Unifying diagnostic criteria for gestational diabetes mellitus

Suhail A. R. Doi1§ \textit{endocrinologist, professor}, Mohammed Bashir2§ \textit{endocrinologist}, Michael T. Sheehan3 \textit{endocrinologist}, Adedayo A. Onitilo4 \textit{adjunct professor}, Tawanda Chivese4 \textit{lecturer}, Ibrahim M. Ibrahim5 \textit{endocrinologist}, Stephen F. Beer2 \textit{endocrinologist}, Luis Furuya-Kanamori6 \textit{senior research fellow}, Abdul-Badi Abou-Samra2 \textit{endocrinologist, adjunct professor} and H. David McIntyre7 \textit{endocrinologist, professor}.

1Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
2Division of Endocrinology and Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar.
3Department of Endocrinology, Marshfield Clinic Health System –Weston Center, Weston, WI, USA
4Marshfield Clinic Research Institute, Marshfield, WI, USA
5Endocrinology and Diabetes Services Division, Sidra Medicine, Qatar Foundation, Doha, Qatar
6UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Australia
7Mater Research and The University of Queensland, Brisbane, Queensland, Australia

§Contributed equally

□Correspondence to
Suhail A. R. Doi
sardoi@gmx.net
Tel +974 66001271

Mohammed Bashir
mbashir@hamad.qa
Tel: +974 33781706
Abstract

OBJECTIVE Disagreement about the appropriate criteria for the diagnosis of gestational diabetes mellitus (GDM) persists. This study addresses the problem by examining an alternative approach which combines information from all time-points on the glucose tolerance test (GTT) into a single index and expands the GDM spectrum beyond the current binary approach into four categories using data from three geographically and ethnically distinct populations.

DESIGN Retrospective observational study design

SETTING Data from Wisconsin, USA (723 women) was used in derivation of the criterion and data from Doha, Qatar (1284 women) and Cape Town, South Africa (220 women) for validation.

PARTICIPANTS Pregnant women without pre-existing diabetes with a GTT done between 23 and 30 weeks gestation

MAIN OUTCOME MEASURE A novel index was derived from the GTT termed the weighted average glucose (wAG). This was categorized into four pre-defined groups (henceforth National Priorities Research Program (NPRP) criterion); i) normal gestational glycemia (NGG), ii) impaired gestational glycemia (IGG), iii) GDM and iv) high risk GDM (hGDM).

RESULTS In the Doha cohort, compared to the NGG group, the odds of large for gestational age babies increased 1.33 fold (P=0.432), 2.86 fold (P<0.001) and 3.35 fold (P<0.001) in the IGG, GDM and hGDM groups respectively. The odds of pregnancy induced hypertension increased 2.10 fold (P=0.024) in GDM & hGDM groups compared to the IGG and NGG groups. In the Cape Town cohort, a third of women in the GDM group and three-quarters in the hGDM group progressed to T2DM at 5 years.

CONCLUSIONS The NPRP categorization identifies four distinct risk clusters of glycemia in pregnancy which may aid better decision making in routine management, avoid potential over-diagnosis of women at lower risk of complications and assist with diabetes prevention in women at high-risk after an index pregnancy with GDM.
INTRODUCTION

Gestational diabetes mellitus (GDM) is defined as hyperglycaemia first detected during pregnancy that is neither type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM) (1;2). GDM is associated with an increased risk of maternal and fetal complications, together with an increase in medical cost (3) and can only be established through biochemical testing, typically between 24-28 weeks’ gestation. Despite wide agreement that any form of hyperglycaemia should be managed during pregnancy, there is still a substantial disagreement on which diagnostic process should be used and which glucose threshold(s) merit a diagnosis of GDM (4). The two widely used criteria for the diagnosis of GDM rely on individual time-point thresholds on a 2-hour (5) or a 3-hour (6) glucose tolerance test (GTT), and requires elevated values at one or two time points respectively for the diagnosis. As such, the number of elevated time-point values required and different glycaemic thresholds will alter the selection of women and prevalence of GDM (7) but such changes in selection and prevalence have not, thus far, been associated with maternal or perinatal benefit overall (8;9).

