Simplified point-of-care full SARS-CoV-2 genome sequencing using nanopore technology

Anton Pembaur¹, Erwan Sallard², Patrick Philipp Weil¹, Jennifer Ortelt³, Parviz Ahmad-Nejad³, Jan Postberg⁴,†

¹corresponding author

¹Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany
²Institute of Virology and Microbiology, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany
³HELIOS University Hospital Wuppertal, Institute of Medical Laboratory Diagnostics, Centre for Clinical & Translational Research (CCTR), Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany

E-Mail addresses:
Anton Pembaur: anton.pembaur@uni-wh.de
Erwan Sallard: erwan.sallard@uni-wh.de
Patrick Philipp Weil: patrick.weil@uni-wh.de
Jennifer Ortelt: jennifer.ortelt@helios-gesundheit.de
Parviz Ahmad-Nejad: parviz.ahmad-nejad@helios-gesundheit.de
Jan Postberg: jan.postberg@uni-wh.de

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: The scale of the ongoing SARS-CoV-2 pandemic warrants the urgent establishment of a global decentralized surveillance and warning system to recognize local outbreaks and the emergence of novel variants-of-concern. Among the available deep-sequencing technologies, nanopore-sequencing could be an important cornerstone, since it is mobile, scalable and acquisition investments are comparably low. Therefore, streamlined and efficient nanopore-sequencing protocols need to be developed and optimized for SARS-CoV-2 variants identification, in particular for smaller hospital laboratories with lower throughput.

Results: We adapted and simplified existing workflows using the ‘midnight’ 1,200 bp amplicon split primer sets for PCR, which produce tiled overlapping amplicons covering almost all of the SARS-CoV-2 genome. Subsequently, we applied the Oxford Nanopore Rapid barcoding protocol and the portable MinION Mk1C sequencer in combination with the ARTIC bioinformatics pipeline. We tested the simplified and less time-consuming workflow on confirmed SARS-CoV-2-positive specimens from clinical routine and identified pre-analytical parameters, which may help to decrease the rate of sequencing failures. Duration of the complete pipeline was approx. 7 hrs for one specimen and approx. 11 hrs for 12 multiplexed barcoded specimens.

Conclusions: The adapted protocol contains less processing steps. Diagnostic CT values are the principal criteria for specimen selection. Subsequent to diagnostic qRT-PCR, multiplex library preparation, quality controls, nanopore sequencing and the bioinformatic pipeline can be completely conducted within one working-day.

Keywords
(+)-RNA genome sequencing, COVID-19 surveillance, variant-of-concern (VOC)
the past they were already involved actions of genome surveillance, e.g. the 2015 Ebola outbreak in Liberia, Guinea and Sierra Leone (Quick, Loman et al. 2016), and since then there has been a substantial technological progress. However, at least for smaller hospital laboratories with lower throughput, it is desirable to develop protocols as streamlined as possible. Nanopore sequencing allows the sequencing of either DNA or RNA (Garalde, Snell et al. 2018), and does not require PCR amplification. Furthermore the technique has the potential of producing very long, continuous reads, which theoretically allows to sequence in only one read the 29.903 nt long (+)RNA genome of SARS-CoV-2 (Taiaroa, Rawlinson et al. 2020), or its deriving cDNA after reverse transcription (Figure 1).

With the aims of facilitating implementation in routine diagnostics with lower specimens throughput and of simplifying the workflow, we tested modifications of existing ARTIC protocols for SARS-CoV-2 full length (+)RNA genome sequencing (Freed, Vlkova et al. 2020, Li, Wang et al. 2020, Tyson, James et al. 2020). Furthermore, we tested the simplified and less time-consuming workflow on confirmed SARS-CoV-2-positive specimens from clinical routine and identified pre-analytical parameters, which may help to decrease the rate of sequencing failures.

Methods

Nucleic acids isolation

Specimens included nasopharyngeal swabs (Xebios Diagnostics), which underwent routine COVID-19 diagnostic testing. RNA purification was performed via magnetic beads (Seegene NIMBUS/Tanbead). Alternatively, total RNA was purified from 250 µL liquid specimen using 750 µL QIAzol lysis reagent (Qiagen, Cat. No. 158845) upon manufacturer’s recommendations, or using silica columns (QiaAmp Viral Mini Kit, Qiagen).

