Molecular epidemiology of paediatric bloodstream infections caused by Gram-negative bacteria in Oxfordshire, UK

Sam Lipworth1,2, Karina-Doris Vihta1,3, Tim Davies1,2, Sarah Wright2, Merline Tabirao2, Kevin Chau1, Alison Vaughan1, James Kavanagh1, Leanne Barker1, Sophie George1, Shelley Segal2, Stephane Paulus2, Lucinda Barrett2, Sarah Oakley2, Katie Jeffery2, Lisa Butcher2, Tim Peto1,2,5, Derrick Crook1,2,5, Sarah Walker1,5, Sellesh Kadambari2,5, and Nicole Stoesser1,5

*Joint Senior Authors

1 Nuffield Department of Medicine, University of Oxford, UK
2 Oxford University Hospitals NHS Foundation Trust, Oxford, UK
3 Department of Engineering, University of Oxford, UK
4 NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
5 NIHR Biomedical Research Centre, Oxford, United Kingdom
6 Department of Paediatrics, University of Oxford, UK

Abstract:

Background: Gram-negative organisms are common causes of bloodstream infection during the neonatal period and early childhood with high morbidity and mortality as well as increasing concern about associated antimicrobial resistance. Whilst several large sequencing studies have permitted detailed analysis of the population structure of these isolates in adults, equivalent data is lacking in the paediatric population.

Methods: We performed an epidemiological and sequencing based analysis of Gram-negative bloodstream infections in children under the age of 18 between 2008 and 2018 in Oxfordshire, UK.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Findings: 327 isolates (of which 296 were successfully sequenced) from 287 patients were included in the study. The burden of infection in the paediatric population lies predominantly in neonates. Most infections were caused by *E. coli/Klebsiella* spp. and *Enterobacter hormaechei*. There was no evidence of an increasing incidence of *E. coli* bloodstream infections and for *Klebsiella* spp. there was some evidence that the incidence decreased slightly. Similarly the proportion of resistant isolates did not change over time, though we did identify some evidence of sub-breakpoint increases in gentamicin resistance. The population structure of *E. coli* isolates causing bloodstream infection in neonates and children mirrors that seen in adults. In most cases there was no evidence of transmission between patients/point source acquisition and whole genome sequencing was able to refute a previously suspected outbreak.

Conclusion: Our findings support continued use of current empirical treatment guidelines and likely highlight the success of infection control measures in this population. Our data suggest that O-antigen targeted vaccines may have a role in reducing the incidence of neonatal sepsis, potentially by vaccination of pregnant women. Clinical trials to further investigate this possibility are warranted.

Introduction

Gram-negative bloodstream infections (GNBSI) are a common cause of significant morbidity and mortality globally in neonates and young children\(^1\). Their incidence has increased in both the UK and US over the past decade, particularly in very low birth-weight neonates (VLBW, defined as <1500g)\(^2\).\(^6\).

Concerns around antimicrobial resistance (AMR) associated with these organisms have been highlighted by a recent study in the United States of 721 *E. coli* isolates (including 393 bloodstream infection [BSI]-associated isolates) from neonates in intensive care, which found high rates of non-susceptibility to commonly used empirical antibiotics including ampicillin (66.8%), gentamicin (16.8%) as well as an extended beta-lactamase (ESBL) phenotype in 1 in 20 cases\(^7\). A recent study of 2,483 neonates with culture-confirmed sepsis in low and middle-income countries showed that
Klebsiella spp. was the predominant pathogen causing of multidrug-resistant neonatal sepsis. In Greece, a retrospective observational study in 16 neonatal intensive care units (NICUs) revealed almost half (45%; 36/80) of Klebsiella spp. were resistant to either gentamicin or amikacin. The ability of many Gram-negative bacilli (GNB) to readily acquire and exchange genetic material (particularly AMR genes [ARGs]) via mobile genetic elements (e.g. plasmids and smaller structures such as integrons/transposons) means that the proliferation of drug-resistant strains remains a constant threat.

For neonates (individuals ≤28 days of age), severe infection is usually characterised as early-onset (within 72 hours of birth) versus late-onset sepsis (>72 hours after birth). Organisms most frequently involved in the aetiology of early onset sepsis (EOS) are organisms colonising the maternal genitourinary tract, predominantly Streptococcus agalactiae (Group B streptococcus [GBS]) or E. coli, which together account for ~70% of cases in both term (born ≥37 weeks gestation) and pre-term (<37 weeks gestation) neonates, though there is some evidence that globally other GNB (e.g. Klebsiella spp., Acinetobacter spp.) are emerging as important causes. Late-onset sepsis (LOS) more generally reflects organisms acquired from the environment, and in hospitalised neonates this includes multi-drug resistant organisms, such as GNB acquired from specific reservoirs such as sinks and contaminated soap dispensers. EOS and LOS caused by GNB have been shown to have high mortality rates, even in highly resourced settings, of 15% and 35% respectively.