For a country like Denmark, changing to criteria that define GDM based on application of the International Association for the Diabetes in Pregnancy Study Group (IADPSG) 2010 (5) definition of GDM would result in a marked increase in GDM prevalence to 40% based on the fasting criterion alone, without convincing evidence of adverse pregnancy outcomes (10). Although this could be specific to Denmark, it raises serious questions about uniform application of current GDM diagnostic thresholds across the world, especially if based on single glucose thresholds on the GTT. Furthermore, data from both randomized controlled trials and observational studies
suggest that 75-85% of the women diagnosed with GDM do not require any pharmacological treatment (11-14). Hence, it has been argued that the current GDM diagnostic thresholds overdiagnose women at lower risk of complications, and carry the risk of increasing patient anxiety, stress and economic burden (8;15;16). On the other hand, since GDM is a pre-diabetic condition with a high progression rate to T2DM (17), there is also a need to refocus attention on criteria that distinguish women at higher risk of such progression (8). Current criteria may not deal with this optimally since progression to T2DM also varies with the type and number of abnormal GTT values (18), and criteria that address this can lead to added benefit in terms of cost-effective diabetes prevention.

In an effort to address the issue of population-specificity of glycemic thresholds, an approach involving adjustment of fasting venous plasma glucose (FVPG) concentrations to the local context through standard deviation based z-score transformation has been proposed (19). However, these z-scores are sensitive to the population distribution of normal and abnormal values and, unless based on a large representative sample, can make the cutoffs difficult to justify. In addition, diabetes outside pregnancy is defined worldwide by fixed glucose levels and GDM should arguably be no different. The issue seems to be related primarily to the use of elevated FVPG (10;20) and it has been suggested that the lower threshold for FVPG is better considered in concert with prior elevated post-load glucose (21) suggesting the need for a criterion based on the whole GTT in lieu of criteria based on individual time-points on the GTT. A recent USA based study concluded that, on a population level, the perinatal
benefits of broadening the diagnosis through use of the IADPSG single-step approach (over the two step approach) were insufficient to justify the increased costs (9).

What is needed therefore is a criterion that is not population specific and identifies women and babies at high risk. In addition, the criterion should also assign a GDM diagnosis label that does no harm to women at lower risk (22). Such women are of concern since they may not benefit from reduced adverse pregnancy outcomes with treatment (e.g. excess fetal growth and hypertensive complications), yet may experience higher induction rates, Caesarean section rates and lower gestational age at birth (23) with their consequent long-term risks (24). This study aims to address these problems with GDM diagnosis through examination of data from three continents, assessing the utility of combining information from all time-points on the GTT and expanding the GDM spectrum beyond the current binary approach.

RESEARCH DESIGN AND METHODS

Data acquisition

Wisconsin, USA

The target population was mothers who underwent a GTT (after being identified by a ‘first step’ universal 50g random glucose challenge test (GCT) with a value at 1h ≥7.5 mmol/L) and gave birth between November 2014 and November 2019 (supplementary Table S1). GDM was defined according to the criteria of Carpenter and Coustan (6) (fasting plasma glucose (FPG) >5.2 mmol/l, >10 mmol/l at 1 h, >8.6 mmol/l at 2 h, or
>7.7 mmol/l at 3 h) with two or more plasma glucose levels exceeding these cutoff values required for the diagnosis. Four categories of variables were extracted from the electronic medical record: demographical information; Age at delivery, mode of delivery, year of delivery, ethnicity, location of GTT, parity, education level and smoking; risk factors; BMI, height (cm), weight (kg) before and during the pregnancy, family history of diabetes, history of previous GDM and history of previous macrosomia; test result & timing-related; pregnancy week of the GTT, Fasting GTT value (0 hr), 1 hr GTT value, 2 hrs GTT value, 3 hrs GTT value and glycated hemoglobin A1c (HbA1c); outcome; macrosomia (birth weight of 4500g or more; ICD-10: P08) or maternal care for excessive fetal growth, third trimester; ICD-10: 036.63X0), GDM (ICD-10: O24.4), gestational age at birth, birth weight of the child, size at birth (large for gestational age (LGA; >90th percentile), small for gestational age (SGA; <10th percentile) and appropriate for gestational age (AGA)) which was calculated using the Fenton growth calculator (25;26).

