Title: Structural disconnectome mapping of cognitive function in chronic stroke patients

Knut K. Kolskår¹,²,³, *, Kristine M. Ulrichsen¹,²,³, Genevieve Richard¹, Erlend S. Dørum¹,²,³, Michel Thiebaut de Schotten⁴,⁵, Jaroslav Rokicki¹,²,¹⁴, Jennifer Monereo-Sánchez¹,⁶,⁷, Andreas Engvig⁸,⁹, Hege Ihle Hansen¹⁰, Jan Egil Nordvik,¹¹,¹⁵ Lars T. Westlye¹,²,¹², Dag Alnæs¹,¹³

¹ NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
² Department of Psychology, University of Oslo, Norway
³ Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
⁴ Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
⁵ Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives- UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
⁶ Faculty of Health, Medicine and Life Sciences, Maastricht University, Netherlands
⁷ Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Netherlands
⁸ Department of Nephrology, Oslo University Hospital, Ullevål, Norway
⁹ Department of Medicine, Diakonhjemmet hospital, Norway
¹⁰ Department of Neurology, Oslo University Hospital, Norway
¹¹ CatoSenteret Rehabilitation Center, Son, Norway
¹² KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway
¹³ Bjørknes College, Oslo, Norway
¹⁴ Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
¹⁵ Faculty of Health Sciences, Oslo Metropolitan University, Norway

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Keywords: DTI, stroke, prediction, cognitive sequelae

Abstract

Sequalae following stroke represents a significant challenge in rehabilitation treatment. The location and size of focal lesions are only moderately predictive of the diverse cognitive outcome and rehabilitation potential after stroke. One explanation building on recent work on brain networks proposes that the cognitive consequences of focal lesions are strongly associated with perturbations of anatomically distributed brain networks supporting cognitive operations. To investigate the association between post-stroke structural disconnection and cognitive performance, we estimated individual level whole-brain disconnectivity probability maps using lesion maps from 102 stroke patients. Cognitive performance was assessed in the whole sample using Montreal Cognitive Assessment, and a more comprehensive computerized test protocol was performed on a subset (n=82). Multivariate analysis using Partial Least Squares revealed that higher disconnectivity in insular and frontal operculum was associated with poorer MoCA performance, indicating that lesions disconnecting these brain regions are more likely to be associated with global cognitive impairment. Furthermore, our results indicated that disconnection of the inferior frontal gyrus and the frontal orbital cortex is associated with poorer outcome across multiple cognitive domains. These findings demonstrate that the extent and distribution of the brain disconnectome in persons living with stroke sequelae are sensitive to cognitive deficits and support that longitudinal studies assessing the predictive value of brain network connectivity for cognitive outcome following stroke are warranted.
Introduction

Cognitive impairments following stroke represent a significant challenge in rehabilitation treatment. The heterogeneity in cognitive deficits arise not only from differences in the localization and extent of focal lesions but also from secondary cascade effects in terms of altered connectivity induced by abrupt changes to neural pathways (Anne K. Rehme & Grefkes, 2013), as well as from alterations of the hierarchical brain network structure and function (Stam, 2014). Anatomical location, lesion severity, vascular risk factors, chronic brain pathology and pre-stroke cognitive impairment are common predictors of cognitive deficits and recovery after stroke (Bentley et al., 2014; Macciocchi, Diamond, Alves, & Mertz, 1998; Munsch et al., 2016; Pendlebury, 2009). However, recent studies indicate added predictive value when including connectivity-based measures, which capture perturbations of brain network connections or dynamics beyond focal lesion site, for long-term cognitive outcome after brain injury (Ktena Sofia et al., 2019; Lopes et al., 2021).

