population, it is of paramount importance that we continue to monitor the real-world dynamic of the pandemic, continue the vaccination process as fast as possible and adopt the necessary NPIs accordingly.

Additionally, we now have the unique chance to protect the health of school children and their right to normal school operation in autumn. In all our scenarios rising infection numbers will hit school children the hardest. And if we return to our pre-pandemic ways too soon, these numbers rise hard and fast. Then, the opening of schools and seasonality will further drive the infection in this age group. It appears appropriate to take preventive hygiene measures in preparation of school openings in order to allow for a sustainable education.
Acknowledgments

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101003480 and by the Initiative and Networking Fund of the Helmholtz Association. It was supported by German Federal Ministry of Education and Research for the project CoViDec (FKZ: 01KI20102). The funding bodies had no role in the design of the study, collection, analysis, and interpretation of the results, or writing the manuscript.

References