Doha, Qatar

This data-set has previously been reported (7) and was a convenience sample that included all women who underwent a 75 g OGGT between January 2016 and April 2016 with and without GDM at a tertiary hospital of the Hamad Medical Corporation (Women’s Wellness and Research Center) in Qatar (Supplementary Table S2). This is the main maternity hospital in Qatar with 16,000–18,000 births annually. Women were identified using the laboratory database. Exclusions were: women who did not complete
the full two hour GTT; women with a FPG ≥ 7.0 mmol/l and/or 2 h PG ≥ 11.1 mmol/l who were deemed to have T2DM. GDM was defined in this population using the WHO2013/IADPSG criteria (5;27). All women thus identified were managed by nutritional therapy for 1–2 weeks. If 20% or more of the self-monitored blood glucose readings were above the ADA targets (FPG ≤ 5.3 mmol/L, 1-hour post prandial ≤ 7.8 mmol/L or 2 h ≤ 6.7 mmol/L), pharmacotherapy was then added. Metformin was the first-line medical therapy unless contraindicated, unacceptable to the patient, or not tolerated. Insulin was used as supplementary to metformin or solely if metformin was not tolerated or could not be used. Of note, obese women who do not meet the GDM definition do not routinely receive nutritional therapy. Variables extracted were similar to those in the USA data-set but some additional outcomes such as neonatal intensive care unit (NICU) admission and occurrence of pregnancy induced hypertension (PIH) were also recorded. Size at birth (large for gestational age (LGA; >90th percentile), small for gestational age (SGA; <10th percentile) and appropriate for gestational age (AGA)) was also calculated using the Fenton growth chart (25;26).

Cape Town, South Africa

This dataset is from the PROgression to type 2 Diabetes (PRO2D) study which investigated the progression to T2DM 5 years after a GDM pregnancy in Cape Town, South Africa. The detailed description of the PRO2D study has been published elsewhere (28;29). In brief, all women diagnosed with GDM at a major tertiary referral hospital in Cape Town, South Africa, between 1 August 2010 and 30 September 2011,
were recalled for diabetes assessment 5-6 years after the index pregnancy (supplementary Table S3). During the index pregnancy (28), women were screened for GDM using selected risk factors and GDM was diagnosed using the revised Western Cape guideline that was devised based on literature reviewed till June 2010 and expert consensus (GDM was diagnosed on a 2-hr GTT when either a fasting value was >5.5 mmol/L or a 2-hour value was ≥7.8 mmol/L in venous samples after a 75g g OGTT).

From the 1st of May 2016 till the 30th March 2017, consecutively recruited women were recalled and assessed for diabetes using a standard 2-hour GTT, and HbA1C to assess T2DM status. For this analysis, we excluded women who were pregnant at the time of the follow-up study. The Kohler risk score (30) at baseline and the outcome in terms of T2DM at 5 year follow-up were ascertained.

Oral Glucose-Tolerance Test and Glucose Analysis

Participants underwent a standard GTT, with the use of either a 100-g (USA) or 75-g (Qatar, South Africa) oral glucose load, between 23 and 30 weeks of gestation (target time of testing, 24-28 weeks). The difference between plasma glucose levels on the 100g and 75g GTT were not considered clinically important and were not further considered for this study. We consider this justified as previous studies demonstrated only a slight increase (31) in glucose values at 2h with the 100g versus the 75g GTT, mainly in women with GDM (31;32). Plasma glucose levels were measured using the hexokinase method in all centers. The analyzers used were the Beckman or Siemens...
Dimension at Wisconsin, the Roche Cobas 8000 at Doha and the Randox RX Daytona at Cape Town.

Statistical Analysis

All GTT glucose values were converted to SI units (mmol/L) for analysis. A principal components analysis (PCA) was carried out using the Wisconsin dataset to derive the criterion using the following variables: z-score for GTT glucose 0h, z-score for GTT glucose 1h, z-score for GTT glucose 2h, z-score for GTT glucose 3h, GDM status (ICD-10: O24.4), GDM status (NDDG criterion (33)), GDM status (Carpenter-Coustan (6)), GDM status (IADPSG (5)), gestational age at birth (weeks), birth weight (grams) and LGA status.