RT-PCR, quality assessments and library preparation

A split primer set from the ARTIC protocol was used for 2 multiplex PCR reactions. To avoid overlaps during multiplex PCR, each single-tube PCR reaction generates consecutively tiled, non-overlapping 1,200 bp amplicons. Mixed together after PCR, both resulting complementary amplicon mixtures cover almost the entire SARS-CoV-2 genome (Freed, Vlkova et al. 2020).

Combined reverse transcription and amplification of multiple 1,200 bp amplicons (RT-PCR) was performed in single tube 20 µL reactions using the Luna One-Step RT-qPCR Kit (NEB; E3005). For RT-PCR, 8 µL of purified template RNA were used for each reaction. From 100 µM primer pools, 1 µL was used in each reaction. Reverse transcription was performed at 55°C for 30 minutes, followed by incubation at 95°C for one minute. Then 34 cycles (pool 1) or 30 cycles (pool 2) of denaturation at 95°C for 20 seconds and annealing and extension in one step at 60°C for 210 seconds were performed. A final extension was performed at 65°C. During the implementation phase amplicon sizes and DNA
concentrations were routinely checked by agarose gels or by microvolume electrophoresis (Agilent Bioanalyzer, Agilent DNA 12000 kit). Thereafter, amplicons from primer pools 1 and 2 were quantified by fluorimetry (Promega Quantus) and then mixed at equal concentrations. Library preparation was done using the Rapid Barcoding Sequencing Kit (Oxford nanopore; SQK-RBK004) upon manufacturers recommendations.

Nanopore sequencing

Sequencing was performed on a MinION Mk1C with the options ‘basecalling’ and ‘demultiplexing’ being enabled. As output format, FAST5 and FASTQ files were chosen. Sequencing time was set for 72 hours as default. Sequencing was stopped after reaching at least 10 megabases for each barcode.

Bioinformatics

The Oxford Nanopore MinION software includes guppy bascalling, adapter trimming and barcode identification and yields FASTQ and FAST5 files for each barcode with a quality filter. Then these barcode-sorted files are fed in the interARTIC pipeline. Except otherwise stated, the Nanopolish algorithm was routinely used.

Installation and usage of interARTIC pipeline was done following the developers’ instructions: https://psy-fer.github.io/interARTIC/installation/. For faster analysis, an activation of all available threads in the advanced settings was done. This pipeline performs read filtering, alignments and returns a consensus FASTA file as well as coverage charts for visualization are generated (Figure 2B-H).

Consensus FASTA files were uploaded to the Nextstrain webapp (https://clades.nextstrain.org) to perform phylogenetic analyses (Hadfield, Megill et al. 2018).

Data availability

FASTQ files and assembled FASTA formatted consensus sequences are available (https://t1p.de/minion-seqdata)

Results and Discussion

We defined milestones to achieve protocol simplification in order to reduce hands-on sample time and working step numbers. 1. We tested whether specimens can be directly taken from residual diagnostic specimens in 96-deepwell-plates obtained using magnetic beads (Seegene NIMBUS/Tanbead). For comparison we applied RNA purification protocols using silica columns (QiaAmp Viral Mini Kit, Qiagen) or guanidinium isothiocyanate (GITC) for RNA extraction (QIAzol lysis reagent, Qiagen). 2. To test whether reverse transcription can be successfully primed by SARS-CoV-2-specific primers, which are subsequently used for multiplex 1,200 bp amplicon amplification, purified RNA from different extraction protocols was used for cDNA synthesis and successive multiplex PCR with the 2
split 1,200 bp amplicon primer pools in single tube reactions. We aimed to improve the efficiency of the nanopore sequencing workflow through exploitation of the onboard Guppy basecalling capability of the Oxford Nanopore MinION Mk1C device. Moreover, implementation of the interARTIC interface should help to avoid command line-based bioinformatic analyses as far as possible in order to provide a user-friendly and efficient analysis pipeline.

