The Clinical Utility of Serial Procalcitonin and Procalcitonin Clearance in Predicting the Outcome of COVID-19 Patients

Sara I. Taha a*, Aalaa K. Shata b, Shereen A. Baioumy c, Shaimaa H. Fouad d, Mariam K. Youssef a

a Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
b Department of Pulmonary Medicine, Faculty of Medicine, Ain Shams university, Cairo, Egypt.
c Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
d Department of Internal Medicine / Allergy and Clinical Immunology, Ain Shams University, Cairo, Egypt.

Authors:

Sara Ibrahim Taha
Degree: MD Clinical Pathology/Immunology
Lecturer of Clinical Pathology/ Immunology, Faculty of Medicine, Ain Shams University.
E-mail: dr_sara_ib@med.asu.edu.eg

Aalaa Kamal Shata
Degree: MD Pulmonary medicine
Lecturer of Pulmonary medicine, Faculty of Medicine, Ain Shams university, Cairo, Egypt.
E-mail: aalaashata@yahoo.com

Shereen Atef Baioumy
Degree: MD Microbiology and Immunology
Lecturer of Microbiology and Immunology, Zagazig University, Zagazig, Egypt.
Email: drshereenatef@yahoo.com

Shaimaa Hani Fouad
Degree: MD Internal Medicine
Lecturer of Internal Medicine / Allergy and Clinical Immunology, Ain Shams University Cairo, Egypt.
E-mail: shaimaahani@med.asu.edu.eg

Mariam Karam Youssef
Degree: MD Clinical Pathology/Hematology
Lecturer of Clinical Pathology/Hematology, Faculty of Medicine, Ain-Shams University
E-mail: Dr.mariam_karam@hotmail.com

*Corresponding Author:
Sara Ibrahim Taha, MD, PhD
Lecturer of Clinical Pathology/ Immunology, Faculty of Medicine, Ain Shams University.
Address: Ain Shams University, Abassia, Cairo, Egypt
Office tel., fax: + (202) 24346308 Mobile: + (20) 112536009
E-mail: dr_sara_ib@med.asu.edu.eg
https://orcid.org/0000-0001-8224-8701

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT:

Background: The pandemic of coronavirus disease 2019 (COVID-19) represents a great threat to global health. Sensitive tests that effectively predict the disease outcome are essentially required to guide proper intervention. Objectives: To evaluate the prognostic ability of serial procalcitonin (PCT) measurement to predict the outcome of COVID-19 patients, using PCT clearance (PCT-c) as a tool to reflect its dynamic changes. Methods: A prospective observational study of inpatients diagnosed with COVID-19 at the Quarantine Hospitals of Ain-Shams University, Cairo, Egypt. During the first five days of hospitalization, serial PCT and PCT-c values were obtained and compared between survivors and non-survivors. Patients were followed up to hospital discharge or in-hospital mortality. Results: Compared to survivors, serial PCT levels of non-survivors were significantly higher (p<0.001) and progressively increased during follow-up, in contrast, PCT-c values were significantly lower (p<0.01) and progressively decreased. Receiver operating characteristic (ROC) curve analysis showed that by using the initial PCT value alone, at a cut off value of 0.80 ng/ml, the area under the curve for predicting in-hospital mortality was 0.81 with 61.1% sensitivity and 87.3% accuracy. Serial measurements showed better predictive performance and the combined prediction value was better than the single prediction by the initial PCT. Conclusions: Serial PCT measurement could be a useful laboratory tool to predict the prognosis and outcome of COVID-19 patients. Moreover, PCT-c could be a reliable tool to assess PCT progressive kinetics.

Keywords: Clearance; Coronavirus; COVID-19; Mortality; Procalcitonin; Serial.
BACKGROUND:

Coronavirus disease 2019 (COVID-19) is a highly infectious pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It first emerged in December 2019 in Wuhan, China, then rapidly spread all over the world, and now it is considered a pandemic that represents an urgent threat to global health [1]. Fever, dry cough, and fatigue are the main manifestations of COVID-19. In the more severe cases, patients may have dyspnea and hypoxia 5 to 7 days after the onset of symptoms that can rapidly progress to respiratory distress, coagulopathy, multi-organ failure, and even death [2]. The mortality of COVID-19 pneumonia is higher than other viral pneumonia [3]. Since inflammation is an important factor in COVID-19 mortality, sensitive inflammatory biomarkers that reflect lung lesion changes should be continuously explored [1].