In the last decade, a large body of literature has characterized the brain as a complex network consisting of nodes and their connections, collectively termed the brain connectome. A central property of network nodes is how densely they are connected. Highly connected nodes, or hubs, are critical for efficient information flow between brain regions and are thought to play a crucial role in orchestrating neural activity across distal brain regions, allowing for the integration of information required to support cognitive operations (Cole et al., 2013). Thus, focal damage to any part of a brain network might cause functional disruptions of distal but intact brain regions. Even small lesions in a densely connected hub may cause connectome-wide perturbations. Promisingly, preservation and compensatory altered neural activity and connectivity are associated with improved behavioral outcome (A. K. Rehme, Eickhoff, Wang, Fink, & Grefkes, 2011; Saur et al., 2006), and investigation of brain connectomics may increase the predictive utility of functional imaging for outcome following brain perturbations and pathology (Fornito, Zalesky, & Breakspear, 2015). Recent studies have therefore moved beyond traditional lesion-symptom mapping, to include measures of network dysfunction to explain and predict stroke sequelae (Lim & Kang, 2015;
Ulrichsen et al., 2020). Recent findings using the lesion-network mapping approach suggest that patients with overlapping symptoms have lesions in regions that are functionally connected and that lesions to brain network hubs or their connecting white matter pathways are associated with more symptoms (Fox, 2018). The concept has also been shown to apply to a wide range of brain disorders such as Alzheimer disease, schizophrenia and multiple sclerosis (Crossley et al., 2014; Stam, 2014; van den Heuvel & Sporns, 2019) and for the understanding of cognitive development (Gozdas, Holland, & Altaye, 2019). For example, cognitive maturation is associated with increasing involvement of frontal hubs during adolescence (Hwang, Hallquist, & Luna, 2013; K. K. Kolskår et al., 2018; Oldham & Fornito, 2019), indicating that a network-level view of brain organization is relevant for understanding the development and deterioration of cognitive functions during the lifespan in health and disease (Douaud et al., 2014). Supporting the relevance for brain disorders, the degree of “hubness” affected by a stroke has been shown to predict both cognitive impairment and outcome of rehabilitation (Aben Hugo et al., 2019).

The brain is connected by an intricate web of white matter (WM) pathways, consisting of bundles of myelinated axons responsible for conveying signals between brain regions. While measuring axonal disconnections in the living human brain has remained a challenging task, a recent implementation of DTI based tractography for assessing full-brain connection probabilities has enabled opportunities for detailed estimation of the connections of one or several lesions in individual patients (Foulon et al., 2018). Based on normative data from healthy controls, voxel-wise disconnection probability maps for a particular patient can be derived based on a lesion map. The extent and distribution of these disconnectivity maps have been shown to correlate with a surrogate biomarker of neuronal damage in patients with MS (Rise et al., 2021) and shown promise in predicting deficits following stroke (Salvalaggio, De Filippo De Grazia, Zorzi, Thiebaut de Schotten, & Corbetta, 2020).

To test for associations between brain disconnection and cognitive performance, we used Partial Least Squares analysis (PLS) to map common variance between voxel-wise structural
disconnection probability maps in 102 stroke survivors and their performance on the Montreal Cognitive assessment (MoCA, (Nasreddine et al., 2005)). PLS (Krishnan, Williams, McIntosh, & Abdi, 2011) is well-suited for investigating multivariate associations between neuroimaging features and non-gaussian behavioral and clinical measures commonly obtained from stroke patients (Blackburn, Bafadhel, Randall, & Harkness, 2013), and offers high sensitivity compared to more traditional univariate approaches (Van Roon, Zakizadeh, & Chartier, 2014). Based on the literature reviewed above, we hypothesized that the degree of stroke-induced disconnection would be associated with cognitive performance. Since previous studies and existing models of the distributed nature of the neuroanatomical basis of cognitive functions we remained agnostic about the anatomical distribution of the associations with the disconnectome maps, and performed an unbiased full brain analysis. To ensure reliable results, we performed bootstrapping and permutation testing.

Methods

The present cross-sectional study included participants previously been described in detail and overlaps with the samples described in (Dørum et al., 2020; Kolskår et al., 2020; Richard et al., 2020; Ulrichsen et al., 2020). Briefly, the sample comprised 102 stroke survivors from sub-acute (>24h post stroke and in clinical stable condition) to chronic stage. Inclusion criteria were radiologically documented ischemic or hemorrhagic stroke, and exclusion criteria were psychiatric conditions (bipolar disorder or schizophrenia), other neurological conditions including known cognitive impairment pre-stroke, substance abuse, and contraindications for MRI compatibility. All participants gave their written consent before participating, and the study was approved by the Regional Committee for Medical and Health Research Ethics South-East Norway (2014/694 and 2015/1282).