The molecular epidemiology of E. coli and Klebsiella spp. isolates causing invasive infection in adults has been characterised in large sequencing studies. These have demonstrated the emergence of particular sequence types associated with AMR (e.g. E. coli ST131), the genetic homogeneity of isolates causing community and nosocomial onset infections suggesting a common reservoir, the potential for vaccines to play a role in reducing the incidence of these infections, and the emerging threat of the convergence of multidrug resistance and hypervirulence in Klebsiella spp. To our knowledge, no study to date has systematically evaluated the molecular epidemiology of E.
coli/Klebsiella spp. and other common causes of GNBSI in a paediatric population; published studies focus predominantly on evaluations of outbreaks caused by AMR-associated strains and/or on neonates (see above)\(^6,17,18\). In this study we therefore aimed to investigate sequencing data from a relatively large collection of sequentially acquired, unselected bloodstream isolates from neonates and children presenting to hospitals in Oxfordshire, UK, over the past decade.

Methods

Isolate selection

Oxford University Hospitals NHS Foundation Trust is a large healthcare provider in the South East of England serving a paediatric population of approximately 142,000 with four hospitals (of which two have emergency and acute general paediatric medicine, and one provides all neonatal/paediatric critical care and specialist paediatric services for the region). The microbiology laboratory additionally provides a service to all regional community healthcare providers. All *E. coli* and *Klebsiella* spp. isolates (deduplicated to one morphotype per 90-day period) from Oct-2008 to Nov-2018 collected from blood cultures of patients <18 years old on the day of collection were included in the study. The same selection criteria were applied to other Gram-negative species from August-2011 to September-2018. Prior to 2013 antimicrobial susceptibility testing was performed using disk diffusion; after this the Phoenix BD system was used with European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints. Amikacin phenotyping was not routinely performed prior to 2013.

Sequencing procedures

Frozen stocks were swabbed onto Columbia blood agar and incubated overnight at 37°C. DNA extractions were performed using the QuickGene DNA extraction kit (Autogen, MA, USA) as per the manufacturer’s instructions (with an additional mechanical lysis step – FastPrep, MP Biomedicals,
CA, USA; 6m/s for 40 secs, done twice). Sequencing was performed using Illumina HiSeq 2500/3000/4000/MiSeq instruments as described previously19. All sequencing data has been deposited under NCBI accession number PRJNA604975.

Bioinformatics

De novo assembly was performed using Shovill (v1.0.4)20. Reads were mapped to sequence type (ST) specific references using Snippy (v4.6.0)21 (Table S1). For the four *E. coli* STs with the largest number of isolates (i.e. *E. coli* ST131/95/73/69), we created core genome alignments using Snippy-core with the --mask auto setting, padded with the reference base at invariant positions; these whole genome alignments were used as input to Gubbins (v 2.3.4)22. Such recombination corrected phylogenies were also created for *Enterobacter hormaechei* (the most common non-*E. coli*/*Klebsiella* species detected in our study) and *Serratia marcescens* (because there was thought to have been an outbreak in our neonatal ITU in 2016). We also used genomic distances calculated by Mash23 (using -k21 -s 100,000 for within-study comparison of isolates and -k21 -s 1000 for comparison of isolates in this study to our collection of sequences of adult bloodstream infection isolates24 from the same region over the same time period due to computational feasibility). An annotation against reference databases (VFDB/ResFinder) was performed using Abricate (v2.3.4)25 with genes called as being present if there was at least 80% coverage and DNA identity compared to the reference. Sequence types were predicted using the MLST tool (v2.19)26. For *Klebsiella* spp. isolates speciation and virulence gene detection was performed using Kleborate (v2.0.4)27.