Two components were extracted, and it was expected that the first component would load variables on the GDM construct and the second on the fetal size construct. As expected, the last three variables loaded predominantly on the fetal size component. The rotated PCA loadings, which are the covariances/correlations between the original variables and the unit-scaled GDM component were taken as weights for each of the first three GTT glucose points and rescaled to sum to 1.

The GTT 0h, 1h and 2h glucose values were then combined into a weighted average glucose (wAG) using these individual weights. Based on the fact that GDM is a reflection of both impaired beta-cell function and increasing insulin resistance in
pregnancy, the women were classified into groups based on the optimal cutoff points for wAG based on the median for two variables: history of previous GDM and pre-pregnancy obesity. This was justified given recent data that suggest that the latter variables are individually significantly associated (about twice the odds) with need for insulin therapy, and by extension, with metabolic severity (34). This gave three cutoffs (median wAG with both absent, either present or both present). The four groups created by the three cut-offs were pre-defined as i) normal gestational glycemia (NGG), ii) impaired gestational glycemia (IGG), iii) GDM and iv) high risk GDM (hGDM) respectively. These labels were chosen because metabolic severity corresponds to insulin resistance and data evaluating GDM subgroups based on the Matsuda index suggest that groupings based on insulin resistance correlate well with changes in mean glucose levels on the GTT as well as with pregnancy outcomes (35). These four groups based on the wAG cutoffs, define the National Priorities Research Program (NPRP) GDM criterion. The included GTTs from Wisconsin were restricted to a period between 23 and 30 weeks gestation to allow for the variability seen in routine practice. GTTs done before 23 weeks and after 30 weeks were not included in the analysis.

Next, the NPRP criterion was applied to the Doha data for validation, the GTT’s in this analysis also being restricted to 23-30 gestational weeks as previously mentioned. Given that clinical action is usually prompted by the diagnosis of GDM, the analysis also looked at women with a GDM diagnosis in terms of the concordance with the treatments used. The performance vis-a-vis the NPRP criterion and clinical parameters were reported.
Finally, the NPRP criterion was applied to the South African GDM data, to assess whether this criterion aligned with future T2DM at 5 years follow-up in a cohort of women with previous GDM. Both the risk category based on Kohler at baseline and the occurrence of T2DM at 5 year follow-up were compared across NPRP categories.

All analyses were conducted using Stata 15 MP4 (StataCorp, College Station, TX, USA). All increase or decrease in risk statements refer to the estimated odds ratio (OR) and not the P values. The P values only indicate degree of evidence against the model hypothesis (i.e. OR=1) at the current sample size. Thus, for P values above 0.05, the interpretation regarding the estimated effect of treatment does not change, only the degree of evidence against the model hypothesis changes. Exact P values were reported throughout.

Patient and public involvement

It was not appropriate or possible to involve patients or the public in the design, or conduct, or reporting, or dissemination plans of our research

RESULTS

Criterion Determination (USA, Wisconsin Data)

After the PCA, the weight for GTT 0h, 1h and 2h values were 0.28, 0.36 and 0.36 respectively. This was used to compute a weighted average GTT glucose (wAG) for each participant as follows:

\[
wAG = (0.28 \times \text{gtt0}) + (0.36 \times \text{gtt1}) + (0.36 \times \text{gtt2})
\]
(expressed as actual glucose values at each time-point)