Protocol implementation considering differences in viral loads and influences of RNA extraction protocols

For protocol implementation we made use of serially diluted specimens of purified RNA from patients’ samples, which exhibited low cycle threshold (CT) value (CT=16-18) after routine diagnostics RT-qPCR (N gene, RdRP gene; Seegene). Using the quantitative reference sample Ch07470 for calibration we determined that a CT=25 corresponded to a SARS-CoV-2 copy number of 1.0×10^6. Routinely used dilution factors were 2^0-2^{10} in order to cover several CT value magnitudes and to simulate different amounts of viral loads (CT=16 \Rightarrow approx. 5.12×10^8 viral copies; CT=18 \Rightarrow approx. 1.28×10^8 viral copies). In terms of RNA yield and 1,200 bp amplicon PCR performance the magnetic beads-based RNA purification protocol outperformed slightly the GITC method as well as the column-based protocol, but we did not observe differences in read and coverage quality between these different isolation methods (data not shown). Since direct sampling from 96-deepwell plates allowed us to directly exploit residual specimens, which remained during routine RT-qPCR diagnostics, we decided to focus on magnetic beads-based RNA purification during further protocol development. Moreover, it shortened and simplified the workflow. After semiquantitative or quantitative RT-PCR using multiplex primer pools 1 and 2 in separate single tube reactions for combined reverse transcription of the SARS-CoV-2 (+)RNA and amplification of 1,200 bp amplicons, band intensities exhibited strong dependence on viral loads. Moreover, after 32 PCR cycles band intensities using primer pool 1 were weaker when compared with primer pool 2 (Figure S1). We determined that 34 PCR cycles for primer pool 1 and 30 cycles for primer pool 2 were a good compromise.

Surveillance of multiplex nanopore sequencing and multiple reuses of flow cells

Using the Rapid Barcoding Kit (SQK-RBK004, Oxford Nanopore) allowed us quick barcoding of the PCR products without further purification steps being required and their immediate use for nanopore sequencing. As a standard, we used 12 barcoded libraries for multiplex sequencing on R9 flow cells. In contrast to the Oxford Nanopore MinION Mk1B, the MinION Mk1C device features onboard guppy basecalling. In combination with the Rapid Barcoding Kit, we exploited this opportunity for real-time surveillance of basecalling and demultiplexing for each of the 12 multiplexed samples per run. This enabled us to recognize the exact time point at which a reading depth of approx. 10 Mbp per barcode was achieved. Here, the viral load influence (simulated by serially diluted samples) was also
observable during sequencing. Decreased viral loads led to a considerable decrease of passed reads (Figure 2A). A manual stop of sequencing followed by flow cell washing (Flow Cell Wash Kit, EXP-WSH004, Oxford Nanopore) allowed us to reuse a single flow cell for a series of 3 sequencing runs, each using 12 multiplexed barcoded libraries. This specific scenario resulted in costs of approx. 40 USD per sample. It needs to be considered that theoretically the possible numbers of reuses depend largely on the duration of the sequencing, which itself depends mainly on the number of used barcodes. Further, if a MinION Mk1B is considered for this purpose, a similar surveillance functionality could be achieved using RAMPART on a dedicated LINUX environment.

Assembly of full SARS-CoV-2 genomes and pathogen genome data analyses

For mapping and full length SARS-CoV-2 genome assembly, we used the FASTQ files resulting from Guppy basecalling in order to generate FASTA formatted consensus sequence files. We used the ARTIC pipeline through a graphical user interface (interARTIC; https://github.com/Psy-Fer/interARTIC). Once installed, this is an easy to use and relatively fast pipeline with only five minutes hands-on time, which enables the use of the Nanopolish or Medaka algorithms for simultaneous analyses of multiplexed barcoded samples. As an example, Figure 2B shows the complete and deep coverage of the complete SARS-CoV-2 genome after the combination of pools 1 (light blue) and 2 (pink). This demonstrates that all contained 1,200 bp amplicon were specifically and efficiently amplified during the combined RT-PCR reaction (Figure 2B).

To compare the interARTIC and Geneious Prime pipelines, we used exactly the same FASTQ file from the same sample shown in Figure 2B (https://go.geneious.com/video/how-to-assemble-coronavirus-genomes). Phylogenetic analyses with Nextstrain using the FASTA consensus files obtained from the interARTIC or the Geneious Prime pipelines resulted in considerably different phylogenetic distances in clade 20I, showing that the bioinformatics pipeline influences the result (Figure S2). The interARTIC pipeline proved superior in terms of coverage and sequencing depth. Notably, within the interARTIC pipeline both options, the ‘Nanopolish’ and ‘Medaka’ algorithms performed equally well with respect to consensus sequence quality, but ‘Medaka’ was considerably faster.

