Twins in Guinea-Bissau have a ‘thin-fat’ body composition compared to singletons

Authors

Rucha Wagh\(^1\), Morten Bjerregaard-Andersen\(^{2,3,4,5}\), Souvik Bandyopadhyay\(^6\), Pranav Yajnik\(^7\), Rashmi B Prasad\(^8\), Stine Byberg\(^2,9\), Ditte Egegaard Hennild\(^2\), Gabriel Marciano Gomes\(^2\), Kaare Christensen\(^{10,11,12}\), Morten Sodemann\(^2,13\), Dorte Møller Jensen\(^4,14,15\), Chittaranjan Yajnik\(^1\)

Affiliations

\(^1\)Diabetes Unit, King Edward Memorial Hospital and Research Centre, Rasta Peth, Pune, Maharashtra, 411 011, India.
\(^2\)Bandim Health Project, INDEPTH Network, Apartado 861, 1004 Bissau Codex, Guinea-Bissau
\(^3\)Department of Endocrinology, Hospital of Southwest Jutland, Haraldsgade 7, 6700 Esbjerg, Denmark
\(^4\)Steno Diabetes Center Odense, Odense University Hospital, Denmark
\(^5\)Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
\(^6\)Strategic Consultant, Cytel, Inc., India.
\(^7\)Cytel, Inc., 675 Massachusetts Ave., Cambridge, MA 02139, USA
\(^8\)Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE 20502, Malmö, Sweden
\(^9\)Steno Diabetes Center Copenhagen, Niels Steensens vej 2-4, 2820 Gentofte, Denmark
\(^10\)The Danish Twin Registry, Epidemiology, Institute of Public Health, University of Southern
Denmark, J.B. Winsløwsvej 9, 5000 Odense C, Denmark

11Department of Clinical Genetics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark

12Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark

13Department of Infectious Diseases, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark

14Department of Gynaecology and Obstetrics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark

15Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark

CORRESPONDING AUTHORS

Morten Bjerregaard-Andersen, Department of Endocrinology, Hospital of Southwest Jutland, Haraldsgade 7, 6700, Esbjerg, Denmark

E-mail: Morten.Bjerregaard-Andersen2@rsyd.dk

Chittaranjan Yajnik, Diabetes Unit, KEM Hospital Research Centre, Pune, India

E-mail: csyajnik@gmail.com
ABSTRACT

Undernourished Indian babies are paradoxically more adipose compared to European babies. In utero, twins are in a growth restricted environment and share nutritional sources, therefore, they might have a 'thin-fat' body composition compared to singletons.

We compared anthropometry of twins (n=209, 97 males) and singletons (n=182, 86 males), using linear mixed-effect models in the Guinea-Bissau Twin Registry at the Bandim Health Project. Twins had lower birth weight (2420 vs 3100 g, p=0.001); and at follow-up, lower height (HAZ mean Z-score difference, -0.21, p=0.055), weight (WAZ -0.73, p=0.024) and BMI (BAZ -0.22, p=0.079) compared to singletons but higher adiposity (skinfolds: 0.33, p=0.001). Twins also had higher fasting (0.38, p<0.001) and 2-hr OGTT glucose concentrations (0.29, p<0.05). Data on prematurity was not available in this cohort.

The thin-fat phenotype of Guinea-Bissau twins could suggest that it is a manifestation of early life undernutrition and is not exclusive to Indians.

Keywords: Twins, adiposity, thin-fat, early life undernutrition, Guinea-Bissau.
The ‘thrifty phenotype’ hypothesis proposes that type 2 diabetes and related traits are a result of the fetus having to be thrifty in managing nutrition during intrauterine life \(^1\). The initial report in an English study showed that prevalence of type 2 diabetes was higher in those with lower birth weight \(^2\). This association has been replicated in many other populations \(^3\). While the original thrifty phenotype referred to changes in birth weight alone, this has been extended to include body proportions, body composition, organs and systems. Indian babies are reputedly the smallest in the world. Comparative studies showed that the lighter (weight) and thinner (ponderal index) Indian newborns are more adipose (skinfolds and MRI measurements of abdominal adiposity) compared to the heavier English newborns \(^4, \, 5, \, 6\). This ‘thin-fat’ phenotype has been ascribed to the influence of intrauterine undernutrition on body composition of the developing fetus, possibly through epigenetic mechanisms \(^5\). The Indian thin-fat phenotype persists in later life \(^7, \, 8, \, 9\), and is demonstrable in the migrant Indians after many generations \(^10\). This phenotype is thought to contribute to higher risk of type 2 diabetes and related disorders in Indians, compared to Europeans \(^11\). Thin-fat phenotype does occur in other Asian populations albeit to a lesser extent \(^12\). However, it has not been a focus of major research in other populations and therefore it became associated with Indian ethnicity. Demonstration of such a phenotype in other ethnic groups could suggest that this is a response to intrauterine undernutrition rather than an ethnic Indian characteristic.

