Baseline Characteristics and Outcomes of 180 Egyptian COVID-19 Patients Admitted to Quarantine Hospitals of Ain Shams University: A Retrospective Comparative Study

Running title: COVID-19 in Egypt

Sara I. Taha a*, Sara F. Samaan b, Aalaa K. Shata c, Shereen A. Baioumy d, Shaimaa A. Abdalgeleel e, Mariam K. Youssef a

a Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
b Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
c Department of Pulmonary Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
d Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Egypt.
e Department of Biostatistics and Epidemiology, National Cancer Institute, Cairo University, Cairo, Egypt.

Authors:

*Sara Ibrahim Taha, M.D., Ph.D.
Lecturer of Clinical Pathology/Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
E-mail: dr_sara_ib@med.asu.edu.eg ORCID: https://orcid.org/0000-0001-8224-8701

Sara Farid Samaan, M.D., Ph.D.
Lecturer of Internal Medicine/Rheumatology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
E-mail: Dr.sara_farid@yahoo.com

Aalaa Kamal Shata, M.D., Ph.D.
Lecturer of Pulmonary Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
E-mail: aalaashata@yahoo.com

Shereen Atef Baioumy, M.D., Ph.D.
Lecturer of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
Email: drshereenatef@yahoo.com ORCID: https://orcid.org/0000-0002-2188-6790

Shaimaa Abdalaleem Abdalgeleel, M.D., Ph.D.
Lecturer of Biostatistics and Epidemiology, National Cancer Institute, Cairo University, Cairo, Egypt.
E-mail: shaimaa.abdalgeleel@nci.cu.edu.eg ORCID: https://orcid.org/0000-0003-0994-7703

Mariam Karam Youssef, M.D., Ph.D.
Lecturer of Clinical Pathology/Hematology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt.
E-mail: Dr.mariam_karam@hotmail.com ORCID: https://orcid.org/0000-0003-2075-3889

* Corresponding Author:
Sara Ibrahim Taha, MD, PhD
Lecturer of Clinical Pathology/Immunology, Faculty of Medicine, Ain Shams University.
Address: Ain Shams University, Abassia, Cairo, Egypt
Office tel., fax: + (202) 24346308 Mobile: + (20) 1125360009
E-mail: dr_sara_ib@med.asu.edu.eg

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
https://orcid.org/0000-0001-8224-8701
Abstract:

Background: COVID-19 mortality, severity, and recovery are major global concerns, but they are still insufficiently understood, particularly in the Middle East. Methods: This retrospective study comprised 180 adult Egyptian COVID-19 patients who were categorized and compared to evaluate if there was a link between their clinical and laboratory findings at hospital admission and disease severity and mortality risk. Results: Of all patients enrolled, 27.8% had severe disease and 13.9% died during their hospital stay. Diabetes mellitus (46.7%), hypertension (36.1%) and chronic obstructive pulmonary disease (COPD) (33.3%) were the most frequent associated co-morbidities. Severe patients and non-survivors were significantly older compared to their corresponding groups. Their absolute neutrophil count, procalcitonin (PCT), ESR, C-reactive protein (CRP), AST, ALT, LDH, D-dimer, and ferritin levels were all significantly higher (P ≤ 0.05), whereas their absolute lymphocyte count was significantly lower (P ≤ 0.05). COPD (OR: 3.294; 95% CI: 1.199-9.053; P= 0.021), diabetes mellitus (OR: 2.951; 95% CI: 1.070-8.137; P= 0.037), ferritin ≥ 350 ng/mL (OR: 11.08; 95% CI: 2.796-41.551; P= 0.001), AST ≥ 40 IU/L (OR: 3.07; 95% CI: 1.842-7.991; P= 0.021), CT-SS ≥ 17 (OR: 1.205; 95% CI: 1.089-1.334; P ≤ 0.001) and absolute lymphocyte count < 1×10³/µL (OR: 4.002; 95% CI: 1.537-10.421; P= 0.005), were all linked to a higher risk of COVID-19 severity. Furthermore, COVID-19 in-hospital mortality was predicted by dyspnea (OR: 4.006; 95% CI: 1.045-15.359; P= 0.043), CT-SS ≥ 17 (OR: 1.271; 95% CI: 1.091-1.482; P= 0.002) and AST ≥ 40 IU/L (OR: 2.89; 95% CI: 1.091-7.661; P= 0.033). Conclusions: Clinical and laboratory data of COVID-19 patients at their hospital admission may aid in identifying early risk factors for severe illness and a high mortality rate, as well as determining the most effective management for them.

