What We Learned From COVID-19? Trying to find the best approach from pathophysiology to treatment.

Adem Dirican¹, Selin Ildir², Tugce Uzar², Irem Karaman², Sevket Ozkaya³

¹VM Samsun Medicalpark Hospital, Department of Pulmonary Medicine, Samsun, Turkey.
²Bahcesehir University School of Medicine, Istanbul, Turkey.
³Bahcesehir University Faculty of Medicine, Department of Pulmonary Medicine, Istanbul, Turkey

Corresponding Author

Sevket Ozkaya, MD, Pulmonologist, Professor, Bahcesehir University, Faculty of Medicine, Department of Pulmonary Medicine, Istanbul, Turkey.

E-mail: ozkayasevket@yahoo.com.

Mobile phone: +90 532 474 13 09

Word count: 3067
Number of figures: 1
Number of tables: 1
Abstract

Introduction: The outbreak of the novel coronavirus 2019 (COVID-19) caused a pandemic that led to death of more than 3 million people globally. COVID-19 may yield a variety of clinical pictures, differing from pneumonitis to Acute Respiratory Distress Syndrome (ARDS) along with vascular damage in the lung tissue, which is named as endotheliitis. To date, no specific treatment was approved by any authority for the prevention or treatment of COVID-19.

Materials and Methods: Here, we presented our experience on COVID-19 with evaluating 11,190 COVID-19 patients by presenting the manifestations of endotheliitis in skin, lung, and brain tissues according to different phases of COVID-19. Since distinctive manifestations in each COVID-19 patient, including non-respiratory conditions in the acute phase and the emerging risk of long-lasting complications, suggest that COVID-19 has an endotheliitis-centred thrombo-inflammatory pathophysiology, our treatment strategy was adopted to prevent both respiratory and vascular distresses, which are categorized according to extent of endotheliitis. (Group A: no or mild pulmonary involvement, Group B: moderate pulmonary involvement with clinical risk of deterioration, Group C: severe pulmonary involvement and respiratory failure).

Results: A total of 11,190 COVID-19 patients that were diagnosed and treated in Samsun VM Medicalpark Hospital, Turkey, between March 2020 and April 2021 were retrospectively evaluated. The mean age was 59.2 ±17.3 years and male to female ratio was 5507/5683. Among these patients, 1896 (16.9%) individuals were hospitalized. While 1220 (64.3%) of the inpatients were hospitalized within the first 10 days after the diagnosis, 676 (35.7%) of them were hospitalized 10 days after their diagnosis. The number of patients who did not respond to group A and B treatments and developed hypoxemic respiratory failure (Group C) was 520 (27.4%). Among hospitalized patients, 146 (7.7%) individuals needed ventilator support (non-invasive/invasive mechanical ventilation) and were followed in the intensive care unit, and 43 (2.2%) patients died.

Conclusion: Potential pathophysiological mechanisms contributing to endotheliitis includes cytokine storm and toxic plasma, thromboinflammation and systemic microangiopathy. Endotheliitis can also explain the mechanism behind the respiratory failure in COVID-19, and the difference of COVID-19 related ARDS from ARDS seen in other critical conditions. Hence, daily evaluation of momentary changes in clinical, laboratory and radiological findings of patients and deciding appropriate pathophysiological treatment would help to reduce the mortality rate of COVID-19.

Keywords: COVID-19, Acute Respiratory Distress Syndrome, Endotheliitis, Cytokine Storm, Plasma

Introduction

Novel coronavirus disease 2019 (COVID-19) has resulted in a dramatic pandemic crisis by causing mainly a respiratory disease that can rapidly progress to pneumonia and, in severe cases, to acute respiratory distress syndrome (ARDS). Globally, as of May 9th of 2021, there have been 157,289,118 confirmed cases of COVID-19, including 3,277,272 deaths, reported to World Health Organization.
The heterogeneity of the disease serves a spectrum from asymptomatic cases to respiratory failure. With the experiences from 11,190 COVID-19 patients since March 2020, we observed that distinctive clinical, radiological and histopathological manifestations of each COVID-19 patient, including non-respiratory conditions in the acute phase and the emerging risk of long-lasting complications, suggests an endotheliitis-centred thrombo-inflammatory pathophysiology for COVID-19. Therefore, understanding the pathophysiology of SARS-CoV-2 infection, and more significantly the host response against it, is fundamental tool to develop a personalized treatment for the patient’s need and momentary response. Accordingly, we adopted our treatment strategies depending on both the respiratory and vascular distresses observed in patients. In this paper, we aimed to present our treatment strategies and related therapeutic consequences, along with the discussion of clinical, radiological, and histopathologic characteristics of COVID-19.