Definitions

We defined isolates as being likely of neonatal origin if they originated from infants i) in their first 30 days of life, or were ii) on the neonatal intensive care unit, or iii) under the care of a neonatologist on the day the blood culture was taken. For analytical purposes we classified other children into 1-3 months, 3-12 months, 1-4 years, 5-9 years and 10-18 years. Early-onset infection was defined as disease within the first 72 hours of life10. We calculated a ‘resistance score’ using a previously
described method28 (the sum of the number of resistance gene categories carried out of amoxicillin, co-trimoxazole, cefotaxime, gentamicin and ciprofloxacin). We further categorised BSIs according to healthcare exposure prior to onset as follows: nosocomial (>48 hours after admission to hospital), ‘quasi-nosocomial’ (within 30 days of last discharge), ‘quasi-community’ (31-365 days since last discharge) and community (>365 days since last discharge)29.

Epidemiology/statistics

Routinely collected healthcare data was acquired via pseudonymised linkage in the Infections in Oxfordshire Research Database (IORD). IORD has generic Research Ethics Committee, Health Research Authority and Confidentiality Advisory Group approvals (19/SC/0403, 19/CAG/0144) as a de-identified electronic research database. Data on suspected infectious focus (only available for *E. coli/Klebsiella* spp.) was acquired via linked local infection control records which had been submitted to Public Health England as part of the mandatory surveillance programme. For each species, we modelled the number of bloodstream infections (BSIs) per year using negative binomial regression, with the total number of paediatric admissions in each year used as an offset. Only complete years (i.e. excluding 2008 and 2018) were included in this part of the analysis. Median quantile regression was used to model the relationship between age and virulence gene carriage/antimicrobial gene “resistance score”; this analysis was performed in STATA version 15. All other statistical analysis was performed in R v4.0.3.

Results

Microbiology of neonatal and paediatric Gram-negative bloodstream infections in Oxfordshire

Of the 327 GNBSI isolates cultured during the study period from individuals aged <18 years, 149 (46%) were identified as *E. coli* and 69 (21%) as *Klebsiella* spp.; the remaining 109 (33%) belonged to
other species. There was no evidence of a change in the incidence of *E. coli* bloodstream infections (BSIs) either overall (incidence rate ratio per year [i.e. the relative increase/decrease in incidence per year] IRRy: 0.96, 95%CI: 0.90-1.03, p=0.30) or in neonates (IRRy: 0.97, 95%CI: 0.86-1.06, p=0.39). This was also the case for other Gram-negative species both overall (IRRy: 1.07, 95%CI: 0.93-1.24, p=0.33) and in the neonatal group (IRRy: 0.83, 95%CI: 0.65-1.07, p=0.19). Conversely there was some evidence of a slight decrease in the overall number of *Klebsiella* spp. BSIs in the same period (overall IRRy: 0.91, 95%CI 0.83-1.00, p=0.06; neonates IRRy: 0.80, 95%CI: 0.69-0.92, p=0.002).

Neonates had the highest burden of GNBSI (124/327 [38%], of which 8 were early-onset) followed by other infants <1y (66/327 [20%]) (Table 1). There were 62/327 (19%) cases in the 1st-4th years of life, 28/327 (9%) in the 5th-9th and 47/327 (14%) in the 10th-18th. A higher proportion of isolates came from males than would be expected from the birth sex ratio (201/327 [61%], multinomial goodness of fit p<0.001). BSIs in neonates, children aged 1-4 and 10-17 were predominantly nosocomial or quasi-nosocomial whereas in those aged 3-12 months and 5-9 years they were predominantly community or quasi-community onset (Table 1).

Overall, 214/292 (73%, missing data for 35) isolates were resistant to amoxicillin, 28/316 (9%, missing data for 11) to gentamicin, 10/134 (7%, missing data for 193) to amikacin and 42/303 (14%, missing data for 224) to ceftriaxone. 22/313 (7%) isolates were resistant to gentamicin and amoxicillin (the empirical regimen for neonatal sepsis used in our neonatal network) and 7/176 (4%) to amikacin and amoxicillin. The proportion of resistant isolates appeared broadly stable over time (figure 1). For gentamicin however, there was some evidence that proportion of susceptible isolates with an MIC >1 (IRRy 1.86, 95%CI 1.33-2.58) increased compared to those with an MIC <=1 (IRRy 1.13, 95%CI 1.04-1.22) *p* heterogeneity=0.002. There was no evidence of substantial differences in phenotypic profiles between treating specialties (Figure S1). Similarly, the proportion of resistant isolates was similar for nosocomial vs. community-onset cases for all agents except amoxicillin were
nosocomial isolates were proportionally more resistant (99/118 (84%) vs 115/174 (66%), table S1), reflecting the higher burden of non-\textit{E. coli} BSIs in this patient group (77/126 (61%) vs 101/201 (50%).