Keywords: Coronavirus; COVID-19; Egypt; Indicators; Mortality; Severity.
INTRODUCTION:

Coronavirus disease 2019 (COVID-19) is a highly contagious infection caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that was first discovered in Wuhan, China, in early December 2019. Since then, the disease has rapidly spread to become a global epidemic [1]. The first COVID-19 case in Egypt was reported in February 2020, and since then, the number of cases has been dramatically rising. According to the Egyptian Ministry of Health and Population, there were more than 266,000 confirmed COVID-19 cases and almost 15,200 COVID-19 deaths throughout Egypt and its governorates as of June 5, 2021 [2].

COVID-19 infection is most commonly transmitted through respiratory droplets, as well as human-to-human contact [3]. It causes a wide range of symptoms that can lead to patient mortality, making it difficult to treat and control [4]. It also depletes hospital resources, such as ICU beds and mechanical ventilators, especially in low-resource countries [5]. So far, no specific antiviral therapy for COVID-19 has been found to be effective, and clinical management is based primarily on symptom control [6]. Several vaccinations began to emerge toward the end of 2020. According to the World Health Organization (WHO), there were 102 vaccines in clinical trials and 184 vaccines in preclinical trials as of May 28, 2021 [7].

The goal of this study was to understand more about COVID-19 baseline features and outcomes in Egyptian patients, which could aid in detecting early risk factors for poor prognosis and guiding proper patient management.

METHODOLOGY:

Study subjects and settings
This retrospective study included 180 COVID-19 adult patients (age ≥ 18 years old) admitted from March 1 to April 30, 2021 to the Quarantine Hospitals of Ain-Shams University (El-demerdash hospital and Field hospital), Cairo, Egypt. Only confirmed SARS-CoV-2 cases through nasopharyngeal swabs real-time reverse-transcriptase–polymerase-chain-reaction (RT–PCR) assays, in accordance with WHO guidance [8], were enrolled in the study. Pregnant women, patients with missing data and those who had hematological diseases or immunological disorders were excluded from the study.

Data collection:

Baseline data including: age, gender, presenting symptoms, comorbidities and chronic diseases, chest computed tomography (CT), ICU admission necessity, length of hospital stay and outcome (survival or non-survival), as well as baseline routine laboratory test results (CBC with differential counts, CRP, ESR, ferritin, D-dimer, PCT, LDH, AST and ALT) were acquired from medical records of all included patients.

Before the start, The Ain Shams University Faculty of Medicine Research Ethics Committee (REC) gave its permission for the study to be carried out. Informed consent was waived due to the retrospective nature of this study. Data were collected from hospital records in an anonymous pattern, kept private and confidential. They were solely utilized for the purpose of research.

Patient categorization:

All included patients were categorized according to guidelines of the management protocol of COVID-19 patients released by Ain Shams University Hospitals [9]. Patients were considered to have severe/critical disease if one or more of the following were present: oxygen saturation ≤ 93% at rest; dyspnea with a respiratory rate ≥ 30 breath/min; arterial partial oxygen pressure
(PaO2)/fraction of inspired oxygen (FiO2) ≤ 300 mmHg; respiratory failure with a need for mechanical ventilation; ICU admission need with shock, or organ failure syndrome. COVID-19 patients who did not meet these criteria but had a positive COVID-19 nucleic acid test were classified as having mild to moderate disease severity (non-severe).