Table 1 displays sample demographics as well as time between stroke and MRI and cognitive assessment.
Table 1. Summary of clinical and demographic variables. NIHSS: National Institute of Stroke Scale. CapPad: Cognitive Assessment at Bedside for iPad

MRI acquisition

Patients were scanned at Oslo University Hospital on a 3T GE 750 Discovery MRI scanner with a 32-channel head coil. T2-FLAIR images were acquired with the following parameters: TR: 8000 ms; TE: 127 ms, TI: 2240 ms; flip angle (FA): 90°; voxel size: 1x1x1 mm. In addition, we collected T1-weighted images using a 3D IR-prepared FSPGR (BRAVO) sequence (TR: 8.16 ms; TE: 3.18 ms; TI: 450 ms; FA: 12°; voxel size: 1x1x1 mm; slices: 188; FOV: 256 x 256, 188 sagittal slices) for co-registration purposes.

Lesion delineation

Lesion delineation was performed on each participant's FLAIR image, using the semi-automated Clusterize-Toolbox, implemented in MATLAB (de Haan, Clas, Juenger, Wilke, & Karnath, 2015), guided by radiological descriptions. Normalization parameters were estimated by linear registration of the structural T1-image to the MNI152-template and applied to the lesion masks using Flirt (Jenkinson & Smith, 2001). Figure 1 displays overlap in lesion location across the sample.
Figure 1. Heatmap displaying lesion overlap across 102 stroke patients. 12 transversal slices, with 5 mm thickness. Color scale indicates number of participants overlapping. z-value denotes transversal coordinates within the MNI152-coordinate system.

Estimation of structural disconnectome maps

To estimate the extent of the structural disconnection for each patient, we employed an automated tractography-based procedure (Foulon et al., 2018). Briefly, full-brain tractography data of 170 healthy controls from the 7T Human Connectome Project was used as a normative training set to identify fibers passing through each lesion (Thiebaut de Schotten, Foulon, & Nachev, 2020). Using affine and diffeomorphic deformations (Avants et al., 2011; Klein et al., 2009), individual lesion maps were registered to each control’s native space and used as seeds for the probabilistic tractography in Trackvis (Wang, Benner, Sorensen, & Wedeen, 2007). The resulting tractograms were transformed to visitation maps, binarized, and registered to MNI152 space before a percentage overlap map was produced by summarizing each point in the normalized healthy subject visitation maps. The resulting disconnectome maps are whole-brain voxel-wise probability maps indicating for each patient and for each voxel in the brain the probability that the voxels were disconnected. Next, these individual-level disconnection maps were included in group-level analysis.
Cognitive assessment

All participants were assessed with MoCA (Nasreddine et al., 2005). At a follow-up timepoint, a subsample of the patients (n=82) were also assessed using CabPad (Willer, Pedersen, Forchhammer, & Christensen, 2016), which is a computerized battery of tests assessing a range of functions, including motor speed (finger tapping) for dominant and non-dominant hand, verbal fluency (phonetic and semantic word generation), attention span (symbol sequencing), working memory (reversed symbol sequencing), a spatial Stroop / flanker task, spatial short-term memory and psychomotor speed (symbol-digit coding task).

Statistical analysis

To assess associations between MoCA scores and disconnectome maps, we used non-rotated task-based partial least squares (PLS) using PLS Application (Krishnan, Williams Lj Fau - McIntosh, McIntosh Ar Fau - Abdi, & Abdi, 2010) for MATLAB (MathWorks, 2018), entering female, age and MoCA score as behavioral variables, and entering contrasts for mean effects for each (1 0 0; 0 1 0; 0 0 1). We performed permutations (n=1000) to assess the significance of the estimated latent variables, while precision was estimated using bootstrapping (n=1000) and used to calculate pseudo-z or bootstrap ratio brain maps (McIntosh & Lobaugh, 2004).

To assess overlap between MoCA driven disconnectivity clusters and stroke location across the sample, we combined all lesions across participants in a common binary mask. Hence the mask indicated if a given region had been affected by stroke in any of the participants. The binary lesion-mask was used to mask the MoCA driven disconnectivity map, where the resulting map indicated pure distal disconnectivity associations, i.e. parts of the brain not directly included in a lesion in any of the patients. In turn, the distal disconnectivity-map was clustered using the cluster function in FSL (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). The average disconnectome value in these clusters was extracted for each participant and correlated with CabPad performance.
Results

Figure 2 displays distribution of MoCA-scores across the sample. 35% of the patients fulfilled criteria for mild cognitive impairment, based on a suggested cutoff at 26 (Nasreddine et al., 2005).