We observed that the consensus sequences returned by the Nanopolish and Medaka algorithms contain numerous unsolved regions (for which only ‘N’s are indicated). Interestingly, the regions unsolved by one algorithm were generally solved by the other, so we assumed that the two consensus sequences could be combined to produce a ‘super-consensus’ with improved variant prediction value. We developed a Python code that merges the Nanopolish and Medaka consensus sequences and generates the corresponding variant calling file. As expected, the ‘super-consensus’ contained less unsolved regions when compared with the Nanopolish and Medaka consensus files alone. In addition, it retained the high quality variants, which were identified by both algorithms alone, thus decreasing the numbers of false-positive positions (probably caused by sequencing errors) (Figure 4A). Furthermore, the exact
location of variants compared to the reference sequence is more accurately identified by our code than
by Nanopolish or Medaka (Figure 4B). Consequently, our consensus-merging code improves the
quality of variant calling and highlights the complementarity of Nanopolish and Medaka for nanopore-
sequencing of SARS-CoV-2 and others. Nevertheless, this quality increase comes at the cost of
information loss such as the number of reads per variant or other metadata which were initially
generated by Nanopolish and Medaka and are not transferred to the ‘super-consensus’.
Serial input RNA dilutions or, respectively, viral load influenced the depth of sequencing (Figure 2C-
H). For the output of high-quality consensus sequences in the FASTA file format a coverage threshold
of 20 was used as default. We generally observed that this could be reached when a SARS-CoV-2 titer
of 4x 10^6 was given. Viral copy numbers lower than 4x 10^6 were associated with incompletely
assembled SARS-CoV-2 genomes. However, despite incomplete coverage in those cases enough
informative sequence data could be obtained for phylogenetic analyses from several low copy number
samples. Thus, we provide here a convincing line of evidence that the copy number-normalized CT
values of diagnostic RT-qPCR can be used as the criterion of sequencing success.
Single or batch high-quality consensus FASTA formatted sequences were used for phylogenetic tree
visualization and variant calling using the Nextstrain webapp (https://clades.nextstrain.org) (Hadfield,
Megill et al. 2018). In our hands, the obtained sequences could faithfully be assigned to specific clades
in the reference tree (Figure 3). Again, an influence of viral load was observed. As a result of serial
dilution, we observed deviating phylogenetic distances within the clade, wherein specimens
classification occurred (Figure 3A), which eventually could lead to incorrect clade association. The
use of specimens from diagnostic routine with viral copy numbers higher than approx. 4x 10^6
apparently led to their faithful association with different clades, which were clades 20I and 19A in the
shown example (Figure 3B). The Nanopolish and Medaka consensus as well as the merged super-
consensus could be reliably associated to the corresponding clade (20I in the shown example). The
Medaka consensus mapped at a greater distance than the Nanopolish consensus, probably because the
Medaka algorithm does not correct frameshifts, while the super-consensus had an intermediary
distance between the two other consensus (Figure 4C).

Taken together, the main achievements of an optimized workflow are: 1. Purified RNA from SARS-
CoV-2-positive patients can be directly taken from residual diagnostic specimens in 96-deepwell-
plates; 2. cDNA synthesis and successive multiplex PCR with 2 split primer pools can be performed in
single tube reactions. Since cDNA synthesis is primed by SARS-CoV-2-specific primers for 1,200 bp
amplicon amplification, there is no need for use of unspecific hexanucleotide priming. 3. Onboard
Guppy basecalling with the Oxford Nanopore MinION Mk1C device and implementation of the
interARTIC led to a further reduction of working steps and hands-on time (Figure 5). Implementation
in smaller hospital laboratories with lower specimens’ throughput can be easily done at moderate
costs.
We provide a detailed protocol here, which includes the Python code and corresponding command line: dx.doi.org/10.17504/protocols.io.bvstn6en

Conclusions
The adapted protocol contains less processing steps. Diagnostic CT values are the principal criteria for specimen selection. After diagnostic qRT-PCR, multiplex library preparation, quality controls, nanopore sequencing and the bioinformatic pipeline can be completely conducted within one working-day.