Data on likely primary infective focus was only available for 78 (66 \textit{E. coli}/12 \textit{Klebsiella} spp.) isolates, of these 18 (23%) were of gastrointestinal origin, 8 (10%) from invasive lines, 20 (26%) from the urinary tract, 2 (3%) from the chest and 30 (38%) from unclear/other sources. Seventeen children (six neonates) had infections with >1 species and five (two neonates) had polyclonal infections (>1 ST of the same species).

\textbf{Molecular epidemiology of \textit{Escherichia coli} causing BSI, including AMR and virulence gene burden}

Of the 146 \textit{E. coli} isolates cultured, 133 (87%) were successfully sequenced (Figure 2). The four dominant \textit{E. coli} STs (ST131 n=16, ST95 n=16, ST73 n=20 and ST69 n=15) were the same as those in adults24. There was no evidence that the population structure observed differed from that in the adult population in Oxfordshire (which is also the same as that observed globally24; multinomial goodness of fit: $p=0.44$). The most prevalent O-antigen types were O6 (n=21), O1 (n=14), O2 (n=12), O16 (n=10) and O25 (n=8). The proportion of isolates with an O-antigen included in the ExPEC-4V vaccine30,31 (which has been evaluated in a phase-II study in adults), was similar when comparing all children (55/133, 41%) and neonates (25/53, 47%) to that seen in the overall population in our previous study32 (1499/3278 (46%); chi-squared: $p=0.4$ for both).

Carriage of genes conferring resistance to ampicillin was common (65/133, 49%), with \textit{bla}\textsubscript{TEM-1B} (39/67, 58%) being the most prevalent allele. Eight isolates carried a gentamicin resistance gene (5 \textit{aac(3)}-\textit{Ia} [3 in ST131, 1 each in STs 73 and 23] and 3 \textit{aac(3)}-\textit{Id} [1 each in STs95 and 69]) and 20/133 (15%) carried a gene conferring resistance to ceftriaxone or cefotaxime (mostly ESBL genes, namely \textit{bla}\textsubscript{CTX-M-15} [n=9], \textit{bla}\textsubscript{CTX-M-14b} [n=3] and \textit{bla}\textsubscript{SHV-202} [n=5]); Figure 3). Whilst ST131 was the dominant ESBL-
gene-carrying ST (7/16, 44%), other STs carrying these genes included ST69 (2/15), ST73 (4/20), ST2141 (3/3), ST12 (2/7) and STs 23 and 38 (1 each). Quantile regression revealed some association between age and increased resistance score (change in median per year, CMY=0.12, 95% CI 0.04-0.19, p =0.002). Conversely there was some evidence that virulence gene carriage was higher in younger children (CMY = 0.53 95%CI -1.03 - -0.033, p=0.04 Figure S2).

Molecular epidemiology of Klebsiella spp. causing BSI, including AMR and virulence gene burden

Of the 69 Klebsiella spp. isolates cultured, 60 (87%) were successfully sequenced. The predominant Klebsiella spp. in both neonates and older infants/children was Klebsiella pneumoniae (n=28/60 [47%]), though a diverse selection of related species were also occasionally isolated (K. oxytoca: n=12 [20%], K. michiganensis: n=8 (13%), K. aerogenes: 5 (8%), K. grimonii: n=3 (5%), K. ornitholytica: n=2 (3%) and K. variicola: n=2 (3%)). As we have previously observed in adults and in contrast to the more clonal population seen in E. coli, STs causing Klebsiella spp. BSI were diverse (n=32 STs in total). There were 11 isolates to which no ST could be assigned. We recently observed that four O-antigens (O2v2, O1v1, O3b and O1v2) were found in 75% isolates from all K. pneumoniae BSIs in Oxfordshire over a ten-year period; amongst paediatric BSIs this figure was 61% (17/28; Fisher’s exact test: p=0.15).

Half of Klebsiella spp. isolates (30/60) carried the yersiniabactin virulence factor (ybt); these were mostly non-K. pneumoniae (12/12 K. oxytoca, 7/8 K. michiganensis, 2/2 K. ornitholytica and 3/3 K. grimonii). One K. aerogenes isolate additionally carried the genotoxin colibactin (clb). There was strong evidence that the proportion of Klebsiella spp. isolates carrying cefotaxime/ceftriaxone resistance genes (primarily blaOXY-like/blaGNY-like genes [NB these genes are commonly intrinsic to the species] found in a single subspecies only as well as blaCTX-M-15 found in three K. pneumoniae and one
K. oxytoca was higher compared to E. coli (30/60 (50%) vs 20/133 (15%), p<0.001). Only 4/60 (7%) isolates carried a gentamicin resistance gene (four aac(3)-Iia and one aac(3)-Ia, in comparison with E. coli (8/133, 6%); Fisher’s exact test: p=0.90).