![Figure 2. Histogram depicting the distribution of MoCA scores across the sample.](https://example.com/figure2.png)

Figure 3 and Table 2 summarize the results from the PLS. Briefly, permutation testing revealed three significant clusters (pseudo-\(z > 3\)) showing common variance between MoCA performance and structural disconnection, including 1) right frontal operculum/insular cortex, 2) right superior temporal gyrus, and 3) the right putamen.
<table>
<thead>
<tr>
<th>Cluster-#</th>
<th>Location</th>
<th>Size mm³</th>
<th>Max pseudo-Z</th>
<th>X, Y, Z (vox)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Right frontal operculum/insula</td>
<td>1063</td>
<td>4.09</td>
<td>[25, 75, 33]</td>
</tr>
<tr>
<td>2</td>
<td>Right superior temporal gyrus, posterior division</td>
<td>273</td>
<td>3.65</td>
<td>[15, 48, 41]</td>
</tr>
<tr>
<td>3</td>
<td>Right putamen</td>
<td>37</td>
<td>3.61</td>
<td>[34, 68, 32]</td>
</tr>
</tbody>
</table>

Table 2. Summary of disconnectome clusters significantly associated with MoCA performance, identified by PLS analysis.

Figure 3. Voxel-wise disconnectome bootstrap ratio maps for the MoCA association, thresholded at pseudo-z >3.

By masking the MoCA associated PLS map with the common lesion mask, we identified two clusters comprising in total 89 voxels that were not directly compromised by any lesion, indicating that 6.48% of the identified voxels represent disconnectivity caused solely by distal effects. These results are summarized in Table 3 and Figure 4. The inclusive mask containing all lesion affected voxels across all patients yielded a total of approximately 67,000 voxels, covering 29% of the brain.
<table>
<thead>
<tr>
<th>Cluster #</th>
<th>Location</th>
<th>Size (mm³)</th>
<th>Max pseudo-Z</th>
<th>X, Y, Z (vox)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Right frontal orbital cortex</td>
<td>48</td>
<td>3.5</td>
<td>[24,76,26]</td>
</tr>
<tr>
<td>2</td>
<td>Right inferior frontal gyrus</td>
<td>41</td>
<td>3.3</td>
<td>[17,74,35]</td>
</tr>
</tbody>
</table>

Table 3. Summary of lesion-distal disconnectome clusters, identified by masking out voxels affected by a lesion in any of the patients, from the group-level disconnectome bootstrap-ratio map. Coordinates reflect peak voxel.

Figure 4. Visualization of lesion-distal cluster 1 and 2. The cognition - disconnectivity association in this frontal region was located in a lesion-distal brain region, meaning none of these voxels were encompassed by lesions in any of the stroke patients.

Figure 5 summarizes the results from the analyses testing for associations between disconnectome probability in the lesion-distal voxels identified above and CabPad performance. The analysis revealed negative associations with tests assessing word generation, visual short-term memory,
psychomotor speed, and working memory, suggesting decreased task performance with increased disconnection.

Figure 5. Correlation matrix displaying associations between disconnectome probability in the lesion-distal voxels identified by the PLS analysis and performance on the CabPad tests, indicating that the disconnectome results generalize to a comprehensive set of cognitive performance measures.

Discussion

In the current study, we investigated associations between individual brain disconnectome maps and post-stroke cognitive performance using PLS analyses in 102 chronic patients suffering mild to moderate strokes. We also performed follow-up analysis assessing cognitive associations with brain regions representing lesion-distal disconnections. Our analysis revealed that structural disconnection of the right insula and frontal operculum, which are central nodes of the cingulo-opercular network (Sadaghiani & D'Esposito, 2015), were associated with poorer general cognitive performance as measured using MoCA. Further, we demonstrated that the associations between cognitive performance and disconnection implicated voxels in the right inferior frontal gyrus and...
the orbitofrontal cortex that were not directly encompassed by lesions in any of the patients, thus representing lesion-distal effects. In a subsample comprising 82 of the patients, we demonstrated that the associations generalized to a wide range of specific cognitive functions, including word generation demanding top-down executive control, attention span, and psychomotor tempo. Together, our results provide novel evidence supporting the importance of both direct and indirect effects of stroke lesions on brain network disconnection for mapping and predicting cognitive impairments following stroke.