Materials and Methods

A. Patient Analysis and Classification

A total of 11,190 COVID-19 patients that were diagnosed and treated between March 2020 and April 2021 were retrospectively evaluated. Patients who were suspected to be infected by SARS-CoV-2 were confirmed with clinic, laboratory (positive reverse-transcriptase–polymerase-chain-reaction assay of nasopharyngeal swabs or serological IgM/IgG rapid antibody test against SARS-CoV-2) and radiologic (consistent HRCT findings) results and included in the study.

This heterogeneous group of patients were collected under three groups (A,B,C) for the standardization of the treatment, according to their repercussions of vascular distress (Table 1). The mean age was 59.2 ±17.3 years and male to female ratio was 5507/5683. Among these patients, 1896 (16.9%) individuals were hospitalized. While 1220 (64.3%) of the inpatients were hospitalized within the first 10 days after the diagnosis, 676 (35.7%) of them were hospitalized 10 days after their diagnosis. The number of patients who did not respond to group A and B treatments and developed hypoxemic respiratory failure (Group C) was 520 (27.4%). Among hospitalized patients, 146 (7.7%) individuals needed ventilator support (non-invasive/invasive mechanical ventilation) and were followed in the intensive care unit, and 43 (2.2%) patients died. Radiologic images and histopathologic samples of representative groups are presented in Fig.1.

B. Evaluation of Patients with Laboratory, Course and Prognosis

Our classification of treatment was primarily based on the clinical and radiological findings. We experienced that even though the laboratory findings may show the degree of pathophysiology, it may mislead the clinician when it comes to clinical practice. While C-reactive protein, ferritin, erythrocyte
sedimentation rate, IL-6 elevation and TNF-alpha represent inflammatory changes; D-dimer, prolonged PTT and troponin elevation show the predisposition to thrombosis and myocardial damage4,5. Cheng et al. points out that severely affected patients, along with the ones who could not survive the disease, are subject to significantly higher ferritin levels in comparison to the non-severe and survivor groups of patients6. However, COVID-19 is an acute syndrome of different age and comorbidity groups. When the clinician fails to detect the pre-infectious baseline values of the patient, overtreatment may worsen the situation. In our study group, a patient with 250 mg/L ferritin received Group C treatment, while another with 2550 mg/L received Group A due to the difference in their previous normal values (ferritin increased 10 and <1 times, respectively). The change in the concentrations of inflammatory markers seem to be significantly different in COVID-19 than in typical non-COVID-19-related ARDS, suggesting that COVID-19 features its own unique, poorly understood, yet detrimental, inflammatory profile7. Therefore, we advise the treatment strategies to be selected by monitoring radiological findings and the severity of clinical features (such as dyspnea).

\textbf{C. Treatment Strategies}

This heterogeneous group of patients were collected under three groups as A,B and C for the standardization of the treatment, according to their repercussions of vascular distress;

\textbf{Group A.} If the pulmonary involvement was absent or mild-to-moderate and the patient was suitable for ambulatory treatment, Favipiravir tablet (1600 mg BID for the first day, followed by 600 mg BID for four days, making five days in total), Dexamethasone (0.1-0.2 mg/kg per day), Azithromycin tablet, low-molecular-weight-heparin(LMWH) and acetylsalicylic acid(ASA) therapies were applied.

Group A included 9294 (83.05\%) patients who had any of the various signs and symptoms of COVID-19 (e.g., fever, cough, sore throat, headache, muscle pain, diarrhea, loss of taste and smell) but did not have shortness of breath. The typical radiological representation of Group A appears to be patchy, subpleural, peripheral, perivascular ground-glass opacities (GGO) (Fig. 1-I and 1-II). The placement of GGOs in the early presentation of the disease is compatible with the distribution of microvascular capillaries of lung.

