Fragmented QRS is independently predictive of long-term adverse clinical outcomes in Asian patients hospitalized for heart failure: a retrospective cohort study

Running head: Fragmented QRS in Asian HF patients

Dr Jeffrey Shi Kai Chan, MBChB1, Mr Jiandong Zhou2, Ms Sharen Lee1, Mr Andrew Li3, Mr Martin Tan4, Mr Keith SK Leung, BSc5, Prof Kamalan Jeevaratnam, PhD6, Prof Tong Liu, MD, PhD7, Prof Ying Liu, MD, PhD8, Prof Qingpeng Zhang PhD2, Prof Gary TSE, PhD, FRCP1,6,7#

1 Cardiovascular Analytics Group, Laboratory of Cardiovascular Physiology, Hong Kong, China
2 School of Data Science, City University of Hong Kong, Hong Kong, China
3 Faculty of Science, University of Calgary, Calgary, Canada
4 University of Toronto, Toronto, Canada
5 Emergency Medicine Unit, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
6 Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
7 Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
8 Heart Failure and Structural Cardiology Division, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China

Correspondence to:
Prof. Gary Tse PhD FRCP
Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
Faculty of Health and Medical Sciences, University of Surrey, GU2 7AL, Guildford, United Kingdom
Email: g.tse@surrey.ac.uk
Tel.: +86-22-88328617
Fax: +86-22-28261158

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Fragmented QRS (fQRS) results from myocardial scarring and predicts cardiovascular mortality and ventricular arrhythmia. In this retrospective cohort study, we evaluated the prevalence and prognostic value of fQRS in patients hospitalized for heart failure between 1st January 2010 and 31st December 2016 at a tertiary center in Hong Kong. We found fQRS to be an independent predictor of adverse clinical outcomes, with higher risks in those with higher fQRS burden.

Keywords: fragmented QRS, heart failure, Asian, ventricular arrhythmia, sudden cardiac death, myocardial fibrosis
Fragmented QRS (fQRS) is the manifestation of myocardial scarring on 12-lead surface electrocardiogram (ECG). Though initially described in the context of ischaemic heart disease (IHD), fQRS has been observed in other conditions where myocardial scarring or fibrosis is present. While fQRS has been shown to predict adverse outcomes in patients with heart failure, most studies have focused on either acute outcomes of hospitalized patients, or long-term outcomes of ambulatory patients. Data on the long-term prognostic power of fQRS in patients hospitalized with heart failure are lacking. Also, with the rising prevalence of heart failure in Asia, there is an urgent need for good prognostic markers in Asian patients with heart failure. We aimed to bridge these gaps in evidence with the current study.

This was a retrospective cohort study approved by The Joint Chinese University of Hong Kong - New Territories East Cluster Clinical Research Ethics Committee. All patients aged 18 years old or above who were hospitalized for heart failure between 1st January 2010 and 31st December 2016 at a single tertiary center in Hong Kong were included. Patients who had wide QRS (≥120 ms), missing primary outcome data, and those who did not have any ECG done during the index hospitalization were excluded. The patients were identified using the Clinical Data Analysis and Reporting System (CDARS), a territory-wide database that centralizes patient information from local hospitals and ambulatory and outpatient facilities. Mortality data were obtained from the Hong Kong Death Registry, a government registry with the registered death records of all Hong Kong citizens linked to CDARS. Patient demographics, prior comorbidities, and baseline medication usage were extracted. The baseline ECG obtained on the first heart failure admission was selected for analysis. We defined fQRS using the criteria set forth by Das et al, where fQRS was defined as the
presence of an additional R wave (R’), notching in the nadir of the S wave, or presence of
more than two R’ waves in at least two contiguous leads within any myocardial territory
(anterior, inferior, or lateral) with QRS duration of <120 ms. (9) QRS complexes with
fragmented morphology in a single lead were not classified as fQRS. The primary outcome
was a composite of cardiovascular mortality, VA, and SCD. The secondary outcomes were
the individual components of the primary composite outcome, myocardial infarction (MI),
and new-onset atrial fibrillation (AF). All patients were followed up till 31st December 2019.