Calculation of CT scoring system:

Each of the five lung lobes was visually assessed for the extent of involvement, whether unilateral or bilateral; peripheral, central, or both; upper lobe predominance, lower lobe predominance, or both; and then graded on a scale of 0 to 5 (degree of involvement: 0%, less than 5%, 5–25%, 26–49%, 50–75%, and > 75%, respectively). The sum of the individual lobar grades was then used to create a score that ranged from 0 to 25 [10,11].

Statistical methods:

The results were generated using the Statistical Package of Social Science (SPSS) (version 26). Quantitative numerical data were described as means and standard deviations (SD) or medians and ranges. While qualitative data were described as frequencies and percentages. Comparisons were done using the Mann-Whitney –U test or the Chi-square test or Fisher’s exact test as appropriate. The significant variables in the univariate analysis were subjected to stepwise logistic regression, and the odds ratio (OR) and its 95% confidence intervals (CI) were calculated to estimate the risk. Probability (p-value) ≤ 0.05 was considered significant.

RESULTS:

Demographics and associated co-morbidities:
A total of 180 COVID-19 patients were enrolled in this study. Their median (IQR) age was 48 years (15-94). Thirty-five percent of the patients were males and 65% were females. The most common associated co-morbidities were diabetes mellitus (46.7%), hypertension (36.1%) and chronic obstructive pulmonary disease (COPD) (33.3%). Of all the studied population, 27.8% (n=50) had severe disease and 13.9% (n=25) died during their hospital stay. Patients of these 2 subgroups were significantly older compared to non-severe patients (median: 60 years (IQR: 22-91) vs. 43 years (15-94); P=0.004) and survivors (57.0 years (27-80) vs 45.0 years (15-94); P=0.005), respectively. In terms of sex, differences between the studied subgroups were not significant. Demographics and associated co-morbidities are shown in Table 1.

Baseline clinical characteristics and patients’ outcomes:

Table 2 shows baseline clinical characteristics and outcomes of all studied patients and according to COVID-19 severity and mortality. The most frequent symptoms at admission were fatigue (90.6%), myalgia (75.0%), arthralgia (73.9%), fever (69.4%), dyspnea (69.4%) and cough (68.9%). Only dyspnea was significantly associated with COVID-19 in-hospital mortality (88.0% vs. 66.5%; P= 0.030). Patients with severe COVID-19 had significantly higher rates of thrombotic manifestations (38.0% vs. 22.3%; P=0.030), but no significant difference between non-survivors and survivors was found (36.0% vs. 25.2%; P=0.255). Regarding CT-SS, significantly higher scores were observed in severe patients (median: 21 (IQR: 5-23) vs. 15 (0-24); P ≤ 0.001) and non-survivors (20 (0-24) vs. 7 (0-23); P ≤ 0.001) compared to their corresponding groups.

In the 180 patients, the ICU admission rate was 30.6% with significant higher rates in severe patients and non-survivors compared to non-severe patients (96.0% vs. 5.4%; P ≤ 0.001) and survivors (80.0% vs. 22.6%; P ≤ 0.001). In hospital mortality rates were significantly higher with
severe compared to non-severe disease (32.0% vs. 6.9%; \(P \leq 0.001 \)). The median (IQR) duration of hospital stay of all studied patients was 14 days (3-29), with significant longer durations in severe patients (22 days (10-29) vs. 10 days (3-22); \(P \leq 0.001 \)) and non-survivors (22 days (3-29) vs. 12 days (3-29); \(P=0.001 \)) compared to their corresponding groups.

Laboratory findings:

Those with severe disease and non-survivors exhibited significantly higher (\(P \leq 0.05 \)) coagulation function (D-dimer), inflammation (PCT, ESR, CRP, and ferritin), liver dysfunction (AST and ALT), and tissue damage (LDH) compared to their corresponding groups. On the other hand, their CBCs showed significantly lower absolute lymphocyte counts (\(P \leq 0.05 \)) with significantly higher absolute neutrophil counts (\(P \leq 0.05 \)). There were no significant differences (\(P > 0.05 \)) in hemoglobin level, total leukocyte and platelet counts between the studied categories. **Table 3** shows the biochemical and hematological characteristics of the included patients.