Procalcitonin (PCT) is a calcitonin-related pro-hormone released by the thyroid parafollicular cells. Under physiological conditions, serum PCT is usually below 0.05 ng/ml. However, its levels increase significantly 2–6 hours after stimulation by microbial infection, being released by all parenchymal tissues under the effect of endotoxins and pro-inflammatory cytokines [4]. Its role in inflammatory response includes chemotactic function, modulation of inducible nitric oxide synthase and induction of cytokines. So, it has been used as a marker of prognosis in sepsis and septic shock [5].

Our study is aimed at exploring the ability of serial serum concentrations and clearance of PCT to predict the prognosis and mortality of COVID-19 patients.

METHODOLOGY:
Ethics: Verbal informed consent was obtained before enrolment from all participants or their first-degree relatives after explaining the details of the study. As such, approval for the conduction of the study was received from the Ain Shams University Faculty of Medicine Research Ethics Committee (REC).

Study design and patient selection: This prospective observational study included 63 adult (age ≥ 18 years) COVID-19 patients admitted to the Quarantine Hospitals of Ain-Shams University (El-demerdash Hospital and Field Hospital) in Cairo, Egypt, from April 10 to May 15, 2021. All included patients needed to have 1) laboratory confirmed SARS-CoV-2 infection by a reverse transcription-polymerase chain reaction (RT-PCR) test from a nasopharyngeal swab prior to hospitalization; and 2) at least one PCT measurement upon hospital admission (or within 24 hours) in their medical records. Pregnant women and patients with non-infectious causes of systemic inflammation that can induce PCT production, such as trauma, surgery, burn injury, and chronic kidney disease, were excluded. In this study, patients were followed up to hospital discharge or in-hospital mortality. Patients’ severity categorization, treatment and discharge criteria followed the management protocol of COVID-19 patients released by Ain Shams University Hospitals [6].

Data collection: For all included patients, baseline and follow-up data were collected from medical records and encompassed demographics, clinical history, presence of comorbidities, routine laboratory test findings, length of hospital stay, ICU admission, and clinical outcome.

Procalcitonin (PCT) measurement: Because of the difficult accessibility to some patients with critical conditions, in addition to the death or hospital discharge of others, not all initially included patients were subjected to serial PCT evaluation. Initial PCT values were obtained from the medical records of all included patients (n=63). Then, further assessment of PCT levels was
done using serum samples that were collected on hospital days 3 (n = 47) and 5 (n = 49), and were stored at −80°C until analysis, using the Elecsys® BRAHMS PCT sandwich immunoassay principle of the electrochemiluminescence autoanalyzer (COBAS e411; Roche Diagnostics GmbH, Mannheim, Germany) according to the manufacturer’s instructions, with the analytical measuring range of 0.02-100 ng/ml and the detection limit of < 0.02 ng/ml. Initial PCT, that was done upon hospital admission or within 24 hours and obtained from patients’ medical records, was defined as PCTD1, while PCT values that were measured on day 3 (48-72 hours) and day 5 (96 – 120 hours) were defined as PCTD3 and PCTD5, respectively.

Procalcitonin clearance (PCT-c) calculation: The clearance of procalcitonin (PCT-c) on days 3 (PCT-cD3) and 5 (PCTc-D5) was calculated as follows: PCT-c D3or5 (%) = [(PCTD1 – PCTD3or5)/PCTD1] × 100. Clearance values are positive with decreasing concentrations and negative with increasing concentrations [7].