\textbf{Group B.} Patients who showed evidence of lower respiratory disease during clinical assessment or imaging but an oxygen saturation(SpO2) \(\geq94\%\) on room air at sea level, were hospitalized for close follow-up. Patients with comorbidities or special conditions (i.e. age>65, diabetes, cancer, obesity, cardiovascular disease, chronic lung disease, sickle cell disease, chronic kidney disease, being pregnant, cigarette smoking, transplant or immunosuppression recipient) were also hospitalized due to their high risk of severity8. For the patients who had moderate pulmonary involvement and unresponsiveness to the Group A treatment in terms of the clinical symptoms, with no evident
respiratory failure, but had been indicated for hospitalization; Favipiravir tablet (1600 mg BID for the first day, followed by 600 mg BID for four days, making five days in total), Dexamethasone (0.1-0.2 mg/kg per day) or methylprednisolone (1-2 mg/kg per day), Azithromycin tablet or fluoroquinolone, LMWH, ASA and Famotidine tablet therapies were prescribed.

Group B treatment corresponds to the progressive phase of the disease, which is characterized by multifocal, bilaterally diffused GGOs with poorly circumscribed consolidations scattered in peripheral zones of lungs, along with vascular and intra-lobular septal thickenings called “crazy paving pattern” (Fig.1-IIIb). We observed that this phase has the peak stage in 10-13 days and may include potential secondary complications. Thus, patients require a close follow-up by serial chest X-rays to establish a baseline to assess the improvement of aeration.

Group C. In patients with moderate to severe pulmonary involvement(lung infiltrates >50%), accompanied by respiratory failure(\text{SpO2} <94\% \text{ on room air at sea level} \text{ and } \text{ a ratio of arterial partial pressure of oxygen to fraction of inspired oxygen (PaO2/FiO2) <300 mm Hg, respiratory frequency >30 breaths/min}), or to the patients who were recalcitrant to standard therapy and had deteriorating clinical status with laboratory (particularly increasing ferritin levels) and radiological findings, Favipiravir tablet (1600 mg BID for the first day, followed by 600 mg BID for 4 days, continued for 5 or 10 days in total), methylprednisolone (250-1000 mg/day for at least three days), convalescent plasma(once in a day during the first and second days of radiological detoriation, applied for maximum three days), tocilizumab(400 mg QD/daily, applied two times), supported by Piperacilin/Tazobactam, LMWH and famotidine therapies were administered.

This group of treatment should be adopted according to progressive, peak, dissipative and severe phases of the disease. Microscopic lacerations and infiltrations in perialveolar vessels radiologically appear as developing pulmonary GGOs, consolidation and diffuse alveolar damage (DAD), which may be accompanied by pneumothorax, pneumomediastinum or intracranial hemorrhage (Fig. 1-IV-V-VI-VII).

Ethics Statement
The patients signed written informed consents to be able to provide data in this study. The study was approved by Institutional Review Board(IRB) of Istinye University and Republic of Turkey Ministry of Health(2021-02-15T20/18/59).

Results
A total of 11,190 COVID-19 patients that were diagnosed and treated in Samsun VM Medicalpark Hospital, Turkey, between March 2020 and April 2021 were retrospectively evaluated. This
heterogeneous group of patients were collected under three groups (A, B, C) for the standardization of the treatment, according to their repercussions of vascular distress (Table 1).