Other Gram-negative species

Of the 104 non-E. coli/Klebsiella spp. (“other”) GNB cultured in this study, 77 (74%) were successfully sequenced. The predominant species in both neonates and older children was Enterobacter hormaecheii (overall: 34/75, [44%]; neonatal: 14/25 [56%]). This was also the only other GNB carrying ESBL-producing genes (blaCTX-M-15 in four isolates, Figure 3); these also carried the blaTEM-1B beta-lactamase as well as aac(3)-Iia conferring gentamicin resistance. Two isolates carrying class-D beta-lactamases predicted to confer meropenem resistance were identified (blaOXA-23 in Acinetobacter baumannii, blaOXA-427 in Aeromonas caviae).

Genomic relatedness of isolates

Analysis of recombination-corrected phylogenies for the major E. coli STs (131/95/69) demonstrated no clear evidence of direct or temporally related indirect transmission between patients (with the closest genomic distance between patients = 32/87/28 single nucleotide polymorphisms [SNPs] respectively). There was a cluster of three near-identical ST73 isolates from two patients (3/6 SNPs apart), however the isolation date was ~2 years apart and these patients had never been admitted to hospital at the same time. There was a cluster of three multidrug-resistant E. hormaecheii isolates separated by a maximum of 37 SNPs. All three patients had been admitted in the same year but not at the same time and to different wards. Other E. hormaecheii isolates were genomically diverse (Figure 4). Three Serratia marcescens from the neonatal ICU in 20116 were grouped together in the
phylogeny (Figure S3) however the relatively large distances between them (31/81/85 SNPs), made recent transmission unlikely.

There was no difference in the distributions of genomic distances (reflected here by Mash distances) between isolates from patients admitted i) in the same year, ii) to the same ward in the same year, or iii) to the same ward with overlapping admission dates and iv) overall (i.e. all admissions to any ward at any time point) (Kruskal-Wallis rank sum test p=0.30, Figure S4). Finally, when considering *E. coli* and *Klebsiella* isolates in this study, there was no difference between the Mash distances to the nearest paediatric genomic neighbour (Median: 0.00093 [IQR: 0.00036-0.0023]) compared to the nearest adult neighbour (Median: 0.0011 [IQR: 0.00041-0.0024], Wilcoxon rank sum p=0.33. Figure S5).

Discussion

E. coli was the main causative agent of paediatric and neonatal Gram-negative bloodstream infection in our study over a ten year period. The population structure of *E. coli* isolates causing invasive infection in children mirrors that seen in our centre and globally for adults. We found no evidence of significant nosocomial transmission suggesting that invasive isolates are acquired from the environment or as a result of colonisation from parents/other close contacts. Our findings suggest O-antigen targeted vaccines (currently in phase II/III trials in adults) might have the potential to reduce the incidence of invasive neonatal and paediatric *E. coli* infections, in the former potentially by immunisation of pregnant women. Most isolates remained susceptible to at least one first-line antibiotic justifying continuation of current empirical treatment guidelines which should include an aminoglycoside in neonates\(^9\). There was however some evidence of increasing (sub-breakpoint) gentamicin MIC which warrants ongoing surveillance.
The incidence of these infections has remained stable over the past decade in children, in contrast to the increase observed in adults. The substantial burden of disease due to paediatric GNBSI occurs in neonates. The absence of evidence of an increasing burden of AMR-associated disease and demonstrable outbreaks likely points to good infection control practice and antimicrobial stewardship, and in our setting we were able to replicate results from a previous study suggesting greater carriage of virulence genes in E. coli isolates from younger children and neonates but higher resistance scores in older children. Continued epidemiological surveillance with targeted whole genome sequencing to identify strain and/or plasmid outbreaks may help to inform early infection control interventions and would seem particularly justified in these age groups given the high associated morbidity and mortality. In addition we would encourage consideration of clinical trials of existing O-antigen targeted vaccines for prevention of neonatal sepsis.