Statistical methods: The IBM SPSS statistics program (V. 26.0, IBM Corp., USA, 2019) was used for data analysis. Quantitative non-parametric measures were expressed as medians and percentiles. In addition, categorized data were expressed in the form of numbers and percentages. Comparison between two independent groups for non-parametric data was done using the Wilcoxon Rank Sum test. Meanwhile, the Chi-square test was used to compare the 2 independent groups as regards to the categorized data. A diagnostic validity test was performed to obtain diagnostic sensitivity, specificity, accuracy, and positive (PPV) and negative predictive values (NPV). The area under the curve (AUC) was calculated after the receiver operating characteristic (ROC) curve was constructed to determine the most sensitive and specific predictive cutoff point for each variable. All statistical tests were 2-tailed, and the probability of error ≤ 0.05 was considered significant. Missing data points were not extrapolated.
RESULTS:

Demographic and clinical characteristics:

During the enrollment period of this study, a final sample of 63 patients, who met the inclusion criteria, was initially obtained. The median age was 55 years (IQR: 43–70) and 54.0% of patients were men. Hypertension (38.1%) and diabetes (30.2%) were the most common co-morbidities. As regards to admission disease severity, 50.8% (n=32) of the included patients had non-severe disease, while 49.2% (n=31) were severe. The median length of stay in the hospital was 9 days (IQR: 7) and ranged from 4 to 30 days. In total, 29 patients (46.0%) were admitted to the ICU, and 18 (28.6%) died.

Characteristics of non-survivors were similar to survivors in regards to age, gender, length of hospital stay, and underlying comorbidities, except for diabetes mellitus, which was significantly associated with in-hospital mortality (P = 0.001). Similarly, all of the non-survivors (n = 18) had severe disease, and 94.4% (n = 17) were admitted to the ICU. In comparison, only 28.9% (n = 13) of survivors were considered severe, and 26.7% (n = 12) required ICU admission. The demographic and clinical characteristics of the included patients are presented in table 1.

Prognostic value of serial PCT and PCT-c:

Table 2 presents the values of PCT and PCT-c with their serial changes in survivors and non-survivors. Serum levels of PCT increased significantly with in-hospital mortality. Compared with survivors, non-survivors showed significantly higher values of PCTD1 (median: 1.20 ng/ml (IQR: 0.23 – 1.96) vs. 0.12 ng/ml (0.06 – 0.34); P<0.001), PCTD3 (median: 1.6 ng/ml (0.99 – 2.2) vs. 0.08 ng/ml (0.06 – 0.14); P<0.001) and PCTD5 (median: 3.2 ng/ml (IQR: 2.05 – 7.1) vs. 0.05 ng/ml (0.04 – 0.08); P<0.001).
As regards PCT-c, it decreased significantly with in-hospital mortality. Values of PCT-cD3 and PCT-cD5 were significantly lower in non-survivors compared to survivors, (median: 50.6% (IQR: 769.15 – 19.53) vs. 25% (13.39 – 42.82); P=0.003 and median: 325.7% (IQR 1919.61 – 96.13) vs. 51.56 % (34.37 – 78.95); P< 0.001, respectively).

In non-survivors and during the follow up, serial PCT levels showed an overall progressive increase. In contrast, PCT-c values progressively decreased. **Figures 1 and 2**

Table 3 demonstrates the diagnostic validity and ROC curve analysis of the ability of serial PCT and PCT-c to predict in-hospital mortality of COVID-19 patients. Regarding the single indicators, serial PCT and PCT-c showed an overall better predictive performance for in-hospital mortality than the initial PCT measurement. At the optimum cutoff values of 0.80 ng/ml, 0.54 ng/ml, 0.18 ng/ml, -11.1% and -79.77% for PCTD1, PCTD3, PCTD5, PCT-cD3 and PCT-cD5, respectively, the AUC followed the order of PCTD5 > PCT-c D5 > PCTD3 > PCTD1 > PCT-c D3 being 0.96, 0.89, 0.82, 0.81 and 0.74, respectively. Despite PCTD1 had the highest diagnostic specificity (97.8%), it showed the lowest diagnostic sensitivity (61.1%). PCTD5 then PCTD3 had the highest diagnostic sensitivity (100% and 85.7%, respectively), NPV (100% and 94.1%, respectively) and diagnostic accuracy (95.9% and 93.6%, respectively). The best PPV was of PCT-c D5 then PCTD3 (93.3% and 92.3%, respectively). PCT-c D3 showed the lowest specificity (87.9%), PPV (71.4%) and accuracy (83.0%).