Indicators of COVID-19 severity and in-hospital mortality:

In **table 4**, multivariate logistic regression analysis was used to identify independent prognosis indicators associated with COVID-19 severity and in-hospital mortality. Predictors of COVID-19 severity in the studied patients were presence of COPD (OR: 3.294; 95% CI: 1.199-9.053; \(P=0.021 \)) and diabetes mellitus (OR: 2.951; 95% CI:1.070-8.137; \(P= 0.037 \)) as co-morbidities, abnormal high values of ferritin \(\geq 350 \) ng/mL (OR: 11.08; 95% CI: 2.796-41.551; \(P= 0.001 \)), \(\text{AST} \geq 40 \) IU/L (OR: 3.07; 95% CI: 1.842-7.991; \(P= 0.021 \)) and CT-SS \(\geq 17 \) (OR: 1.205; 95% CI: 1.089-1.334; \(P \leq 0.001 \)), as well as low absolute lymphocyte count < 1x103/µL (OR: 4.002; 95% CI: 1.537-10.421; \(P= 0.005 \)). The presence of dyspnea as a presenting symptom (OR:
4.006; 95% CI: 1.045-15.359; P= 0.043), CT-SS ≥ 17 (OR: 1.271; 95% CI: 1.091-1.482; P= 0.002) and AST ≥ 40 IU/L (OR: 2.89; 95% CI: 1.091-7.661; P= 0.033) were also found to be independent predictors of COVID-19 in-hospital mortality.

DISCUSSION:

In the current study, comprehensive data analysis on the demographic, clinical, laboratory and radiological characteristics and outcomes of 180 hospitalized adult Egyptian COVID-19 patients were presented. The non-severe cases of COVID-19 (72.2%), as well as the survivors (86.1%), were by far the most prevalent in this study. This study revealed that the severity and mortality of COVID-19 were significantly predominant in the older age groups. This could be explained by the age-dependent decline in cell-mediated and humoral immune functions, resulting from low-grade chronic inflammation [12], as well as the increased risk of multi-organ failure in elderly individuals due to their lower ability to correct for hypoxia [13]. In agreement with our findings, several studies reported that elderly patients with COVID-19 are more likely to progress to severe disease with worse outcomes, compared to young and middle-aged patients [14-16]. In contrast, Wang and colleagues couldn’t link COVID-19 severity or mortality to a certain age group [17].

According to several studies, COVID-19 has infected more males than females, [18,19]. Female gender may be a protective factor, as evidenced by the fact that women have fewer harmful habits than men, particularly smoking [20]. Females may also have stronger innate and adaptive immune responses than males, making them more resistant to infections [21]. In terms of COVID-19 severity and morality, our research found no significant differences between male and female patients. Wang et al. and Fois et al., like us, discovered no gender differences in disease severity or mortality [12,22].
Diabetes mellitus, hypertension, and COPD were the most common chronic disorders among COVID-19 participants in our study. These co-morbidities were found to be strongly linked to disease progression. In addition, the odds of COVID-19 severity were 3.294 and 2.951 folds greater in COPD and diabetic patients, respectively. These findings were in line with a meta-analysis research that found diabetes mellitus and hypertension to be of the most common underlying disorders among COVID-19 patients who were hospitalized [23]. Consistent with our findings, Marhl et al. found a greater risk of COVID-19 in diabetic individuals due to the related dysregulation of angiotensin-converting enzyme-2 (ACE-2), liver dysfunction, and chronic inflammation [24]. In addition, the elevated risk of COVID-19 infection in patients with pre-existing cardiovascular illness may be due to a decrease in pro-inflammatory cytokines, which leads to weakened immune function [25]. In previous studies on MERS-CoV-2, it was discovered that the virus's particular receptor, dipeptidyl peptidase-4, was expressed at a higher level in smokers and COPD patients [26]. Emami et al. suggested that COPD could be an underlying factor that makes patients more prone to COVID-19 development [23], which is similar to our findings. Zhang et al., on the other hand, were unable to relate COVID-19 to COPD [27].