While there were 723 participants with a GTT done between 23 and 30 weeks of gestation, there were available data to compute the wAG for 697 women. The range of wAG was 4.2 to 11.9 mmol/L with a median of 7.2 mmol/L. The empirical cutoffs (see methods above) for the wAG were defined as 6.8, 7.5 and 8.6 mmol/L and these values were used to classify the women into the predefined GDM risk groups (Table 1). Of the 697 women, 257 (36.9%), 159 (22.8%), 196 (28.1%) and 85 (12.2%) were classified as NGG, IGG, GDM and hGDM respectively. Compared to the NGG category, the odds of a history of previous GDM was 2.22 fold higher (P=0.148) in IGG, 8.16 fold higher (P<0.001) in GDM and 26.55 fold higher (P<0.001) in the hGDM categories respectively. Compared to the NGG category, the odds of pre-pregnancy obesity was 1.93 fold higher (P=0.009) in IGG, 2.67 fold higher (P<0.001) in GDM and 4.24 fold higher (P<0.001) in the hGDM categories respectively. This suggested a dose dependent relationship with previous history of GDM and pre-pregnancy obesity which was expected given these were used to define the cutoffs. In addition, compared to the NGG category, the odds of a LGA baby was 1.48 fold higher (P=0.269) in IGG, 2.15 fold higher (P=0.015) in GDM and 2.67 fold higher (P=0.009) in the hGDM categories respectively again consistent with a dose dependent relationship.

Criterion Assessment and Validation (Doha, Qatar)

Of the women who had a GTT performed between 23 and 30 weeks of gestation, there were 401 women diagnosed with GDM and 883 women not diagnosed with GDM.
The wAG was calculable in 374 of 401 women with GDM, the range being 4.8 to 13.0 mmol/L with a median of 8.1 mmol/L. The wAG was calculable in 882 of 883 women not diagnosed with GDM, the range being 3.4 to 8.0 mmol/L with a median of 5.9 mmol/L. Of these 1256 women, 762 (60.7%) were classified as NGG. Of the others, 194 (15.5%), 178 (14.2%) and 122 (9.7%) were classified as IGG, GDM and hGDM respectively.

The average first HbA1c was 5.15% in the NGG group and increased by 0.20% (P=0.045), 0.26% (P=0.004) and by 0.36% (P<0.001) in IGG, GDM and hGDM groups respectively. Compared to the NGG group, the odds of obesity increased 2.56 fold (P<0.001) in IGG, 3.78 fold in GDM (P<0.001) and 4.63 fold in the hGDM group (P<0.001). A similar trend was noted for women who were overweight (OR 1.75, P=0.014; OR 2.75, P=<0.001; OR 2.42, P=0.007 respectively).

The odds of LGA babies increased over the NGG group by 1.33 fold (P=0.432) in the IGG group, by 2.86 fold (P<0.001) in the GDM group and by 3.35 fold (P<0.001) in the hGDM group. While LGA demonstrated a dose-response relationship with glycemic categories, the other pregnancy related outcomes were seen mainly in the two GDM groups and the odds of the newborn’s NICU admission (OR 1.46; P=0.071), cesarean delivery (OR 1.53; P=0.002), preterm (<37 weeks gestational age) delivery (OR 1.51; P=0.023), induction of labour (OR 1.74; P=0.003) and PIH (OR 2.10; P=0.024) were increased in the women in the GDM groups compared to the women in the other two groups, despite having been modulated by treatment. There was some evidence against the model hypothesis for excess gestational weight gain (OR 1.15; P=0.321) and stillbirth (OR 1.84; P=0.335), but almost no evidence against the model hypothesis.
for pre-eclampsia (OR 1.16; P=0.718) in GDM compared to the non-GDM groups at this sample size.

An analysis of treatment was undertaken amongst those with a diagnosis of GDM in this cohort. In this group, compared to those classified as hGDM, the odds of insulin treatment decreased by two-thirds in those classified as GDM (OR 0.37; P=<0.001) or IGG (OR 0.30; P<0.001) and decreased by three-quarters (OR 0.25; P=0.002) in those classified as NGG by the NPRP criterion. Similarly, compared to the hGDM group, the odds of metformin treatment decreased by two-thirds in GDM (OR=0.37; P<0.001) and by 90% in IGG (OR 0.10; P<0.001) and by more than 99% (OR 0.008; P<0.001) in the NGG group.