The AUC increased when PCTD1 at a cut off of 0.8 ng/ml was added to either PCTD3 at 0.03 ng/ml, PCTD5 at 0.398 ng/ml, PCT-cD3 at-50%, or PCT-cD5 at 54.54% to be 0.93, 0.98, 0.96 and 1.00, respectively, showing that the combined prediction value was better than the single prediction by initial PCT value, whereas, the best predictive performance was seen in the
PCTD1+PCTD-c5 combination, having 100% specificity, sensitivity, PPV, NPV, and accuracy to predict COVID-19 patients’ in-hospital mortality.

DISCUSSION

The pandemic of COVID-19 has had a great impact on international health. The rapid spread of the virus, the high case load and the high proportion of patients requiring hospitalization, ICU admission, and respiratory support have placed unprecedented strain on health care services and staffing in many countries [3]. In order to reduce hospital-stay and in-hospital morality, it is necessary to implement sensitive testing that effectively predicts prognosis to guide proper intervention [5]. Procalcitonin has emerged as a prognostic inflammatory biomarker for assessing the severity of infectious etiologies since 1993 [8]. Accordingly, several studies have reported a marked increase in the serum PCT level during severe pulmonary bacterial infections, since its secretion is directly induced by cytokines, such as interleukins 1β and 6, and tumor necrosis factor-α (TNF-α). In contrast, during viral infections and non-specific inflammatory processes, PCT levels were found to be normal or slightly elevated due to inhibition of TNF-α by virus-stimulated production of interferon-γ (INF-γ) [9,10]. Despite being a highly utilized biomarker of bacterial infection, contrasting opinions exist regarding its efficacy in predicting the prognosis of COVID-19 patients [11,12]. However, in severe COVID-19 infections, some studies found elevated levels of PCT [13, 14], while others found normal levels [15, 16].

To further understand this association, we conducted this study, in which the PCT level was determined sequentially in adult Egyptian COVID-19 patients during the first 5 days of hospital admission in order to study PCT kinetics and prognostic performance through the course of the disease. By following up of the patients, we found that the PCT level was significantly higher (p...
< 0.001) in non-survivors compared to survivors with an overall progressive increasing tendency, proposing it as a reliable prognostic biomarker of in-hospital mortality of COVID-19 patients.

Consistent with our findings, in a study by Xu et al., elevated serum PCT was an independent risk factor for mortality in hospitalized patients with COVID-19 [1]. Similarly, a pooled analysis of four studies showed that increased PCT was associated with a five-fold higher risk of severe disease [17]. In addition, Ian and colleagues, who investigated the association of inflammatory biomarkers with the COVID-19 outcome, have found that the elevated PCT was associated with increased severity and mortality of the disease but not with increased need for ICU admission [18].

In order to monitor the evolution of the PCT level and to measure its relative changes to the initial value, we calculated the PCT-c and observed that its low levels were significantly associated with COVID-19 in-hospital mortality (p < 0.01). Whereas, during follow up, it was observed to have progressively decreased in non-survivors and increased in survivors. Confusingly, PCT-c D3 at the cutoff of -11.1% showed the lowest AUC (0.74), specificity (87.9%), PPV (71.4%) and accuracy (83.0%). This could be explained by the small drop in some PCTD3 values in non-survivors, with a small rise in some survivors. While it is difficult to assess the impact of variables that were not specifically studied, we attributed this to the varying timing of therapy initiation.

Ruiz-Rodríguez et al. and Suberviola et al. have introduced the concept of PCT-c, in order to assess the utility of serial PCT and its relationship with mortality [7; 19]. Ruiz-Rodriguez and colleagues determined the clearance of PCT after 24, 48 and 72 hours of treatment of 27 patients with septic shock and found a significant increase in PCT-c in survivors compared to non-survivors [7]. Meanwhile, Suberviola and co-workers studied 88 patients with septic shock
admitted to the ICU and found that the mortality in patients with increased PCT-c in the first 72 hours of treatment was significantly lower than in patients with reduced clearance in the same period (15.4% versus 58.8%, p <0.01) [19].