All continuous variables were expressed as mean ± standard deviation and compared using
Student’s t test. Dichotomous variables were compared using Fisher’s exact test. All
outcomes were analyzed by univariate Cox regression and multivariate Cox regression
adjusting for baseline comorbidities that were significantly different between cohorts; hazard
ratios (HR) were used as the summary statistic. Subgroup analyses were done to assess the
prognostic power of fQRS in patients with and without ischaemic heart disease respectively,
as well as the impact of fQRS burden in patients with fQRS. All p values were two-sided, and
p<0.05 was considered significant. All statistical analyses were performed using SPSS
software version 25.0 (IBM Corp, New York, USA).

In total, 2868 patients fulfilled the inclusion criteria. After excluding patients with missing
ECG (N=2), missing primary outcome data (N=309), and wide QRS complex (N=373), 2182
patients were included in the analysis. We identified fQRS in 179 patients (8.20%), more of
whom were males than those without fQRS (54.7% vs 46.6%, p=0.042), but were not
significantly different in age (75.4±14.8 years vs 74.4±13.5 years, p=0.403). Patients with
fQRS had significantly higher rates of renal diseases (p=0.011). Other baseline characteristics
were not significantly different between the two cohorts (Table 1). Follow-up durations were similar between the two cohorts (5.53±4.21 years vs 5.64±4.08 years, p=0.733). The primary composite outcome was met in 566 (25.9%) patients, while the secondary outcome of cardiovascular mortality was met in 419 (19.2%) patients, VA in 56 (2.6%) patients, SCD in 212 (9.7%) patients, MI in 353 (16.2%) patients, and new-onset AF in 829 (38.0%) patients.

Cox regression (Table 2) showed that the presence of fQRS predicted the primary composite outcome in univariate analysis (HR 1.507 [1.160, 1.959], p=0.002), which remained significant after adjustments for baseline differences (HR 1.541 [1.185, 2.004], p=0.001; Figure 1A). Both univariate and multivariate analyses also demonstrated that fQRS was strongly predictive of cardiovascular mortality, VA, and SCD. However, there were no significant differences in the risks of MI and new-onset AF. To delineate the prognostic value of fQRS more clearly, we further adjusted the above multivariate analyses with clinical history of VA. The statistical significance of all these observations remained stable after adjustment, showing that the prognostic value of fQRS was independent of clinical history of VA.

Subgroup analysis was performed on patients with (786 (36.0%)) and without (1396 (64.0%)) IHD. fQRS was present in 75 (9.5%) patients with IHD, and 104 (7.4%) patients without IHD. Patients with IHD were follow-up for slightly longer periods (5.82±4.13 years vs 5.29±4.00 years, p=0.003). Among patients with IHD, the primary composite outcome was met in 228 (29.0%) patients, while the outcome of cardiovascular mortality was met in 171 (21.8%) patients, VA in 28 (3.6%) patients, SCD in 83 (10.6%) patients, MI in 204 (26.0%) patients, and new-onset AF in 249 (31.7%) patients. Among patients without IHD, these were
met in 338 (24.2%), 248 (17.8%), 28 (2.0%), 129 (9.2%), 149 (10.7%), and 580 (41.5%) patients, respectively. Cox regression (Supplementary Table S1) showed that in patients with IHD, fQRS predicted the primary composite outcome (adjusted HR 1.746 [1.191, 2.559], p=0.004), cardiovascular mortality, VA, and SCD. However, fQRS did not predict the primary composite outcome in patients without IHD (adjusted HR 1.342 [0.929, 1.938], p=0.117), despite remaining strongly predictive of VA and SCD.

Patients with fQRS were stratified into those who had two contiguous leads with fQRS (112 patients; 5.13% of all patients; 62.6% of patients with fQRS), and those who had more than two such leads (67 patients; 3.07% of all patients; 37.4% of patients with fQRS). The two subgroups were not significantly different in any baseline characteristics. Cox regression (Supplementary Table S2) demonstrated significantly higher risk of the primary composite outcome in the latter (HR 1.841 [1.119, 3.029], p=0.016; Figure 1B), driven by a significantly higher risk of SCD (HR 2.866 [1.350, 6.081], p=0.006) which remained significant even after adjustment for clinical history of VA and SCD (HR 2.679 [1.252, 5.729], p=0.011). All other outcomes were not significantly different in risk between the two subgroups.