Our data suggest that rates of infection with non-E. coli/Klebsiella species (in particular E. hormaechei) are higher in the neonatal and paediatric settings than in adults. These results highlight the importance of this pathogen as a potential causative agent of neonatal and paediatric sepsis as well as its potential to cause multidrug-resistant outbreaks in this setting. Several small clusters of E. hormaechei (part of the E. cloacae complex) bloodstream infection in neonates have been described in the literature, with enteral feeding and milk formulations as well as poor general infection control procedures thought to be implicated.

Our data highlights the value of whole genome sequencing for the investigation of potential outbreaks on neonatal units. Analysis of three isolates from a suspected (on the basis of epidemiology and pulsed-field gel electrophoresis) Serratia marcescens made recent transmission
unlikely. Had this analysis been performed in real-time it may have reassured clinicians and saved
time and resource. Apart from a small cluster of three patients with *E. homaechei* infections where
acquisition from a common source was possible based on genomic and epidemiological analysis
(though the patients were never admitted to the same ward), there was relatively high diversity
amongst isolates effectively ruling out transmission/point-source acquisition resulting in BSI. Unwell
neonates are often transferred across a geographic region for specialist care and so it is essential
that active surveillance mechanisms (collecting and analysing real-time microbiological data) are
implemented across networks in order to inform infection prevention measures appropriately.

Notably, whilst we found a lack of clear evidence of transmission between patients in this study, BSIs
are likely to represent an extremely insensitive marker of transmission events, as most transmission
with these organisms would be expected to lead to colonisation and not necessarily invasive
infection. Furthermore whilst the short-read sequencing used in this study allows us to confidently
exclude outbreaks of strains, we cannot address the question of potential transmission of AMR
genes and virulence factors on plasmids. Additional limitations include the fact that we were not
able to sequence all cultured isolates and the relatively sparse availability of data on source
attribution.

In summary, our study highlights a relative success story of a flat overall incidence trend and stable
numbers of AMR-carrying GNBSI isolates in children, contrasting with what has been seen in adult
populations in the same setting\(^2\). Pertinently our data supports the ongoing use of an
aminoglycoside as part of empirical treatment guidelines in neonatal sepsis. The disproportionate
impact of GNBSI on neonates and young infants should encourage active microbiological surveillance
across neonatal networks and strategies to prevent disease through vaccine trials in pregnant
women.
Figure legends

Figure 1 – Change in minimum inhibitory concentrations (MIC) of isolates over time.

Figure 2 - Species (and sequence type, ST, where shown) for sequenced isolate over time. Each point represents the isolation date of a sequenced isolate. The grey shaded area represents the fact that sequencing of non-\(\text{E. coli/\text{Klebsiella spp.} } \) isolates did not begin prior to 2012.

Figure 3 – Carriage of antimicrobial resistance genes by isolates sequenced in the study. The tree was created using mashtree and gene presence is shown in red. The black/green/maroon/orange bars at the top represent carriage of genes producing enzymes with activity against aminoglycosides/amoxicillin/cefotaxime/ceftriaxone respectively.

Figure 4 – Recombination corrected phylogeny of \(\text{Enterobacter hormaechei} \) isolates sequenced in this study. Tree tip colours show the year of isolates, red bars denote presence/absence of antimicrobial resistance genes. The scale of the tree is shown in SNPs.

Table legend

Table 1 – microbiological and patient characteristics of patients with Gram-negative bloodstream infections in Oxfordshire stratified by age of onset. \(P \) values represent Fisher exact tests for categorical and Kruskal-Wallis tests for continuous variables.
References