List of abbreviations
(+)-RNA (sense polarity [single-stranded] ribonucleic acid), RdRP (RNA-dependent RNA polymerase), RT-qPCR (reverse transcription-quantitative polymerase chain reaction, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2)

Declarations
Ethics approval and consent to participate
For the collection and use of specimens at Helios University Hospital Wuppertal (North Rhine-Westphalia, Western Germany) we obtained approval of the Witten/Herdecke University Ethics board (No. 160/2020). All work has been conducted according to the principles expressed in the Declaration of Helsinki.

Competing interests
There are no conflicting interests for none of the authors, which need declaration.

Funding
The study was financed by own institutional means.

References

Figures and Figure legends
Figure 1. Nanopore sequencing options (2-6) compatible with diagnostic qPCR pipelines (1). The pyrosequencing option in path (6) requires biotin-tagged primers for qPCR (Weil, Hentschel et al. 2021).
Figure 2. Surveillance using nanopore sequencing (A.), and effects of specimens dilution on the SARS-CoV-2 genome coverage (B.), whereby viral copy numbers were 1.28×10^6 (B.); 5.12×10^8 (C.); 2.56×10^8 (D.); 4×10^6 (E.); 2×10^6 (F.); 1×10^6 (G.); 5×10^5 (H.). In (A.) increasing barcode numbers (X-axis) correspond to decreasing viral titers.
Figure 3. Comparison on the evolutionary distance calculation, when data from the same specimen was processed by 2 different bioinformatics pipelines. Phylogenetic tree visualization was done using the Nextstrain open-source platform for pathogen genome data analyses (Hadfield, Megill et al. 2018). We used serial dilutions of identical specimens (A.), or a selection of samples from different individuals from clinical routine (B.) for phylogenetic analyses. Below the trees a magnification of clade 20I is shown, wherein most specimens grouped (A,B).
Figure 4. Comparison of the consensus sequences returned by the Nanopolish and Medaka algorithm and the merged consensus for a nanopore sequencing run corresponding to a viral load of 1.28x10^6.

(a) Alignment of the Nanopolish and Medaka consensus as well as the merged consensus on the SARS-CoV-2 reference genome by the Nextstrain program. The merged consensus conserved all of the high quality mutations that mapped to the known variant 20I, while the non-matching mutations (likely sequencing errors) of the Nanopolish or Medaka consensus were mostly lost. (b) Comparison of variant solving by Nanopolish, Medaka and our code. The multiple alignment was performed by MAFFT online tool with the three consensus sequences and the SARS-CoV-2 reference genome (MN908947.3). The table summarizes the variants identified by the three algorithms in the region studied as reported in the .vcf file they return. Contrary to the Nanopolish and Medaka consensus, the merged consensus solved the entire region and led to accurate variant calling. (c) Clade mapping and phylogenetic distances calculated by Nextstrain for the three consensus sequences.
Figure 5. Comparison of a rapid SARS-CoV-2 whole (+)RNA genome nanopore sequencing pipeline (Freed, Vlkova et al. 2020) with the novel simplified workflow, whose main achievements are: (1) Purified RNA from SARS-CoV-2-positive patients can be directly taken from residual diagnostic specimens in 96-deepwell-plates; (2) cDNA synthesis and successive multiplex PCR with 2 primer pools can be performed in single tube reactions. Since cDNA synthesis is primed by SARS-CoV-2-specific primers for 1,200 bp amplicon amplification, there is no need for use of unspecific hexanucleotide priming. (3) Onboard Guppy basecalling with the Oxford Nanopore MinION Mk1C device and implementation of the interARTIC led to a further reduction of working steps and hands-on time.

Supplementary Information
Figure S1. The influence of viral load on the amplification of 1,200 bp amplicon was analysed by agarose gel electrophoresis using samples, where RNA was serially diluted prior to cDNA synthesis and semiquantitative multiplex PCR (A, B) or quantitative multiplex PCR (C, D). Multiplex primer pool 1 (A, C) and pool 2 (B, D) were used in separate single tube reactions. (A-D.) From left to right: Decreasing viral loads (dilution factors $2^{0} - 2^{-10}$ plus no template control).
Figure S2. Comparison on the phylogenetic distance, when data from the same specimen was processed by 2 different bioinformatics pipelines. Phylogenetic tree visualization was done using the Nextstrain web app (https://clades.nextstrain.org) for pathogen genome data analyses (Hadfield, Megill et al. 2018).