Table 1. The Characteristics of Patients with COVID-19

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Age mean ±SD)</td>
<td>59.2 ±17.3</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male/Female</td>
<td>5507/5683</td>
</tr>
<tr>
<td>Symptoms</td>
<td></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>2460(21.9%)</td>
</tr>
<tr>
<td>Cough</td>
<td>6870(54.5%)</td>
</tr>
<tr>
<td>Pain</td>
<td>5370(47.9%)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>4140(36.9%)</td>
</tr>
<tr>
<td>Fever</td>
<td>3540(31.6%)</td>
</tr>
<tr>
<td>Pneumonitis</td>
<td>5061 (45.2%)</td>
</tr>
<tr>
<td>Treatment groups</td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>9294 (83.05%)</td>
</tr>
<tr>
<td>Group B</td>
<td>1376 (12.29%)</td>
</tr>
<tr>
<td>Group C</td>
<td>520 (4.64%)</td>
</tr>
<tr>
<td>Hospitalized</td>
<td>1896 (16.9%)</td>
</tr>
<tr>
<td>in first 10 days</td>
<td>1220 (64.3%)</td>
</tr>
<tr>
<td>after 10 days</td>
<td>676 (35.7%)</td>
</tr>
<tr>
<td>Respiratory Failure</td>
<td>520 (27.4%)</td>
</tr>
<tr>
<td>NIMV + IMV **</td>
<td>146 (7.7%)</td>
</tr>
<tr>
<td>Mortality</td>
<td>43 (2.2%)</td>
</tr>
</tbody>
</table>

NIMV: Non-Invasive Mechanical Ventilation
IMV: Invasive Mechanical Ventilation
The mean age was 59.2 ±17.3 years and male to female ratio was 5507/5683. Among these patients, 1896 (16.9%) individuals were hospitalized. While 1220 (64.3%) of the inpatients were hospitalized within the first 10 days after the diagnosis, 676 (35.7%) of them were hospitalized 10 days after their diagnosis. The number of patients who did not respond to group A and B treatments and developed hypoxemic respiratory failure (Group C) was 520 (27.4%). Among hospitalized patients, 146 (7.7%) individuals needed ventilator support (non-invasive/invasive mechanical ventilation) and were followed in the intensive care unit, and 43 (2.2%) patients died. Radiologic images and histopathologic samples of representative groups are presented in Fig.1.

Discussion

Pathophysiology of COVID-19 is closely related to cytokine storm, which arises from the consecutive and intricate activation of numerous inflammatory cells that cause excessive and/or unregulated, proinflammatory cytokine release\(^\text{10}\). Cytokines force blood plasma to undergo a chemical alteration, revealing toxic and irritant characteristics. Cytokine storm comprises the systemic activation of unstimulated tissue cells, epithelial and endothelial cells in addition to hyperactivation of hematopoietic cells, including B lymphocytes, natural killer (NK) cells, macrophages, dendritic cells, neutrophils and monocytes which provoke the excessive release of proinflammatory cytokines\(^\text{11}\). This toxic setting not only causes inflammation but also a damage in various systemic tissues via the signals of pro-apoptosis\(^\text{12}\). Main clinical manifestations of cytokine storm appear as fever, progressive dyspnea, tachypnea, and elevated inflammatory markers such as IL-6, CRP and ferritin as it is observed in COVID-19 patients\(^\text{11,12}\). The uncontrolled production of pro-inflammatory factors (IL-6, IL-8, IL-1\(\beta\), and GM-CSF), and chemokines (CCL2, CCL3, CCL-5) together with reactive oxygen species (ROS) cause ARDS which leads to pulmonary fibrosis and death. Abnormal nitric oxide metabolism, upregulation of ROS and proteases, downregulation of endothelium-associated antioxidant defense mechanisms, and induction of tissue factor altogether provide a basis for vascular pathology in COVID-19\(^\text{13}\).

Additionally, the systemic inflammatory response against SARS-CoV-2 infection is supported by the circulating mediators found in different organ systems, which are demonstrated in postmortem histopathological analysis to indicate the organ-dependent cytokines\(^\text{13,14}\). Fig.1-VIII represents the areas of lung parenchyma with the mixt-type inflammatory-cell infiltration and exudative capillaritis with thickened microvascular walls, in addition to the interstitial and intra-alveolar proliferation of fibroblasts.

Endotheliitis, hypercoagulability and thrombotic microangiopathy are namely the vascular hallmarks of COVID\(\Delta\)19\(^\text{16}\). These vascular complications should be evaluated separately from ARDS. As a
matter of fact, the histopathologic changes observed in several tissue samples might be primarily the result of C3-mediated pathways in thromboinflammation15. Beigee et al. stated that vascular widespread platelet–fibrin microthrombi was the main pathologic finding in the lung samples of critical COVID-19 patients with severe hypoxemia and minor radiological abnormalities on imaging13. They also indicated that clinically not all patients with ARDS present DAD. However, the presence of DAD with ARDS contributes worsening of clinical outcomes when compared with those without DAD. Early and late endotheliitis lesions on pulmonary HRCT are seen in Fig.1-X-XI.