doi:10.1099/mgen.0.000294

https://github.com/tseemann/snippy

<table>
<thead>
<tr>
<th>Species (%)</th>
<th>Neonatal Early Onset</th>
<th>Neonatal Late Onset</th>
<th>3-12 months</th>
<th>1-4 years</th>
<th>5-9 years</th>
<th>10-17 years</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinetobacter spp.</td>
<td>1 (12.5)</td>
<td>3 (2.6)</td>
<td>6 (9.1)</td>
<td>9 (14.5)</td>
<td>4 (14.3)</td>
<td>4 (8.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>E. coli</td>
<td>6 (75.0)</td>
<td>51 (44.0)</td>
<td>42 (63.6)</td>
<td>17 (27.4)</td>
<td>6 (21.4)</td>
<td>27 (57.4)</td>
<td></td>
</tr>
<tr>
<td>Enterobacter spp.</td>
<td>1 (12.5)</td>
<td>24 (20.7)</td>
<td>8 (12.1)</td>
<td>13 (21.0)</td>
<td>5 (17.9)</td>
<td>4 (8.5)</td>
<td></td>
</tr>
<tr>
<td>Citrobacter spp.</td>
<td>2 (1.7)</td>
<td>2 (3.2)</td>
<td>3 (10.7)</td>
<td>1 (2.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>28 (24.1)</td>
<td>10 (15.2)</td>
<td>16 (25.8)</td>
<td>6 (21.4)</td>
<td>9 (19.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serratia spp.</td>
<td>8 (6.9)</td>
<td></td>
<td>1 (2.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeromonas spp.</td>
<td></td>
<td>3 (4.8)</td>
<td>1 (3.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteus spp.</td>
<td></td>
<td></td>
<td>2 (3.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pantoea spp.</td>
<td></td>
<td></td>
<td>3 (10.7)</td>
<td>1 (2.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Median (IQR)</td>
<td>0.0 (0.0 to 1.2)</td>
<td>20.0 (11.8 to 49.2)</td>
<td>91.0 (57.5 to 177.5)</td>
<td>689.0 (512.2 to 969.8)</td>
<td>1893.0 (1770.0 to 2346.2)</td>
<td>5391.0 (3992.5 to 6168.5)</td>
</tr>
<tr>
<td>Sex (%)</td>
<td>Female</td>
<td>4 (50.0)</td>
<td>38 (32.8)</td>
<td>28 (42.4)</td>
<td>28 (45.2)</td>
<td>9 (32.1)</td>
<td>19 (40.4)</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>4 (50.0)</td>
<td>78 (67.2)</td>
<td>38 (57.6)</td>
<td>34 (54.8)</td>
<td>19 (67.9)</td>
<td>28 (59.6)</td>
</tr>
<tr>
<td>Specimen (%) Category</td>
<td>Neonatal Early Onset</td>
<td>Neonatal Late Onset</td>
<td>3-12 months</td>
<td>1-4 years</td>
<td>5-9 years</td>
<td>10-17 years</td>
<td>p</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Nosocomial</td>
<td>0 (0.0)</td>
<td>86 (74.1)</td>
<td>7 (10.6)</td>
<td>18 (29.0)</td>
<td>0 (0.0)</td>
<td>15 (31.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Healthcare associated 0-30d</td>
<td>2 (25.0)</td>
<td>15 (12.9)</td>
<td>8 (12.1)</td>
<td>21 (33.9)</td>
<td>13 (46.4)</td>
<td>16 (34.0)</td>
<td></td>
</tr>
<tr>
<td>Healthcare associated 31-365d</td>
<td>0 (0.0)</td>
<td>3 (2.6)</td>
<td>29 (43.9)</td>
<td>11 (17.7)</td>
<td>4 (14.3)</td>
<td>5 (10.6)</td>
<td></td>
</tr>
<tr>
<td>Community</td>
<td>6 (75.0)</td>
<td>12 (10.3)</td>
<td>22 (33.3)</td>
<td>12 (19.4)</td>
<td>11 (39.3)</td>
<td>11 (23.4)</td>
<td></td>
</tr>
<tr>
<td>Admission Length Median (IQR)</td>
<td>14.2 (9.9 to 27.5)</td>
<td>51.7 (20.8 to 129.7)</td>
<td>4.1 (2.5 to 7.9)</td>
<td>8.8 (2.5 to 30.6)</td>
<td>3.1 (2.1 to 7.8)</td>
<td>5.5 (2.9 to 28.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Death Within 30 Days (%)</td>
<td>No</td>
<td>6 (75.0)</td>
<td>86 (76.1)</td>
<td>44 (67.7)</td>
<td>52 (83.9)</td>
<td>21 (75.0)</td>
<td>39 (83.0)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>2 (25.0)</td>
<td>27 (23.9)</td>
<td>21 (32.3)</td>
<td>10 (16.1)</td>
<td>7 (25.0)</td>
<td>8 (17.0)</td>
</tr>
<tr>
<td>CRP Median (IQR)</td>
<td>8.2 (0.6 to 37.9)</td>