Future Diabetes Risk (Cape Town, South Africa)

Only women with GDM by local criteria were tested, but since the criteria were quite broad this analysis was possible. There was a clear relationship between future diabetes at 5 years and the NPRP GDM status in pregnancy with risk increasing in the GDM and hGDM groups. A third of women in the GDM group and three-quarters in the hGDM group progressed to T2DM at 5 years (Table 2). When looking at the Kohler risk score (30) in relation to the GDM risk groups, the lowest 25% within the IGG group all had low risk scores and the 25th to 50th percentile included women with up to medium risk scores only (Table 2). This progressively increased across the NPRP categories and in the hGDM group the lowest 25% included women with medium risk scores and
the 25\(^{th}\) to 50\(^{th}\) percentile included women with high risk scores (Table 2). The 10 women classified as GDM by local criteria but falling in the NGG group had a similar risk score profile as the 103 women at high risk of GDM suggesting that the NPRP risk category takes precedence over these risk factors.

The NPRP Criterion by Strata of the Local Diagnostic Criteria

Within the IADPSG GDM stratum in Doha, there were a quarter that would not be diagnosed GDM by the NPRP criterion (27 (7.2\%) NGG and 64 (17.2\%) IGG). Compared to hGDM/GDM, the women diagnosed with IGG and NGG had a decrease in odds of LGA babies (OR 0.59, P=0.229).

Within the IADPSG non-GDM stratum in Doha, there were one-sixth that would not be classified as NGG by the NPRP criterion (130 (14.7\%) IGG and 18 (2\%) GDM). Compared to NGG, the women diagnosed with GDM had an increased odds of LGA (OR 1.36) but with almost no evidence against the model hypothesis (P=0.770) at this sample size.

Within the Carpenter-Coustan GDM stratum in Wisconsin, there were only 2.0\% of women that would not be diagnosed GDM by the NPRP criterion (0 with NGG and 3 with IGG). The remaining were 60 (40.8\%) GDM and 84 (57.1\%) hGDM by the NPRP criterion.

Within the Carpenter-Coustan non-GDM stratum in Wisconsin, there were a quarter that would be diagnosed GDM by the NPRP criterion (136 (24.7\%) GDM and 1
(0.18%) hGDM). Compared to NGG/IGG, the women diagnosed with GDM/hGDM had an increased odds of LGA (OR 2.0, P=0.018).

DISCUSSION

In this study, we have developed and validated a wAG measure from the GTT and defined four distinct categories; NGG, IGG, GDM and hGDM. These four categories identify women who are at progressively higher risk of both immediate pregnancy-complications and subsequent development of T2DM. The populations used for the development and validation of the wAG are distinct both geographically and racially, and the results were consistent across three continents. Hence, we propose the use of the wAG based NPRP-criteria for the screening and classification of glucose tolerance during pregnancy.

PIH and LGA are the most common and consistently reported maternal and fetal complications of GDM, respectively (36). The risk of these complications showed a clear dose-dependent relationship with the NPRP categories. There are also longer term consequences of GDM since the metabolic adaptations during pregnancy place additional stress on β- cells that are already defective pre-pregnancy. There is progressive β-cell dysfunction after an index GDM pregnancy due to the baseline abnormality being worsened by retention of excessive gestational weight gain and increases in insulin resistance increasing the risk of T2DM in the years after pregnancy (36). This increase in risk was also predicted, in a dose dependent fashion, by increasing NPRP categories when linked to future T2DM at 5 years. In addition, a
number of GDM risk factors have been identified (30;36) and consideration of these within the Kohler score (30) also demonstrates a dose dependent relationship with the NPRP criterion.