Several twin studies have made significant contribution to the thrifty phenotype hypothesis. Smaller twins, both mono- and dizygotic, have been shown to have a higher risk of developing type 2 diabetes \(^13\). Elderly twins also had higher abdominal obesity, insulin resistance and increased prevalence of type 2 diabetes compared to singletons \(^14\). This could suggest a role for fetal programming rather than genetics per se. However, not all studies have confirmed higher risk of diabetes in twins, including large scale register studies \(^15\).
In Africa, there is a high natural twining rate, including in Guinea-Bissau, a low-income country. A twin registry was set up by the Bandim Health Project (BHP, www.bandim.org) in the capital city of Bissau. Follow up of twins in this registry showed that young twins had higher plasma glucose concentrations both in fasting and in the post-prandial state compared to age-matched singletons.

We hypothesized that the twins in the BHP cohort will have thin-fat body composition compared to singletons.

METHODS

Cohort description

This is a secondary analysis of previously collected (2009-2012) data from one of Africa’s first twin registries set up by the Bandim Health Project (BHP) in Guinea-Bissau. The BHP is a health and demographic surveillance site (HDSS), conducting epidemiological and health related research in the capital Bissau over the past 40 years. The results of the two main metabolic twin studies have previously been reported.

Briefly, young twins (n=209) and singleton controls (n=182), identified randomly from the HDSS register) between 7-34 years of age were investigated for risk of diabetes and metabolic syndrome with a weight-adjusted oral glucose tolerance test (OGTT) (1.75 g glucose/kg body weight, maximum 75 g). Anthropometric measurements included: height, weight, mid-upper arm circumference (MUAC), waist and hip circumferences using standard techniques. Triceps, biceps, subscapular and suprailiac skinfolds were measured using a Harpenden Skinfold Caliper (Baty International, West Sussex, United Kingdom). We also estimated body fat percent by Durnin’s formula ([4.95/Density] - 4.5) x100, where Density = (1.1599 - (0.0717 x log10 (sum of four skinfolds)).
The primary analysis was to compare anthropometric measurements of height, obesity (BMI) and adiposity (skinfolds and estimated body fat percentage) between twins and singletons. At the time of measurements, the age range was quite wide (7-34 years), therefore our preliminary analysis compared body size and composition based on sex specific WHO Z scores which provide data from birth to 19-years. Nineteen-year value was used as reference to calculate Z-scores for older subjects. In order to account for relatedness between twins we also performed additional analyses as described below.

The mean of anthropometric measurement was modelled separately for each measure using linear mixed effect model including twin status (twin vs singleton), sex (males vs females), age in years, and interaction between age and sex as fixed effects. Further, two indicator variables indicating whether age is more than 8y and 16y respectively and their interaction was also included as fixed effects, to adjust for the additional effect of age at these growth points on the responses. Random intercepts for mono- and dizygotic twins were included to account for correlations between the twins as detailed in the supplementary material (Supplementary appendix S1).

We investigated the association of twin status (twin vs singleton) with fasting and 2-hr glucose concentrations by comparing the two groups by ANOVA. We further investigated if differences in age, sex, BMI and skinfolds between two groups influenced the difference (ANCOVA).

For ease of interpretation, results in tables and figures are presented using native variables. For formal statistical analysis, we used log-transformed variables. All statistical analysis was performed using R software (version 4.1).
RESULTS

The analysis comprised 209 twins (81 pairs and 47 individuals where only one of the twins was included) and 182 singletons (supplementary table S1). Of these, 11 were mono- and 56 di-zygotic twin pairs, and 14 pairs with no established zygosity. It is a secondary analysis of the data reported in the paper by Hennild DE et al, 2016. Birth weight was available in 102 participants (56 twins and 46 singletons), with twins having lower birthweight compared to singletons. Both male and female twins were shorter, had lower weight and BMI but were more adipose compared to singletons.