The most common symptoms found at admission of our COVID-19 patients were; fatigue (90.6%), myalgia (75%), arthralgia (74%), fever (69.4%), dyspnea (69.4%), and cough (68.9%). In accordance to our results, Ghweli and co-workers found that malaise, fever, dry cough, and dyspnea, were the most common manifestations of COVID-19 [14]. Dyspnea was found to be a significant prominent feature among the non-survivors in this study. Furthermore, the risk of disease mortality was 4.006 times higher in patients who presented with dyspnea than in those who did not. Similarly, Zheng et al. reported a significant positive association of dyspnea with
COVID-19 progression to death [28]. Also, a meta-analysis study reported similar findings and recommended dyspnea rather than fever as an indicator of poor outcome in COVID-19 patients [29].

Individuals with COVID-19 may have coagulation abnormalities, promoting a hypercoagulable state and resulting in an increased rate of thrombotic and thromboembolic events [30]. Using whole blood thromboelastography, Panigada et al. identified hypercoagulability features in COVID-19 patients, such as a decrease in time to fibrin formation, a decrease in time to clot formation, and an increase in clot strength [31]. In the context of these findings, a significant proportion of severe patients in our study were presented with thrombotic manifestations at admission to the hospital.

Severe patients tend to get priority hospitalization, with an increased need for oxygen supplementation, intensive care, and even mechanical ventilation [18]. Similarly, in our study, the length of hospital stay and the necessity for ICU admission were both considerably higher in severe patients and non-survivors.

Regarding complete blood count in COVID-19, peripheral blood leukocyte and lymphocyte counts are found to be normal or slightly reduced during the early phase of the disease, when non-specific symptoms are present. Approximately 1 to 2 weeks from the onset of the initial symptoms, when there is a surge in the clinical manifestations of the disease coinciding with a pronounced systemic increase of inflammatory mediators and cytokines, significant lymphopenia becomes evident [32]. Several factors may contribute to COVID-19-associated lymphopenia: the virus may directly infect lymphocytes, resulting in their lysis; the markedly increased levels of interleukins may promote lymphocyte apoptosis; the cytokine storm may be associated with lymphoid organ atrophy; and the metabolic acidosis present in severe COVID-19 patients may
suppress the proliferation of lymphocytes [32]. On the other hand, neutrophils are triggered by virus-related inflammatory factors produced by lymphocytes and endothelial cells, releasing large amounts of reactive oxygen species, neutrophil extracellular traps, and other cytotoxic mediators, which may dampen the virus [33]. Also, platelets may have an important role in the regulation of virus-mediated inflammatory process [34]. The platelet count of most mild to moderate COVID-19 patients may be normal or elevated but it may be reduced in critically ill patients. In individuals with severe COVID-19, thrombocytopenia may be caused by a decrease in platelet production, an increase in platelet breakdown, or a decrease in circulating platelets [35].

In the current study, the hematological indices of the included COVID-19 patients revealed significantly lower median absolute lymphocyte counts and higher median absolute neutrophil counts; yet without neutrophilia, among severe patients and non-survivors. Also, lymphopenia < 1 x 10^3/µL was an independent predictor of disease severity (OR: 4.002). However, total leukocytic count, hemoglobin level, and platelet counts showed no significant differences as the disease progressed. In accordance to our results, lymphopenia has been recognized in many studies as an effective and reliable indicator of severity and mortality in COVID-19 patients [14,18,36]. Also, many studies reported that non-survivors presented with significantly higher neutrophil counts [4,36,37]. Moreover, Shang et al. found that hemoglobin levels were not influenced by the severity of the disease [38]. As opposed to our findings, Li et al. have found significant leucopenia and thrombocytopenia in the severe patients [18]. In addition, Sulejmani et al. reported significant leukocytosis in severe COVID-19 patients, which could be related to the hyper-inflammatory state [39].