The HAPO study provided data on GDM diagnosis based on maternal and fetal outcomes in 23,316 women who completed a 75 g OGTT at 24–32 weeks of gestation in relation to elevation in either fasting, 1-hour or 2-hour glucose values in the OGTT (37). However, it remains clear that the risk associated with hyperglycemia in pregnancy is a continuum with no ‘natural inflection points’ and therefore it was considered that women with equivalent levels of glycaemia-associated risk of adverse pregnancy outcomes should be grouped together to standardize threshold plasma glucose values. Despite this, only two groups were defined – normal and GDM based on a OGTT at 24–28 weeks of gestation (5;37). The latter was based on an adjusted odds ratio threshold of 1.75 (compared with the odds at the HAPO cohort mean) of delivering an infant affected by key fetal complications (38). Our study extends this principle to a spectrum of GDM categories, thus defining risk status better. More importantly, the single elevated value approach from the IADPSG recommendations (37) has been disputed by some (39;40). The major point of contention has been the increased numbers of women potentially diagnosed with GDM owing to the change in thresholds and reduced number of abnormal values greater than the threshold required (5;41;42). In the absence of any natural threshold, the precise numeric cutoff values of maternal glycaemia used for diagnosis as well as number of abnormal time-points have led to ongoing debate. This study suggests an alternative approach by integrating all GTT glucose values. Three glucose values are considered simultaneously thus eliminating the need to decide on
the use of one versus two abnormal thresholds and allowing risk categories to be defined incrementally based on overall glucose exposure. The IADPSG criteria may also not be suitable for uniform worldwide application, as a study in Denmark found a $>40\%$ GDM diagnostic rate in a low-risk population using the IADPSG criterion without a clear relationship to adverse pregnancy outcomes (10). This study suggests that the latter is likely a function of the binary classification and the single value cutoffs used by the IADPSG as we did not note a difference in performance of the NPRP criterion over three continents. Our study also addresses the call for a more flexible approach (43) without the need for differing diagnostic processes and glucose thresholds in specific geographic regions and ethnic groups.

This study raises some important practical points which merit further consideration and evaluation to improve clinical practice. We do acknowledge that the four categories proposed in this paper could generate some uncertainty for both women and their care givers who are accustomed to the binary classification and will require a new therapeutic approach based on variations in risk of short and long term outcomes. However, these categories could be instrumental in guiding care during pregnancy. Women with classically diagnosed GDM currently receive lifestyle and nutritional therapy, which if unsuccessful is followed by pharmacotherapy - if they could not achieve normoglycemia. It has always been a challenge to identify those who will require pharmacotherapy as the majority of the women will not. From our data, we note that despite the fact that those classified as IGG are more obese than the normal group, they appear not to be at higher risk of pregnancy complications, have a reduced rate of need for pharmacotherapy during pregnancy and have only a modestly increased risk of
progression to T2DM. Hence, this group could undergo less intensive intervention, focusing primarily on nutritional therapy and advice on healthy physical activity (44) to reduce the future risk of diabetes. One could consider and evaluate an approach where those in the GDM and hGDM categories might be started concurrently on pharmacotherapy (45) and nutritional therapy, and be considered for insulin therapy sooner if diagnosed late during pregnancy or are in the high risk GDM category. Post-delivery, women with GDM and hGDM should be the major target group for a coordinated diabetes prevention program including dietary and life-style intervention, Metformin, or both. As such, the four identified categories can provide more clarity and better resource allocation in the management of women at high-risk during and after pregnancy. This would be especially relevant in countries with limited resources.

Funding. This work was made possible by Program Grant #NPRP10-0129-170274 from the Qatar National Research Fund (a member of Qatar Foundation). The findings herein reflect the work, and are solely the responsibility of the authors. LFK was supported by an Australian National Health and Medical Research Council Fellowship (APP1158469)

Conflict of Interest. No potential conflicts of interest relevant to this article were reported.

Author Contributions. S.A.D. conceptualized the study and S.A.D., M.B., A.A.O. and M.T.S. designed the study. M.T.S., A.A.O., M.B. and T.C. take responsibility for the integrity of the data from respective institutions S.A.D. and T.C. take responsibility for the accuracy of the data analysis. S.D. and M.B. drafted the initial manuscript. I.M.I, S.F.B, L.F.K, A.B.A. and H.D.M provided support for clinical applicability and/or interpretation of results. All authors critically revised the manuscript, and approved the final version. S.A.D. and M.B. are the guarantors of this work.
References

Notes: CORPORATE NAME: for DOH-NET (Diabetes, Obesity and Hypertension in Pregnancy Research Network) and SOON (Southern Ontario Obstetrical Network) investigators