Predictions of the means of anthropometric variables at age (8y, 12y, 16y and 20y) according to the fitted linear mixed effect models are displayed in table 1. There was the expected increase in height, BMI and skinfolds with increasing age. Females were shorter, had higher BMI and skinfolds compared to males. The figures 1a-d show the height, BMI, sum of skinfolds and estimated fat percent by age in the participants: twins were shorter, had a lower BMI and higher sum of skinfolds and fat percent across the whole age range compared to singletons, fitting the description of being ‘thin-fat’. This was also supported by the finding that twins have higher skinfolds and fat percentage at each BMI compared to the singletons (Fig. 1e and 1f).

As previously reported, fasting and 2-hr plasma glucose concentrations during OGTT were higher in the twins compared to the singletons, adjusting for the age and sex difference. Fasting glucose was positively related to sum of skinfolds (p<0.05) but not BMI, and inversely to birthweight (p<0.05). The difference in fasting and 2-hr plasma glucose between twins and singletons remained similar after adjusting for skinfolds, however, adjusting for birthweight reduced the size of the difference (Supplementary table S2). There was no difference between twins and singletons in total and HDL cholesterol and triglycerides concentrations.
DISCUSSION

This secondary analysis from the Guinea-Bissau twin registry, using previously collected data, was prompted by the description of ‘thin-fat’ body composition of the Indian compared to the European newborns. The Indian phenotype persists in later life and is thought to result from maternal-fetal undernutrition of macro- and micronutrients. It is associated with increased risk of diabetes and related disorders. The phenotype could have a genetic contribution but is thought to be predominantly due to epigenetic programming in utero. It was first described in multi-generationally undernourished rural Indian population, but also found in urban as well as migrant overseas Indians. Maternal obesity and gestational diabetes in migrant Indian mothers exaggerate the phenotype.

We hypothesised that twins are relatively undernourished in-utero and therefore they could be thinner but fatter compared to singletons. Data in Guinea-Bissau twin registry provided an opportunity for a cross sectional analysis of anthropometric measurements in twins and singletons across childhood, adolescence and young adulthood. Given the lower adiposity in Africans compared to Caucasians, our study would provide a good model to test the hypothesis that intrauterine adversities affect fetal adiposity. Our analysis shows that both the male and female twins were shorter, thinner (lower BMI) but fatter (higher skinfolds and estimated fat percentage) across all included age-groups. Twins also had lower birthweight, potentially suggesting that intrauterine undernutrition is associated with poor linear and lean mass growth, promoting relative adiposity. This has been shown in animal models of maternal undernutrition. Importantly, the thin-fat twins had higher plasma glucose concentrations compared to the singletons, reinforcing the findings in Indians. This difference was partly ascribable to lower birthweight of the twins, though birthweight data was available only on a smaller fraction of the participants (~ 26%). Thus, while intrauterine growth restriction in twins seems to influence both adiposity and glucose intolerance, further studies will be
needed to understand the inter-relationship between these two outcomes. Demonstration of
the ‘thin-fat’ phenotype in African twins suggests that this may not be exclusively an Indian
(ethnic) phenomenon and that early life adversities could be associated with such a phenotype
in different ethnic groups.
In our twins, these adversities would include intrauterine undernutrition related to the ‘double’
drainage on maternal resources in a population with often poor socio-economic conditions,
effect of spatial restriction, shortened gestation and higher susceptibility to perinatal
infections and other prevalent maternal morbidities (e.g., HIV, tuberculosis, malaria).
Undernutrition would be perpetuated during lactation due to sharing. We were, however, not
able to directly measure many of these factors in the present data. Also, we did not have
gestational age data available in this cohort, which is a considerable limitation. Previously, a
1.7-fold higher prematurity rate among newborn twins have been observed in Bissau,
compared to singletons. Thus, one could speculate that the thin-fat phenotype found in this
twin study could also be contributed by prematurity.
Our findings deserve to be investigated in other twin registries and also in populations with
high prevalence of fetal undernutrition. If confirmed elsewhere, it will strengthen the
argument that the thin-fat phenotype is a result of early life undernutrition. It will also
increase attention on fetal programming of body composition as a mechanism to explain
higher risk of diabetes and other non-communicable diseases in growth retarded babies
including twins, thereby being important knowledge in diabetes prevention.
In summary, we demonstrate that twinning may influence fetal body composition to produce a
thin-fat phenotype. Importantly, this expands the scope of the ‘thin-fat’ phenotype to non-
Indian populations. Further studies should investigate the mechanisms regulating fetal body
composition which will help promote health of the offspring.
ACKNOWLEDGEMENTS