Stroke can have a devastating effect on cognitive function (Cumming, Marshall, & Lazar, 2012), and early identification of potential cognitive impairment is critical to facilitate adequate rehabilitation. MoCA (Nasreddine et al., 2005) has been suggested as a feasible screening tool for detecting cognitive impairment following stroke (Horstmann, Rizos T Fau - Rauch, Rauch G Fau - Arden, Arden C Fau - Veltkamp, & Veltkamp, 2014; Julayanont & Nasreddine, 2017; Munthe-Kaas et al., 2021), where key advantages are short administration time and multiple cognitive domains of assessment (Burton & Tyson, 2015; Stolwyk Renerus, O’Neill Megan, McKay Adam, & Wong Dana, 2014). Importantly, MoCA is sensitive to specific cognitive domains such as attention, executive and visuospatial function when utilized in lesion-mapping studies (Shi et al., 2018; Zhao et al., 2017).

A vast body of evidence links focal damage to the brain with specific cognitive deficits and global cognitive impairment. Right inferior parietal lobule lesions have been associated with visual neglect (Husain, Mattingley, Rorden, Kennard, & Driver, 2000; Vallar & Perani, 1986), lesions in Broca’s and Wernicke’s areas can cause aphasia (Kang et al., 2010), and hippocampal stroke has been linked to amnesia (Szabo, 2014), supporting a clear association between structural and functional neuroanatomy. Further, strokes affecting the thalamus, the angular gyrus, and the basal ganglia have been shown to cause severe and global cognitive deficits (Dichgans & Leys, 2017; Kalashnikova, Gulevskaya, & Kashina, 1999). Indeed, a recent large-scale multicohort study supports the involvement of lesioned left frontotemporal and right parietal cortex as well as the left
thalamus in post-stroke cognitive impairment (Weaver et al., 2021). However, group-level associations between lesion topography and specific cognitive sequelae might disguise large inter-individual variability (Edwards, Jacova, Sephry, Pratt, & Benavente, 2013). Beyond focal lesions known to cause specific deficits, stroke can cause generalized difficulties across cognitive domains, indicating complex mechanisms (Cumming et al., 2012; Jaillard, Grand, Le Bas, & Hommel, 2010).

In recent years, MRI-derived measures of brain white matter connectivity and structure have gained increasing interest for predicting stroke sequelae. Infarction in white matter tracts has been associated with deteriorating cognitive performance (Biesbroek et al., 2013), and studies have highlighted the relevance of altered structural connectivity in explaining behavioral outcomes following stroke (Corbetta et al., 2015; Du et al., 2019). It has recently been demonstrated that structural disconnections caused by stroke alter functional connectivity both directly and indirectly (Griffis, Metcalf, Corbetta, & Shulman, 2019, 2020). Importantly, structural network integrity has been shown to predict functional outcomes post-stroke measured by the modified Rankin Score (Moulton, Valabregue, Lehéricy, Samson, & Rosso, 2019). This suggests a putative mechanism of cognitive sequelae in which altered functional connectivity arising from structural disruptions cause aberrant function in distal nodes.