It has been reported that viral infection could induce an acute systemic inflammatory syndrome characterized by fever and multiple organ dysfunction. Additionally, viral infection induces
acute phase reactant production [40]. CRP is an inflammatory marker that plays an important role in host resistance to invading pathogens. Higher CRP values have been linked to several unfavorable aspects of COVID-19 including, cardiac injury, respiratory distress, and death. The detection of CRP levels was reported to be of great value in assessing the severity of COVID-19 patients [4]. Binding and storage of iron, which are functions of ferritin, are also associated with immune and inflammatory response to viral infection [41]. Procalcitonin (PCT) has been recently suggested as a valuable inflammatory prognostic biomarker in identifying COVID-19 patients at high risk for clinical deterioration [42]. Our findings revealed significantly higher inflammatory and tissue damage markers (CRP, ESR, ferritin, PCT, and LDH) among severe COVID-19 patients and those who died from the disease. Also, ferritin \(\geq 350 \text{ ng/mL} \) was an independent predictor of COVID-19 severity with an odds ratio of 11.08. These findings were in agreement with several other studies [4,18,41,42].

Coagulation disorders are relatively frequently encountered among severe COVID-19 patients. The D-dimer dynamics can reflect disease severity and elevated D-dimer level is associated with adverse patients’ outcomes [14,30]. In accordance, D-dimer levels in our studied patients increased significantly as the disease worsened.

One of the mechanisms by which COVID-19 can invade the human body is by binding to human ACE-2 receptor with subsequent enhancement of ACE-2 expression in hepatocytes [43]. Chen et al. discovered a slight increase in ALT and AST serum values in 43.4% of COVID-19 cases from Wuhan, which was the first report of hepatic dysfunction in SARS-CoV-2 infection [36]. A link between aberrant liver biochemistry and COVID-19 severity has recently been discovered [18]. In a study in Shanghai, severe to critical cases exhibited significantly higher serum ALT and AST levels than those who had mild to moderate COVID-19 [44]. In line with these
findings, the present study revealed significantly higher serum values of both ALT and AST among severely infected COVID-19 patients and those who died from the disease. In addition, AST ≥ 40 IU/L was an independent predictor of COVID-19 severity and mortality with an odds ratio of 3.076 and 2.890, respectively.

The use of CT imaging for the diagnosis and grading of viral pneumonia, allows patients with suspected SARS-CoV-2 infection to be isolated and treated in time for recovery, thus optimizing patient management [45]. Ground-glass opacities, consolidations and Broncho vascular thickening are characteristic chest CT findings in COVID-19 pneumonia. Atypical chest CT features also include masses, nodules, cavitation, lymphadenopathy, and pleural effusion [46]. The CT-scoring system (CT-SS), which has a high predictive value for the dynamic changes in chest CT exams in different severities of COVID-19 pneumonia [46], can be used to assess the extent of lung involvement. Both lungs were divided into 12 zones in total in the scoring methodology of Zhou et al; the degree of involvement in each lung zone was scored from 0 to 4, with a maximum achievable score of 48 [47]. Yang and coworkers developed another scoring system in which both lungs were divided into 20 zones and examined on chest CT using a methodology that assigned scores of 0, 1, and 2; hence, the individual's total score may vary from 0 to 40 points [48]. In this current study, the lung lobar involvement scoring system (0–25) was used as it was practical and time-effective [10,11,46], and showed significantly higher scores in the severe and non-survivor patients. Moreover, the odds of disease severity and mortality were 1.205 and 1.271 folds higher with CT-SS of ≥ 17, respectively. In accordance to our findings, in a study by Hafez et al., CT-SS 18/24 was considered the cutoff value among the mild and severe cases [46]. Also, Francone et al. have stated that CT-SS of ≥ 18 is highly predictive of COVID-19 mortality [10].
This study has some limitations that should be considered. First, it is a retrospective study that was performed in a limited hospital setting and included a relatively small sample size with disproportion in the different study groups. A large multi-center prospective observational study would be better to authenticate our findings. Another limitation is that all data included in this study were from the official records of the hospital; meanwhile, some patients have not been hospitalized for treatment because of the lack of awareness of disease severity, as well as the shortage of health care facilities. A larger study that includes out-patients isolated at home in addition to hospitalized in-patients, would offer a more representative study population.