<td>64.1 (16.1 to 150.3)</td>
<td>99.2 (45.5 to 125.0)</td>
<td>50.1 (10.1 to 122.2)</td>
<td>16.7 (5.0 to 56.8)</td>
<td>59.2 (13.9 to 118.4)</td>
<td>0.08</td>
</tr>
<tr>
<td>Creatinine Median (IQR)</td>
<td>61.0 (55.0 to 78.0)</td>
<td>37.0 (23.0 to 60.8)</td>
<td>24.0 (18.0 to 28.0)</td>
<td>22.0 (16.0 to 32.0)</td>
<td>36.0 (28.0 to 41.0)</td>
<td>55.5 (45.0 to 66.5)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Neonatal Early Onset</td>
<td>Neonatal Late Onset</td>
<td>3-12 months</td>
<td>1-4 years</td>
<td>5-9 years</td>
<td>10-17 years</td>
<td>p</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>Median (IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.9 (1.9 to 10.1)</td>
<td>5.9 (3.1 to 9.8)</td>
<td>9.3 (5.4 to 15.0)</td>
<td>5.5 (2.7 to 11.3)</td>
<td>3.5 (1.9 to 7.2)</td>
<td>4.6 (0.1 to 8.4)</td>
<td>0.004</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>S</td>
<td>5 (71.4)</td>
<td>27 (24.1)</td>
<td>25 (42.4)</td>
<td>11 (22.0)</td>
<td>5 (20.8)</td>
<td>5 (12.5)</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>2/7 (28.6)</td>
<td>85 (75.9)</td>
<td>34 (57.6)</td>
<td>39 (78.0)</td>
<td>19 (79.2)</td>
<td>35 (87.5)</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>S</td>
<td>6 (85.7)</td>
<td>96 (85.0)</td>
<td>57 (93.4)</td>
<td>43 (81.1)</td>
<td>23 (85.2)</td>
<td>36 (85.7)</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>1 (14.3)</td>
<td>17 (15.0)</td>
<td>4 (6.6)</td>
<td>10 (18.9)</td>
<td>4 (14.8)</td>
<td>6 (14.3)</td>
</tr>
<tr>
<td>Meropenem</td>
<td>S</td>
<td>8 (100.0)</td>
<td>115 (100.0)</td>
<td>62 (100.0)</td>
<td>61 (100.0)</td>
<td>28 (100.0)</td>
<td>43 (97.7)</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>1 (2.3)</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>S</td>
<td>7 (87.5)</td>
<td>110 (95.7)</td>
<td>62 (100.0)</td>
<td>55 (91.7)</td>
<td>27 (96.4)</td>
<td>39 (88.6)</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>1 (12.5)</td>
<td>5 (4.3)</td>
<td>0 (0.0)</td>
<td>5 (8.3)</td>
<td>1 (3.6)</td>
<td>5 (11.4)</td>
</tr>
<tr>
<td>Amikacin</td>
<td>S</td>
<td>3 (100.0)</td>
<td>47 (90.4)</td>
<td>15 (100.0)</td>
<td>21 (87.5)</td>
<td>17 (100.0)</td>
<td>21 (91.3)</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>0 (0.0)</td>
<td>5 (9.6)</td>
<td>0 (0.0)</td>
<td>3 (12.5)</td>
<td>0 (0.0)</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>S</td>
<td>7 (87.5)</td>
<td>105 (92.1)</td>
<td>60 (96.8)</td>
<td>53 (86.9)</td>
<td>25 (92.6)</td>
<td>38 (86.4)</td>
</tr>
<tr>
<td></td>
<td>Neonatal Early Onset</td>
<td>Neonatal Late Onset</td>
<td>3-12 months</td>
<td>1-4 years</td>
<td>5-9 years</td>
<td>10-17 years</td>
<td>p</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Piperacillin-Tazobactam</td>
<td>R</td>
<td>1 (12.5)</td>
<td>9 (7.9)</td>
<td>2 (3.2)</td>
<td>8 (13.1)</td>
<td>2 (7.4)</td>
<td>6 (13.6)</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>8 (100.0)</td>
<td>105 (92.1)</td>
<td>56 (93.3)</td>
<td>48 (85.7)</td>
<td>23 (88.5)</td>
<td>37 (86.0)</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>9 (7.9)</td>
<td>4 (6.7)</td>
<td>8 (14.3)</td>
<td>3 (11.5)</td>
<td>6 (14.0)</td>
<td></td>
</tr>
<tr>
<td>Fosfomycin</td>
<td>S</td>
<td>1 (100.0)</td>
<td>45 (93.8)</td>
<td>10 (90.9)</td>
<td>14 (87.5)</td>
<td>11 (84.6)</td>
<td>18 (94.7)</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>3 (6.2)</td>
<td>1 (9.1)</td>
<td>2 (12.5)</td>
<td>2 (15.4)</td>
<td>1 (5.3)</td>
<td></td>
</tr>
</tbody>
</table>