Consistent with the fact that cytokines which are released in COVID-19 infection, particularly (INF)-γ, have a negative effect on PCT levels [20], Schuetz has recently suggested PCT as a valuable tool in identifying COVID-19 patients at high risk for clinical deterioration. Furthermore, he stated that at the time of hospital admission, most COVID-19 patients showed very low PCT levels (<0.25 or even <0.1ng/ml). However, in clinical deterioration of mild cases, which were expected to have low PCT levels, progressive significant elevation in their level occurred, which added to the strength of the PCT prognostic ability [21].

Several studies also reported that levels of PCT in COVID-19 patients upon hospital admission were typically normal, as in other viral infections, and increased afterwards in patients admitted to the ICU [2,15, 22]. PCT elevation in these cases was attributed to bacterial co-infection (lung damage by the virus gave access to normal bacterial flora which became invasive and developed secondary bacterial pneumonia), or, on the other hand, patient deterioration with the advancement of hyperinflammatory syndrome and cytokine storm (increased synthesis of PCT by cytokines associated with immune dysregulation could develop severe inflammatory pneumonitis and endothelial dysfunction) [21,23].

In concordance with these data, our results showed that serial PCT and PCT-c had an overall better predictive performance than initial PCT for in-hospital mortality of COVID-19 patients. Where, at optimum cut-off values, the AUC followed the order of PCTD5 > PCT-c D5 > PCTD3 > PCTD1 > PCT-c D3 being 0.96, 0.89, 0.82, 0.81 and 0.74, respectively. In addition, the combined prediction value was better than the single prediction by the initial PCT. Where, at
optimum cut-off values, the AUC increased when PCTD1 was added to PCTD3, PCTD5, PCT-cD3, or PCT-cD5 to be 0.93, 0.98, 0.96 and 1.00, respectively.

One disadvantage of serial PCT measurement could be the cost. However, the overall cost of aggressive unnecessary therapeutic interventions and the resulting patients’ complications could exceed the cost of repetition of the test. To our knowledge, our study is the first to explore the role of PCT-c as an indicator for dynamic changes in PCT to predict the outcome of hospitalized COVID-19 patients, but it has several limitations. The first issue is the small sample size and the disproportionate number of cases in the study groups. Second, we did not collect enough information about antibiotic treatment of patients or the results of their microbiological cultures. Third, we studied changes in PCT alone and did not account for the possibility that the relationship of PCT to other inflammatory markers could be more informative. Thus, further studies on larger samples and more clinical considerations, as well as correlation and comparison with other inflammatory markers, are required.

CONCLUSIONS:

Persistently high PCT concentrations, as well as reduced PCT-c, were associated with significantly higher COVID-19 in-hospital mortality. This suggests that the elevated PCT, with its progressive kinetics, may be useful in predicting the outcomes of COVID-19 patients. Moreover, PCT-c can be used as a tool to assess PCT kinetic changes during the disease course and to evaluate the potential value of PCT as a prognostic marker.
LIST OF ABBREVIATIONS:

Manuscript word count: 2538 words
Abstract word count: 230 words

Figures: 2
Tables: 3

Data availability statement: All data are presented in the main manuscript.

Statement of Informed Consent: Informed consent was obtained from all patients or their first-degree relatives for being included in the study.

Acknowledgement: none.

Competing interests: The authors declare that they have no competing interests.

Funding sources: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

Consent for publication: Not applicable.

Authors’ contribution:

S.I.: conceptualization, methodology, writing-reviewing and editing; S. H. and A. K.: data collection, investigation, visualization; S. A.: project visualization, resources, software, validation, M. K.: writing original draft, reviewing, editing, preparation.
REFERENCES

Figure 1: Box plot representing the range, median, and quartiles of serial PCT values on hospital days 1, 3 and 5 in survivors and non-survivors (tested by Wilcoxon rank-sum test)
Figure 2: Box plot representing the range, median, and quartiles of PCT-c values on hospital days 3 and 5 in survivors and non-survivors. (tested by Wilcoxon rank-sum test)
Table 1: Demographic and clinical characteristics of the studied population.