CONCLUSIONS:

According to this study, COVID-19 infection was more aggressive in the elderly, diabetic, hypertensive, and COPD patients, as well as in those with low lymphocyte counts, high neutrophil counts, and high CRP, ESR, PCT, LDH, D-dimer, ferritin, AST, and ALT levels at the time of their admission to hospital. Hence, pretreatment clinical and laboratory data from COVID-19 patients at hospital admission may aid in identifying early risk factors for disease progression, as well as determining the most effective management plan.

Abbreviations:

Manuscript word count: 3290 words

Abstract word count: 285 words

Tables: 4
Figures: 0

Data availability statement: Data will be available upon request.

Acknowledgement: None.

Conflicts of interest disclosure: None.

Funding sources: None.

Consent for publication: Not applicable.

Authors contribution:

Sara I. Taha: conceptualization, methodology, writing- reviewing and editing; Sara F. Samaan and Aalaa K. Shata: data curation, investigation; Shereen A. Baioumy; project visualization, resources, software, validation; Shaimaa A. Abdalgeleel: formal analysis, supervision; Mariam K. Youssef: writing-original draft preparation, project administration.

REFERENCES:

[published online ahead of print, June 12, 2020]. ScienceOpen. doi: 10.14293/S2199-1006.1.SOR-.PPD4QZX.v1

[16] Mahase E. Covid-19: death rate is 0.66% and increases with age, study estimates. BMJ. 2020 Apr 1;369:m1327. doi: 10.1136/bmj.m1327. PMID: 32238354.

[Online ahead of print].

Table 1: Sociodemographic characteristics and co-morbidities of all studied patients and according to COVID-19 severity and mortality.

<table>
<thead>
<tr>
<th>Co-morbidities</th>
<th>TOTAL N=180</th>
<th>Non-severe N=130</th>
<th>Severe N=50</th>
<th>p-value</th>
<th>SEVERITY</th>
<th>MORTALITY</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>Median (IQR)</td>
<td>48.0 (15-94)</td>
<td>43 (15-94)</td>
<td>60 (22-91)</td>
<td>0.004</td>
<td>45.0 (15-94)</td>
<td>57.0 (27-80)</td>
</tr>
<tr>
<td>Sex n., %</td>
<td>Male</td>
<td>63 (35.0%)</td>
<td>41 (31.5%)</td>
<td>22 (44.0%)</td>
<td>0.116</td>
<td>53 (34.2%)</td>
<td>10 (40.0%)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>117 (65.0%)</td>
<td>89 (68.5%)</td>
<td>28 (56.0%)</td>
<td></td>
<td>102 (65.8%)</td>
<td>15 (60.0%)</td>
</tr>
<tr>
<td>Co-morbidities</td>
<td>Diabetes</td>
<td>84 (46.7%)</td>
<td>49 (37.7%)</td>
<td>35 (70.0%)</td>
<td>≤0.001</td>
<td>67 (43.2%)</td>
<td>17 (68.0%)</td>
</tr>
<tr>
<td></td>
<td>HTN</td>
<td>65 (36.1%)</td>
<td>36 (27.7%)</td>
<td>29 (58.0%)</td>
<td>≤0.001</td>
<td>49 (31.6%)</td>
<td>16 (64.0%)</td>
</tr>
<tr>
<td></td>
<td>IHD</td>
<td>25 (13.9%)</td>
<td>14 (10.8%)</td>
<td>11 (22.0%)</td>
<td>0.051</td>
<td>18 (11.6%)</td>
<td>7 (28.0%)</td>
</tr>
<tr>
<td></td>
<td>Stroke</td>
<td>9 (5.0%)</td>
<td>3 (2.3%)</td>
<td>6 (12.0%)</td>
<td>0.008</td>
<td>4 (2.6%)</td>
<td>5 (20.0%)</td>
</tr>
<tr>
<td></td>
<td>CKD</td>
<td>8 (4.4%)</td>
<td>1 (0.8%)</td>
<td>7 (14.0%)</td>
<td>≤0.001</td>
<td>6 (3.9%)</td>
<td>2 (8.0%)</td>
</tr>
<tr>
<td></td>
<td>CLD</td>
<td>36 (20.0%)</td>
<td>20 (15.4%)</td>
<td>16 (32.0%)</td>
<td>0.013</td>
<td>31 (20.0%)</td>
<td>5 (20.0%)</td>
</tr>
<tr>
<td></td>
<td>COPD</td>
<td>60 (33.3%)</td>
<td>35 (26.9%)</td>
<td>25 (50.0%)</td>
<td>0.003</td>
<td>52 (33.5%)</td>
<td>8 (32.0%)</td>
</tr>
</tbody>
</table>