The authors would like to thank all the participants in Guinea-Bissau, as well as the local field assistants and laboratory technicians from the Bandim Health Project, particularly Moises Soares Gomes, Leontina Indeque and Lita Indeque. The authors would also like to thank Lone Hansen, laboratory technician at the Department of Endocrinology, Odense University Hospital, Denmark, for assisting with the OGTT training and supply, as well as the biochemical analyses on collected samples. The authors would also like to thank prof. Peter Aaby, Prof. Christine Stabell Benn and Prof. Henning Beck-Nielsen for support during the project. Finally, the authors would like to acknowledge the late diabetes specialist Dr. Luis Carlos Joaquim, (who sadly died in 2012), for his assistance.

FINANCIAL SUPPORT

The principal investigator (MBA) received a combined grant from Forsknings-og Innovations Styrelsen, the University of Southern Denmark, and Odense University Hospital. Den Danske Forsknings Fond, Odense University Hospital, Fonden for Lægevidenskabens Fremme and Aase and Ejnar Danielsen's Foundation supported the data collection. CSY was a visiting professor to the University of Southern Denmark and Danish Diabetes Academy during this work, supported by Novo Nordisk Fonden. The funding sources had no role in the study design, data collection, data analysis or in writing of this manuscript.

CONFLICTS OF INTEREST

The Authors declare no conflicts of interest.

ETHICAL STANDARDS

The investigations were approved by the Ethical Committee in Guinea-Bissau. Consultative approval was obtained from the Central Ethical Committee in Denmark. Written consent (either signature or fingerprint) was obtained in all cases. For individuals <15 years consent was obtained from the mother or another caretaker.
References

Table 1: Predicted values (linear mixed effect model) between singletons and twins at different ages.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Females (N=208)</th>
<th>Males (N=183)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Singletons (N=96)</td>
<td>Twins (N=112)</td>
</tr>
<tr>
<td>At 8y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted height (cm)</td>
<td>122.3</td>
<td>121.3</td>
</tr>
<tr>
<td>Predicted BMI (kg/m²)</td>
<td>14.6</td>
<td>13.9</td>
</tr>
<tr>
<td>Predicted sum of Skinfold (mm)</td>
<td>17.8</td>
<td>19.8</td>
</tr>
<tr>
<td>Predicted total body fat (%)</td>
<td>12.2</td>
<td>13.4</td>
</tr>
<tr>
<td>At 12y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted height (cm)</td>
<td>145.19</td>
<td>144.19</td>
</tr>
<tr>
<td>Predicted BMI (kg/m²)</td>
<td>17.5</td>
<td>16.8</td>
</tr>
<tr>
<td>Predicted sum of Skinfold (mm)</td>
<td>26.7</td>
<td>28.7</td>
</tr>
<tr>
<td>Predicted total body fat (%)</td>
<td>16.9</td>
<td>18.1</td>
</tr>
<tr>
<td>At 16y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted height (cm)</td>
<td>149.2</td>
<td>148.2</td>
</tr>
<tr>
<td>Predicted BMI (kg/m²)</td>
<td>19.4</td>
<td>18.7</td>
</tr>
<tr>
<td>Predicted sum of Skinfold (mm)</td>
<td>32.8</td>
<td>34.8</td>
</tr>
<tr>
<td>Predicted total body fat (%)</td>
<td>19.4</td>
<td>20.5</td>
</tr>
<tr>
<td>At 20y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted height (cm)</td>
<td>158.5</td>
<td>157.5</td>
</tr>
<tr>
<td>Predicted BMI (kg/m²)</td>
<td>21.3</td>
<td>20.6</td>
</tr>
<tr>
<td>Predicted sum of Skinfold (mm)</td>
<td>33.2</td>
<td>35.2</td>
</tr>
<tr>
<td>Predicted total body fat (%)</td>
<td>20.2</td>
<td>21.4</td>
</tr>
</tbody>
</table>
Figure 1

Figure 1. Comparison of anthropometry and body composition between singletons and twins. Solid line: Females, Dotted line: Males, Orange: Singleton, Green: Twin