Varga et. al was the first to demonstrate that irritant plasma, together with the SARS-CoV-2 infection, cause 'endotheliitis' in microvascular capillary endothelium, which is the primary pathology seen under non-immune, corrosive and irritant conditions17. Similarly, Zhang et al. demonstrated that COVID-19 infection resembles more of the pathophysiology and phenotype of complement-mediated thrombotic microangiopathies(TMA); rather than sepsis-induced coagulopathy or disseminated intravascular coagulation18. A common denominator of complement-mediated effects in TMAs is angiocentric inflammation causing endothelial dysfunction; mononuclear and neutrophilic inflammation of microvessels and as a result, microvascular thrombosis, which brings poor prognosis, multiple organ dysfunction syndrome and ARDS19. Microangiopathies in COVID-19 patients are characterized by anemia, increased lactate dehydrogenase,, thrombocytopenia and organ damage (ex. skin lesions, neurological, renal and cardiac dysfunction)19,20. In our cohort of patients, skin lesions were seen as COVID-19-associated papulovesicular exanthema scattered in trunk and mild pruritus (Fig.1-XII). Trellu et al. indicated that histopathological findings of papulovesicular eruption reveal the signs of endotheliitis and microthrombosis in the dermal vessels21. Unfortunately, patients may die, not from respiratory failure, but due to the vascular coagulopathies (i.e.hemorrhage) in brain, kidneys and heart (Fig.1-IX).

Endothelial dysfunction plays a key role in understanding the multisystemic attack of SARS-CoV-2 infection. Microvascular capillary endotheliitis is the primary mechanism that cause clinical deterioration, particularly in those patients with advanced pulmonary involvement22. The critical point in this manner is to differentiate non-immune endotheliitis from immune complex endotheliitis in lungs, and to consider it as the main pathology of COVID-19 since it is not directly mediated by the active antigen-antibody complexes or the virulence of SARS-CoV-2 itself23,24.

Initially, the irritant action of plasma leads to the thickening of the vessel wall and deceleration in blood flow, which is responsible for the microthrombosis in capillary beds in lungs, which may lead to respiratory failure. Fox et al. demonstrated the microvascular thrombosis and hemorrhage in lungs, as a remarkable contributor of death, in the autopsies of COVID-19 non-survivors25. They also proved
that the cardiovascular damage is “non-immune” by demonstrating cardiac cell necrosis without lymphocytic myocarditis in deceased patients.

The concept of virus-induced pulmonary vasculitis is consistent with a substantial ventilation/perfusion mismatch in COVID-19 based on a right-to-left pulmonary shunt due to a vicious cycle beginning with an increase in respiratory effort and oxygen consumption in inflamed and hyperperfused lungs, failure of hypoxic vasoconstriction, and resulting fatal outcome\(^3\). Therefore, the failure of simple ventilatory support in COVID-19 is commonly observed in patients who are unable to satisfy the oxygen demand due to reduced lung capacity (such as older patients and patients with obesity) and cardiovascular comorbidities.

In the clinical presentation, aggravation of dyspnea and hypoxemia symptoms were attributed to dysfunctional crosstalk between leukocytes and endothelial cells that manifest as vascular immunopathology predominantly confined to the lungs. Eventually, since microvascular walls are prone to damage, the destruction most conveniently occurs as *endotheliitis* at the site of pulmonary interstitial capillaries; with the help of lung elasticity and thin vascular walls, conveys into the perivascular space\(^26\). Remarkably, due to SARS-CoV-2’s endotheliophilic nature, endothelial and epithelial infections appear to be the predominating factors during the course of the disease\(^3\). On the other hand, alveolar-centered infection and the disruption of alveolar epithelial–endothelial barriers contribute to the development of DAD and *pneumonitis*, which manifest as GGOs in alveolar spaces\(^27,28\) (Fig.1-III and VIII). The aforementioned endothelial damage may spread to different systems and become lethal (Fig.1-VII).