Notes: CORPORATE NAME: DALI Core Investigator group

29. Chivese T, Norris SA, Levitt NS. High prevalence of cardiovascular risk factors and insulin...

42. ACOG Practice Bulletin No. 190: Gestational Diabetes Mellitus Obstet Gynecol 2018; 131(2):e49-e64.

TABLES

Table 1. Gestational diabetes NPRP risk group classification

<table>
<thead>
<tr>
<th>GDM category</th>
<th>wAG threshold (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal gestational glycemia</td>
<td>≤ 6.8</td>
</tr>
<tr>
<td>Impaired gestational glycemia</td>
<td>>6.8 ≤ 7.5</td>
</tr>
<tr>
<td>Gestational diabetes</td>
<td>>7.5 ≤ 8.6</td>
</tr>
<tr>
<td>High risk gestational diabetes</td>
<td>> 8.6</td>
</tr>
</tbody>
</table>

wAG; weighted average glucose
Table 2. Risk factors and outcomes by NPRP categories

<table>
<thead>
<tr>
<th>Risk factors and outcomes</th>
<th>NGG (wAG ≤ 6.8 mmol/L)</th>
<th>IGG (wAG > 6.8 to ≤ 7.5 mmol/L)</th>
<th>GDM (wAG > 7.5 to ≤ 8.6 mmol/L)</th>
<th>hGDM (wAG > 8.6 mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITED STATES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of previous GDM</td>
<td>6/257 (2.3%)</td>
<td>8/159 (5.0%)</td>
<td>32/196 (16.3%)</td>
<td>33/85 (38.8%)</td>
</tr>
<tr>
<td>Pre-pregnancy obesity</td>
<td>46/178 (25.8%)</td>
<td>49/122 (40.2%)</td>
<td>68/141 (48.2%)</td>
<td>34/57 (59.6%)</td>
</tr>
<tr>
<td>LGA baby</td>
<td>19/222 (8.6%)</td>
<td>12/135 (8.9%)</td>
<td>29/173 (16.8%)</td>
<td>15/75 (20.0%)</td>
</tr>
<tr>
<td>QATAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First HbA1c (mean)</td>
<td>5.15%</td>
<td>5.35%</td>
<td>5.41%</td>
<td>5.51%</td>
</tr>
<tr>
<td>Obesity</td>
<td>244/745 (32.8%)</td>
<td>90/191 (47.1%)</td>
<td>86/176 (48.9%)</td>
<td>67/119 (56.3%)</td>
</tr>
<tr>
<td>LGA baby</td>
<td>32/646 (5.0%)</td>
<td>11/170 (6.5%)</td>
<td>21/162 (13.0%)</td>
<td>15/101 (14.9%)</td>
</tr>
<tr>
<td>On insulin (diagnosed GDM only)</td>
<td>8/27 (29.6%)</td>
<td>22/65 (33.9%)</td>
<td>62/160 (38.8%)</td>
<td>77/122 (63.1%)</td>
</tr>
<tr>
<td>On metformin (diagnosed GDM only)</td>
<td>7/27 (25.9%)</td>
<td>21/65 (32.3%)</td>
<td>55/160 (34.4%)</td>
<td>67/122 (54.9%)</td>
</tr>
<tr>
<td>PIH</td>
<td>25/956 (2.6%)</td>
<td>16/300 (5.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICU admission</td>
<td>84/956 (8.8%)</td>
<td>37/300 (12.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caesarean delivery</td>
<td>354/956 (37.0%)</td>
<td>142/300 (47.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preterm delivery</td>
<td>119/954 (12.5%)</td>
<td>53/300 (17.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induction of labour</td>
<td>103/956 (10.8%)</td>
<td>52/300 (17.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOUTH AFRICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2DM at 5 years*</td>
<td>0/10 (0%)</td>
<td>4/25 (16%)</td>
<td>25/80 (31.3%)</td>
<td>76/105 (72.4%)</td>
</tr>
<tr>
<td>Kohler risk score (IQR)**</td>
<td>242.1 (180.2, 319.3)</td>
<td>177.3 (128.3, 245.4)</td>
<td>208.8 (165.2, 276.6)</td>
<td>284.1 (187.9, 340.2)</td>
</tr>
</tbody>
</table>

* Pearson chi2(3) = 53.5, Pr < 0.001
** Range of Kohler score is 54 – 380 with <=140 (low), 141 – 220 (medium), 221 – 300 (high) and >300 very high risk respectively
**Kruskal-Wallis equality-of-populations rank test, Chi2(3)=23.41; P<0.001