<table>
<thead>
<tr>
<th>Variable</th>
<th>All Cases (n=63)</th>
<th>Survivors (n=45)</th>
<th>Non-survivors (n=18)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>55 (43–70)</td>
<td>54 (37.5–66)</td>
<td>63.5 (52.25–73)</td>
<td>0.052</td>
</tr>
<tr>
<td>Range</td>
<td>(21–94)</td>
<td>(21–94)</td>
<td>(42–85)</td>
<td></td>
</tr>
<tr>
<td>Sex n, (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>34 (54.0%)</td>
<td>24 (53.3%)</td>
<td>10 (55.6%)</td>
<td>0.873</td>
</tr>
<tr>
<td>Female</td>
<td>29 (46.0%)</td>
<td>21 (46.7%)</td>
<td>8 (44.4%)</td>
<td></td>
</tr>
<tr>
<td>Comorbidities n, (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td>19 (30.2%)</td>
<td>8 (17.8%)</td>
<td>11 (61.1%)</td>
<td>0.001</td>
</tr>
<tr>
<td>HTN</td>
<td>24 (38.1%)</td>
<td>14 (31.1%)</td>
<td>10 (55.6%)</td>
<td>0.071</td>
</tr>
<tr>
<td>COPD</td>
<td>9 (14.3%)</td>
<td>5 (11.1%)</td>
<td>4 (22.2%)</td>
<td>0.255</td>
</tr>
<tr>
<td>IHD</td>
<td>10 (15.9%)</td>
<td>6 (13.3%)</td>
<td>4 (22.2%)</td>
<td>0.383</td>
</tr>
<tr>
<td>Severity n, (%)</td>
<td></td>
<td></td>
<td></td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Non-severe</td>
<td>32 (50.8%)</td>
<td>32 (71.1%)</td>
<td>0 (0.0%)</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>31 (49.2%)</td>
<td>13 (28.9%)</td>
<td>18 (100.0%)</td>
<td></td>
</tr>
<tr>
<td>Hospital stay (days)</td>
<td></td>
<td></td>
<td></td>
<td>0.051</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>9 (7–12)</td>
<td>9 (6.5–12)</td>
<td>11 (8–19.25)</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>(4–30)</td>
<td>(4–23)</td>
<td>(4–30)</td>
<td></td>
</tr>
<tr>
<td>ICU admission n, (%)</td>
<td></td>
<td></td>
<td></td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Negative</td>
<td>34 (54.0%)</td>
<td>33 (73.3%)</td>
<td>1 (5.6%)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>29 (46.0%)</td>
<td>12 (26.7%)</td>
<td>17 (94.4%)</td>
<td></td>
</tr>
</tbody>
</table>

DM: diabetes mellitus; HTN: hypertension; COPD: chronic obstructive pulmonary disease; IHD: ischemic heart disease; ICU: intensive care unit; IQR: interquartile range. Statistical significance set at 0.05.
Table 2: Comparisons of values of PCT and PCT-c, and their serial changes between survivors and non-survivors.