To the authors’ best knowledge, this is the first study focusing on Asian patients hospitalized with heart failure that reported long-term clinical outcomes, with a mean follow-up duration exceeding five years. We confirmed that the elevated risk of adverse outcomes in patients with fQRS persists in the long term, independent of prior history of VA. The magnitudes of elevated risk we observed were also comparable to previous studies. (4) Previous studies on Asian patients with heart failure have found fQRS in 16.6-49% of patients. (5,10,11) In contrast, we identified fQRS in 8.20% of included patients. This difference in prevalence was
probably due to the less-selective inclusion and exclusion criteria we used for the study population. Having identified all patients through a territory-wide database, the results of our study more closely reflect real life practice, and better guide clinicians in their care of patients with heart failure. Additionally, we found that a higher burden of fQRS was associated with further increased risk of SCD. This finding may be due to higher fQRS burden reflecting more extensive myocardial scarring. The cutoff of two contiguous leads with fQRS meant that the presence of additional leads with QRS complexes of fragmented morphology beyond the classification criteria would be additionally predictive of SCD, allowing for intuitive interpretation and facilitating clinical applications.

Importantly and interestingly, we showed that fQRS was predictive of SCD but not cardiovascular mortality in patients without IHD. It must be noted that non-ischaemic cardiomyopathies are a heterogeneous entity with various aetiologies. It is possible that fQRS has varying significance in these patients depending on the aetiology of cardiomyopathy. Further studies are warranted in this area.

This study has several limitations. First, data obtained from CDARS could not be adjudicated. However, all data entry were done by clinicians who had no involvement in this study. Second, without accompanying echocardiographic and aetiological data, the included patients with heart failure were heterogeneous in aetiology and phenotype. As shown by the subgroup analysis on patients with or without IHD, such differences may affect the prognostic value of fQRS. Third, our analysis did not account for differences in the morphologies of fQRS, which may have prognostic implications.
In conclusion, fQRS was strongly and independently predictive of cardiovascular mortality, VA, and SCD in Asian patients hospitalized for heart failure. Having fQRS in more than two contiguous leads independently predicted further increased risk of SCD. However, fQRS did not predict cardiovascular mortality in patients without IHD, warranting further studies.

The authors wish to declare no conflict of interest. No funding was obtained for this study.

Supplementary materials

Supplementary Table S1. Cox regression results, stratified by the presence of ischaemic heart disease. Hazard ratios (HR) were referenced against patients without fragmented QRS.

Supplementary Table S2. Cox regression of the 179 patients with fragmented QRS. Hazard ratios were referenced against patients with fragmented QRS present in only two contiguous leads.

STROBE checklist
References

6. Younis AS, El-Halag MI, ElBadry MA, Abbas NIM. Fragmented QRS complex frequency and location as predictor of cardiogenic shock and mortality following acute coronary syndrome. Egypt Hear J. 2020 Dec 1;72(1).

Table 1. Baseline characteristics and follow-up durations of included patients.