Ekanem et al. stated that higher inflammatory markers (ferritin, CRP and fibrinogen), increased fibrosis in HRCT images, and absence of receiving an interleukin-6 inhibitor or convalescent plasma are associated with higher probability of severity and mortality via the spontaneous pneumothorax (SPT)\(^29\). They also suggested that there must be factors uniquely associated with COVID-19 that contribute to the incidence of SPT, since half of the patients were not on a ventilator when the pneumothorax was diagnosed. In Group C (Fig.1-IV-V-VI-VII), we also observed that endothelial damage, along with thromboinflammation, brought increased incidence of pneumothorax secondary to DAD in patients with ARDS. Among 11.190 patients, 30 patients developed either SPT, pneumomediastinum or subcutaneous emphysema with a 13.3% mortality rate. The most important reason behind these complications was most likely DAD, which stems from the high transpulmonary pressure and alveolar wall vulnerability, with decreased compliance and increased frailty, resulting in an air leakage into the chest compartments\(^30\). SPT that is observed in severe COVID-19 patients, is thought to be derived from reduced alveolar vessel caliber due to the virus-induced cytolysis, mononuclear immunological response to injury and the small vessel thrombosis at the site of
perialveolar area, which should be differentiated from iatrogenic pneumothorax related to mechanical ventilation.

Planning an effective therapy for COVID-19 infection is a complex process. According to Mastellos et al., broader pathogenic involvement of C3-mediated pathways in thromboinflammation supports the utilization of complement inhibitors in COVID-19, which result in diminished hyper-inflammation and marked lung function improvement. Teuwen et al. suggested that normalization of vascular walls through metabolic interventions might be considered as an additional potential target for the therapy. Therefore, until a specific antiviral is discovered against SARS-CoV-2, convalescent plasma therapy and immunomodulators play a significant role to control both consequences of SARS-CoV-2 infection (i.e., cytokine storm), to reduce inflammatory cell infiltration in lungs and to prevent fatal course in severe patients by reducing the likelihood of the Systemic Inflammatory Response Syndrome. Accordingly, the treatments should be constituted with the help of distinct agents:

Convalescent plasma therapy plays a critical role in neutralizing the plasma and diminishing its corrosiveness. Convalescent plasma not only demonstrates an antibody response but also denotes immunomodulatory, anti-cytokine and proinflammatory effects, which appear as key factors to minimize disease severity and mortality in COVID-19 cases. Gomez-Pastora et al. explain this correlation by the phenomena of pro-inflammatory and anti-inflammatory cytokine activation, as a result of macrophage associated hyperferritinemia. They stated that ferritin plays an active role as a pathogenic mediator in COVID-19 and the therapeutic use of plasma is beneficial to reduce ferritin and cytokine levels in the body. Our experience with convalescent plasma showed rapid and positive results against the symptoms of dyspnea, hypoxemia, fever and radiologically seen infiltrations.

Antiviral drugs are being used to decrease the viral load. Correspondingly, we prefer Favipiravir to meet the necessity. However, it should be noted that antiviral therapy fails to prevent pulmonary involvement, which is the histopathological inflammatory process rather than the effect of infection itself.

Systemic corticosteroid drugs (dexamethasone and methylprednisolone) are the only effective therapeutic agents to repair non-immune capillary microvascular endotheliitis, hence, advised to be used even in the presence of minimal ground-glass opacities. In our clinical experience, to benefit the best of pulse steroids, we did not wait for the progressive phase (approximately the second week of infection). Minimally distributed GGOs may easily progress to severe ARDS, in the absence of steroid treatment (Fig.1-VIIa-VIIb). In a multi-centered study conducted by RECOVERY Collaborative Group, mortality ratio in patients, who receive oxygen support and dexamethasone, found to be lower.
than the control group, especially if the patients are receiving invasive mechanical ventilation (29.3% vs. 41.4%; rate ratio, 0.64; 95% CI, 0.51 to 0.81)39.