In line with the understanding of the brain as a connectome, lesions perturbing any part of a network may cause cognitive and behavioral impairment (Alstott, Breakspear, Hagmann, Cammoun, & Sporns, 2009) through disruption of the temporal dynamics in networks supporting cognitive functions (Chen et al., 2019; Lim & Kang, 2015). For example, lesions causing altered connectivity in the dorsal attention network (DAN) and the cingulo-opercular network (CON) have been linked to cognitive impairment across multiple domains (Siegel et al., 2016; Warren et al., 2014). Disrupted connectivity in nodes of the default mode network (DMN), implicated in regulating between-network dynamics across psychological states (Leech, Kamourieh, Beckmann, & Sharp, 2011; Leech & Sharp, 2014), is associated with post-stroke cognitive outcomes (Dacosta-Aguayo et al., 2015). It has also been hypothesized that complex brain functions showing protracted
maturation throughout childhood and early adulthood are more vulnerable to negative effects in later life (Nyberg et al., 2010; Scherder, Eggermont, Visscher, Scheltens, & Swaab, 2011), termed the last in-first out principle. This increased vulnerability for cognitive impairment post stroke is possibly linked to the increasing complexity of the underlying neural architecture (Shaw et al., 2008). The maturation of the human connectome is characterized by simultaneous increased segregation and increased between network connectivity, suggested to reflect improvement in executive and top-down cognitive control (Fair et al., 2007; K. K. Kolskår et al., 2018; Marek, Hwang, Foran, Hallquist, & Luna, 2016). Our results align with this notion, as low MoCA scores, indicating impairment across cognitive domains, was associated with disconnectivity of nodes in the CON network, in particular the right insula and frontal operculum. CON have been associated with the ability to maintain focus, and “set maintenance” (Cai et al., 2016; Uddin, Yeo, & Spreng, 2019; Wilk, Ezekiel, & Morton, 2012), the ability to sustain top-down cognitive control across cognitive tasks (Sadaghiani & D'Esposito, 2015), and shows protracted maturation through adolescence (Knut K. Kolskår et al., 2018).

Infarctions of the thalamus and the left frontotemporal and right parietal cortex have been linked to substantially increased risk of cognitive impairment (Weaver et al., 2021). These brain regions constitute critical areas of the CON. Our results are in line with and expand these findings, revealing that disconnection affecting the insula, the frontal operculum, and the inferior frontal gyrus, critical nodes of the CON and also the fronto-parietal network (FPN) involved in goal driven cognitive control (Zanto & Gazzaley, 2013), is associated with impaired cognitive performance. Also, we found that disconnection of areas not directly damaged by a lesion in any of the patients was associated with poorer performance in tasks designed to measure word generation, working memory and psychomotor speed, suggesting the observed associations are not simply explained by proper lesion extent. The strongest association was seen with phonetic and semantic word generation, attention span as well as spatial short-term memory. Importantly, performance on word generation as well as attentional demanding tasks has been shown to be associated with degree of
activities of daily living (ADL) and functional ability (Nguyen, Copeland, Lowe, Heyanka, & Linck, 2020; Razani et al., 2007). Identifying aberrant structural connectivity towards right frontal cortices therefore may serve as a proxy for subsequent ADL difficulties.

The current study has limitations. First, our cross-sectional design does not allow for integrating premorbid cognitive function and chronic brain pathology, which is highly relevant as an outcome predictor (Sagnier & Sibon, 2019). Further, the current sample represents a heterogeneous group regarding stroke severity, we lack measures on vascular risk and the sample size is moderate, factors that are relevant for the generalizability of the reported findings to the stroke population in general (Marek et al., 2020).

In conclusion, our study supports the relevance of investigating disrupted structural connectivity following stroke. This, combined with information regarding location and extent, may add to the predictability of post stroke sequelae. In line with previous studies, our results indicate lesions affecting the insula, the frontal operculum and the inferior frontal gyrus are associated with cognitive impairment, and support the inclusion of measures of distal structural disconnection when evaluating cognitive sequelae in stroke patients.

Acknowledgements

The current study has been funded by European Research Council under the European Union’s Horizon 2020 research and innovation programme (ERC StG, grant agreement No. 818521/802998); South-Eastern Norway Regional Health Authority, Grant/Award Numbers: 2014097, 2015044, 2015073, 2019107, 2020086; Norges Forskningsråd, Grant/Award Numbers: 249795, 262372; Norwegian ExtraFoundation for Health and Rehabilitation, Grant/Award Number: 2015/FO5146.

Open science and data availability statement

Relevant scripts and scrambled and anonymized data needed to reconstruct the reported analyses and results are available on OSF (link below). While the sensitive nature of the data and our current
approvals do not allow for public sharing of real data, anonymized data may be available upon request to the corresponding author following appropriate data transfer agreements.

OSF-repository: https://osf.io/juwhv/?view_only=1096394b4b2b4a51abceea5834d29969.

References