<table>
<thead>
<tr>
<th></th>
<th>All Cases (n=63)</th>
<th>Survivors (n=45)</th>
<th>Non-survivors (n=18)</th>
<th>p– value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCT D1 (ng/ml)</td>
<td></td>
<td></td>
<td></td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>0.15 (0.08– 0.56)</td>
<td>0.12 (0.06 – 0.34)</td>
<td>1.20 (0.23 – 1.96)</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.02 – 12.5</td>
<td>0.03 – 0.97</td>
<td>0.02 – 12.5</td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td></td>
<td></td>
<td></td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>0.12 (0.06– 0.7)</td>
<td>0.08 (0.06 – 0.14)</td>
<td>1.6 (0.99 – 2.2)</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.03– 18.9</td>
<td>0.03 – 0.7</td>
<td>0.03 – 18.9</td>
<td></td>
</tr>
<tr>
<td>PCT-c D3 (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.003</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>20 (-50 – 38.76)</td>
<td>25 (13.39 – 42.82)</td>
<td>-50.6 (-769.15 – 19.53)</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>-1388.9 – 90.43</td>
<td>-210 – 90.435</td>
<td>-1388.9 – 68.18</td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td></td>
<td></td>
<td></td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>0.08 (0.04 – 2.38)</td>
<td>0.05 (0.04 – 0.08)</td>
<td>3.2 (2.05 – 7.1)</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.02 – 40.7</td>
<td>0.02 – 1.99</td>
<td>0.2 – 40.7</td>
<td></td>
</tr>
<tr>
<td>PCT-c D5 (%)</td>
<td></td>
<td></td>
<td></td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>37.5 (-188.28 – 2.83)</td>
<td>51.56 (34.37 – 78.95)</td>
<td>-325.7 (-1919.61 – -96.13)</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>-3800 – 92.40</td>
<td>-476.8 – 92.40</td>
<td>-3800 – 54.54</td>
<td></td>
</tr>
</tbody>
</table>

PCT: procalcitonin; PCT-c: procalcitonin clearance; IQR: interquartile range. Statistical significance set at 0.05.
Table 3: Diagnostic validity test and receiver operating characteristic (ROC) analysis of the ability of serial PCT measurements and PCT-c to predict in-hospital mortality of COVID-19 patients.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cut off</th>
<th>AUC</th>
<th>Specificity (%)</th>
<th>Sensitivity (%)</th>
<th>NPV (%)</th>
<th>PPV (%)</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCTD1 (ng/ml)</td>
<td>0.80</td>
<td>0.81</td>
<td>97.8</td>
<td>61.1</td>
<td>86.3</td>
<td>91.7</td>
<td>87.3</td>
</tr>
<tr>
<td>PCTD3 (ng/ml)</td>
<td>0.54</td>
<td>0.82</td>
<td>97.0</td>
<td>85.7</td>
<td>94.1</td>
<td>92.3</td>
<td>93.6</td>
</tr>
<tr>
<td>PCTD5 (ng/ml)</td>
<td>0.18</td>
<td>0.96</td>
<td>93.8</td>
<td>100.0</td>
<td>100.0</td>
<td>89.5</td>
<td>95.9</td>
</tr>
<tr>
<td>PCT-c D3 (%)</td>
<td>-11.1</td>
<td>0.74</td>
<td>87.9</td>
<td>71.4</td>
<td>87.9</td>
<td>71.4</td>
<td>83.0</td>
</tr>
<tr>
<td>PCT-c D5 (%)</td>
<td>-79.77</td>
<td>0.89</td>
<td>96.9</td>
<td>82.4</td>
<td>91.2</td>
<td>93.3</td>
<td>91.8</td>
</tr>
<tr>
<td>PCTD1 at 0.80 + PCTD3 at 0.03</td>
<td>--</td>
<td>0.93</td>
<td>97.0</td>
<td>92.9</td>
<td>97.0</td>
<td>92.9</td>
<td>95.7</td>
</tr>
<tr>
<td>PCTD1 at 0.80 + PCTD5 at 0.398</td>
<td>--</td>
<td>0.98</td>
<td>100.0</td>
<td>94.1</td>
<td>97.0</td>
<td>100.0</td>
<td>98.0</td>
</tr>
<tr>
<td>PCTD1 at 0.80 + PCT-cD3 at 50</td>
<td>--</td>
<td>0.96</td>
<td>100.0</td>
<td>92.9</td>
<td>97.1</td>
<td>100.0</td>
<td>97.9</td>
</tr>
<tr>
<td>PCTD1 at 0.80 + PCT-cD5 at 54.54</td>
<td>--</td>
<td>1.00</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

PPV: positive predictive value; NPV: negative predictive value; AUC: area under curve; PCT: procalcitonin; PCT-c: procalcitonin clearance.