<table>
<thead>
<tr>
<th></th>
<th>No fQRS (N=2003)</th>
<th>fQRS present (N=179)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-up duration, years</td>
<td>5.64±4.08</td>
<td>5.53±4.21</td>
<td>0.733</td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male, N (%)</td>
<td>934 (46.6)</td>
<td>98 (54.7)</td>
<td>0.042</td>
</tr>
<tr>
<td>Age, years</td>
<td>74.4±13.5</td>
<td>75.4±14.8</td>
<td>0.403</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus, N (%)</td>
<td>616 (30.8)</td>
<td>50 (27.9)</td>
<td>0.447</td>
</tr>
<tr>
<td>Renal diseases, N (%)</td>
<td>277 (13.8)</td>
<td>13 (7.26)</td>
<td>0.011</td>
</tr>
<tr>
<td>Hypertension, N (%)</td>
<td>918 (45.8)</td>
<td>69 (38.5)</td>
<td>0.071</td>
</tr>
<tr>
<td>Ischaemic heart disease, N (%)</td>
<td>711 (35.5)</td>
<td>75 (41.9)</td>
<td>0.089</td>
</tr>
<tr>
<td>Myocardial infarction, N (%)</td>
<td>185 (9.2)</td>
<td>19 (10.6)</td>
<td>0.505</td>
</tr>
<tr>
<td>Prior ventricular arrhythmia, N (%)</td>
<td>21 (1.0)</td>
<td>5 (2.8)</td>
<td>0.056</td>
</tr>
<tr>
<td>Prior sudden cardiac death, N (%)</td>
<td>22 (1.1)</td>
<td>4 (2.2)</td>
<td>0.159</td>
</tr>
<tr>
<td>Atrial fibrillation, N (%)</td>
<td>370 (18.5)</td>
<td>41 (22.9)</td>
<td>0.162</td>
</tr>
<tr>
<td>Stroke / TIA, N (%)</td>
<td>264 (13.2)</td>
<td>18 (10.1)</td>
<td>0.294</td>
</tr>
<tr>
<td>Medications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACEI / ARB, N (%)</td>
<td>1016 (50.7)</td>
<td>95 (53.1)</td>
<td>0.585</td>
</tr>
<tr>
<td>Calcium channel blockers, N (%)</td>
<td>923 (46.1)</td>
<td>71 (39.7)</td>
<td>0.101</td>
</tr>
<tr>
<td>Beta-blockers, N (%)</td>
<td>964 (48.1)</td>
<td>92 (51.4)</td>
<td>0.435</td>
</tr>
<tr>
<td>Diuretics, N (%)</td>
<td>755 (37.7)</td>
<td>69 (38.5)</td>
<td>0.810</td>
</tr>
<tr>
<td>Nitrates, N (%)</td>
<td>518 (25.8)</td>
<td>57 (31.8)</td>
<td>0.092</td>
</tr>
<tr>
<td>Statins and fibrates, N (%)</td>
<td>621 (31.0)</td>
<td>51 (28.5)</td>
<td>0.554</td>
</tr>
</tbody>
</table>
Anticoagulants, N (%)
320 (16.0)
33 (18.4)
0.397

Antiplatelets, N (%)
798 (39.8)
74 (41.3)
0.691

1 ACEI, angiotensin-converting-enzyme inhibitors. ARB, angiotensin II receptor blockers.
2 fQRS, fragmented QRS.
Table 2. Cox regression analysis of all 2182 patients. Hazard ratios were referenced against patients without fragmented QRS.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Univariate</th>
<th>Multivariate model 1</th>
<th>Multivariate model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR [95% CI]</td>
<td>p value</td>
<td>HR [95% CI]</td>
</tr>
<tr>
<td>Composite primary outcome³</td>
<td>1.507 [1.160, 1.959]</td>
<td>0.002</td>
<td>1.541 [1.185, 2.004]</td>
</tr>
<tr>
<td>Secondary outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV mortality</td>
<td>1.373 [1.008, 1.871]</td>
<td>0.044</td>
<td>1.434 [1.051, 1.955]</td>
</tr>
<tr>
<td>VA</td>
<td>3.231 [1.707, 6.119]</td>
<td>0.0003</td>
<td>2.918 [1.540, 5.527]</td>
</tr>
<tr>
<td>SCD</td>
<td>1.832 [1.231, 2.727]</td>
<td>0.003</td>
<td>1.833 [1.230, 2.730]</td>
</tr>
<tr>
<td>MI</td>
<td>1.023 [0.700, 1.496]</td>
<td>0.905</td>
<td>1.014 [0.693, 1.484]</td>
</tr>
<tr>
<td>New-onset AF</td>
<td>1.111 [0.874, 1.413]</td>
<td>0.391</td>
<td>1.123 [0.883, 1.429]</td>
</tr>
</tbody>
</table>

1 Adjusted for sex and renal disease

2 Adjusted for prior history of ventricular arrhythmia, sex, and renal disease

3 A composite of cardiovascular mortality, ventricular arrhythmia, and sudden cardiac death

AF, atrial fibrillation. CI, confidence interval. CV, cardiovascular. HR, hazard ratio. MI, myocardial infarction. SCD, sudden cardiac death. VA, ventricular arrhythmia.
Figure 1. Kaplan-Meier curves of cumulative freedom from the primary composite outcome of (A) all patients, and (B) patients with fragmented QRS (fQRS). The hazard ratios (HR) shown were adjusted for differences in baseline characteristics.