Immunomodulatory therapies help to diminish the cytokine response of the body. Tocilizumab therapy, a monoclonal IL-6 antagonist, reduced the likelihood of progression to the composite outcome of mechanical ventilation or death40. Capra et al. have demonstrated that tocilizumab can be used as an immunomodulatory drug of choice in case of the severe COVID-19 to reduce mortality, diminish oxygen intake and treat lung opacities as well41.

LMWH and ASA are well-known to prevent the formation of microvascular thrombosis and cure hypoxemia, thus can be used as supportive treatment against cardiovascular complications of COVID-1942.

SARS-CoV infection is a multisystemic disease which courses rapidly with respiratory failure and complications secondary to vascular alterations (i.e. microvascular thrombosis, *endotheliitis*, and cytokine induced plasma toxicity). Early detection of radiological deterioration before laboratory findings, via monitoring chest X-rays daily, and planning personalized treatments constitute a crucial and life-saving maneuver in the treatment of COVID-19. Our group suggests that an important key to success relies on how closely the clinicians follow patients from diagnosis to treatment, including the whole course of the disease from outpatient clinic to ICU, in order to differentiate instant clinical deviations from previous general status.

We acknowledge that there are confounding factors related to management of COVID-19 patients due to lack of a standardized guideline for treatment of each and every patient. However, while the in-hospital mortality was reported to be up to 25% in different prospective trials, we believe that our standardized treatment approach, which has a result of 2.2% in-hospital mortality, represent the success of the personalized management of each COVID-19 patient in a single center43. As the COVID-19 pandemic continues, our current strategy represents a snapshot that would most probably change drastically over time.

In conclusion, daily evaluation of patients and deciding appropriate pathophysiological treatment for the momentary changes in clinical, laboratory and radiological findings would help to reduce the mortality rate of this novel virus. The collaboration of scientists and clinicians around the world is required in order to develop novel prognostic biomarkers and establish precise predictive thresholds for known biomarkers to foresee the severity for COVID-19 pneumonitis that is characterized by vasculopathies and wide range of immune derangements.

Disclosure
The authors have no conflicts of interest to declare.

Limitations

The design of the current study does not allow for further analysis of the COVID-19 patients in terms of the change in their laboratory, clinical and radiological parameters. The observational methodology suggested may be a source of bias that could lead to wrong conclusions on the effectiveness of treatments and the clinical representation of the underlying pathophysiology.

Provided treatment strategies are implemented to all patients regardless of their SARS-CoV-2 variant types. No corruptions from Turkey’s Ministry of Health guidelines are enforced to the patients in terms of new experimental drugs and/or biological agents.

Author’s Contributor

AD and SO diagnosed, treated the patients and designed the analysis, SI, TU and IK collected the data, analysis tools and wrote the paper.

Data Availability

The research article data used to support the findings of this study are available from the corresponding author upon request.

References

Figure Legends

Figure 1 consists of 8 cases with variable stages of COVID-19 and examples of early and severe endotheliitis in brain, pulmonary and skin tissues. Histopathological and radiological findings of pneumonitis changed depending on the phase of the disease (early, progressive, severe and dissipative, respectively), which leads to a divergence in treatment groups.

Examples of patients who were convenient for Group A treatment are depicted in sections I-II.

Figure 1-I A female patient whose age ranged between 45-55 admitted to the hospital with complaints of cough and fever. She was diagnosed with COVID-19 due to PCR positivity. HRCT images showed patchy, subpleural and peripheral perivascular ground-glass opacities, corresponding the early phase of pneumonitis. She received Group A treatment. GGOS in transaxial images were located in the subpleural area, where the microvascular *endotheliitis* and endothelial destructions mostly likely occur, due to the interaction with toxic plasma in the capillaries of pulmonary interstitial space.

Figure 1-II A male patient whose age ranged between 47-57 admitted to the hospital with complaints of fever and chest pain. His COVID-19 PCR test was positive. In addition to the characteristics of an early phase COVID-19 pneumonitis (end-capillary microangiopathy, explained in Fig.1-I) his HRCT images showed perivascular consolidation. It appeared as the continuation of crazy-paving pattern, which was demonstrated by the thickening in interlobular and intra-lobular septa. Lung involvement was limited and monofocal. Hence, the patient received Group A treatment.

An example of a patient who was convenient for Group B treatment is depicted in section III.

Figure 1-III A male patient whose age ranged between 60-70 admitted to the hospital with complaints of fever and cough. His PCR test resulted positive for SARS-CoV-2. Transaxial HRCT image in the first day of positivity shows bilateral and patchy nodular GGOs as expected in early phase (IIIa). At the 5th day of positivity, affected pulmonary areas were
advanced into scattered consolidations (IIIb). This appearance was noted as the progressive phase of pneumonitis and was considered as representation of clinical deterioration clinically (i.e. dyspnea, respiratory failure). On the 15th day of positivity, fibroreticular consolidations were conspicuous (IIIc). The dissipative phase was the healing process, characterized by the resolution in lung parenchyma and residual GGO, observed after 35 days of positivity (IIId). Parenchymal bands, originated from previous fibroreticular proliferation, were also visible (IIId).

If the patients have a tendency of severe phase and/or unresponsiveness to Group B therapy, Group C treatment was used. Representative cases of this group are shown in sections IV-V-VI-VII. This group of patients also undergo early and progressive phases of COVID-19 but they also showed further deterioration of lung involvement and endothelial damage, therefore, they received the last group of treatment. For the description of early and progressive phases, sections I, II and can be referred.

Figure 1-IV A male patient whose age ranged between 50-60 admitted to the hospital with complaints of fever. His PCR test was positive results for SARS-CoV-2. Coronal, sagittal and axial planes of HRCT images initially showed small GGO with a local subpleural sparing, particularly around the microvascular area on the first day of positivity (IVa). In the 5th day of treatment, increased GGOs were visible in the progressive phase (IVb). After 18 days of positivity, pneumomediastinum, Diffuse Alveolar Damage (DAD) and ARDS were seen in the severe phase (IVc). Lastly, the dissipative phase was seen, after 30 days of positivity, with residual fibrotic parenchyma (IVd).

Figure 1-V A female patient whose age ranged between 46-56 admitted to the hospital with complaints of fever and cough. Her COVID-19 PCR test was positive. Her first HRCT, on the 2nd day of positivity, showed COVID-19-related bilateral and multifocal nodular GGOs (Va). After 10 days of positivity, DAD developed along with ARDS and pneumomediastinum characterized with the severe phase (Vb). She recovered and discharged after 30 days of positivity with the dissipative phase (Vc). The regression in pulmonary lesions was visible on the HRCT image two months after diagnosis (Vd).

Figure 1-VI A male patient whose age ranged between 44-54 admitted to the hospital with complaints of fever and cough. His COVID-19 PCR test was positive. His HRCT showed moderate pneumonia in the early phase (VIa). After 12 days of positivity, the severe phase develops with DAD and ARDS (VIb). In the 25th day of positivity, recovery was observed in the dissipative phase (VIc). The extent of improvement in pulmonary lesions can be noticed in VId, which was 40 days after the diagnosis.

Figure 1-VII A male patient whose age ranged between 48-53 admitted to the hospital with complaint of dyspnea. His COVID-19 PCR test was positive. His first HRCT showed ARDS pattern with dense consolidations (VIIa). Pneumothorax developed after two weeks from diagnosis (VIIb). In addition to the respiratory failure, hemorrhagical intracranial areas were seen in the T2-weighted MRI. (VIIc). He was lost at the 20th day of positivity.

Representative histopathological and radiological images of endotheliitis is seen in section VIII, IX, X, XI.

Figure 1-VIII Haematoxylin&Eosin-stained sections from representative areas of lung parenchyma were seen with the mixt-type inflammatory-cell infiltration of lung tissue and exudative capillaritis with thickened microvascular walls. Interstitial and intra-alveolar proliferation of fibroblasts are noted.

Figure 1-IX. Diffusion MRI of head image of COVID-19 positive patient showing characteristic COVID-19 related endotheliitis causing characteristic lesions and intracranial hemorrhage.
Figure 1-X Early endotheliitis.

Figure 1-XI Late endotheliitis.

Figure 1-XII Papulovesicular eruptions as the skin manifestations of COVID-19 related endotheliitis.