CKD: chronic kidney disease; CLD, chronic liver disease; COPD: chronic obstructive pulmonary disease; HTN, hypertension; IHD: ischemic heart disease. Significance (P-value) was set at ≤0.05.
<table>
<thead>
<tr>
<th>Symptoms</th>
<th>n., (%)</th>
<th>TOTAL</th>
<th>SEVERITY</th>
<th>MORTALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N=180</td>
<td>N=130</td>
<td>N=50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=155</td>
<td>N= 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td></td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-severe</td>
<td>Severe</td>
<td>p-value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=119 (91.5%)</td>
<td>44 (88.0%)</td>
<td>0.467</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125 (69.4%)</td>
<td>36 (72.0%)</td>
<td>0.644</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125 (69.4%)</td>
<td>37 (74.0%)</td>
<td>0.411</td>
</tr>
<tr>
<td>Symptoms</td>
<td>n., (%)</td>
<td>TOTAL</td>
<td>SEVERITY</td>
<td>MORTALITY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=130</td>
<td>N=50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N= 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td></td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-severe</td>
<td>Severe</td>
<td>p-value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>119 (91.5%)</td>
<td>44 (88.0%)</td>
<td>0.467</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125 (69.4%)</td>
<td>36 (72.0%)</td>
<td>0.644</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125 (69.4%)</td>
<td>37 (74.0%)</td>
<td>0.411</td>
</tr>
<tr>
<td>Symptoms</td>
<td>n., (%)</td>
<td>TOTAL</td>
<td>SEVERITY</td>
<td>MORTALITY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=155</td>
<td>N= 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td></td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Survivors</td>
<td>Non-survivors</td>
<td>p-value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=155</td>
<td>N= 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>142 (91.6%)</td>
<td>21 (84.0%)</td>
<td>0.227</td>
</tr>
<tr>
<td></td>
<td></td>
<td>109 (70.3%)</td>
<td>16 (64.0%)</td>
<td>0.524</td>
</tr>
<tr>
<td></td>
<td></td>
<td>103 (66.5%)</td>
<td>22 (88.0%)</td>
<td>0.030</td>
</tr>
</tbody>
</table>

CT-SS: CT-scoring system. Significance (P-value) was set at ≤0.05.
Table 3: Baseline laboratory findings of all studied patients and according to COVID-19 severity and mortality.

<table>
<thead>
<tr>
<th></th>
<th>TOTAL</th>
<th>SEVERITY</th>
<th>MORTALITY</th>
<th>p-value</th>
<th>Survivors</th>
<th>Non-survivors</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=180</td>
<td>n=130</td>
<td>n=50</td>
<td></td>
<td>n= 155</td>
<td>n= 25</td>
<td></td>
</tr>
<tr>
<td>TLC (×10³/µl)</td>
<td>7.6 (0.1-79.0)</td>
<td>7.5 (1.2-79.0)</td>
<td>7.9 (0.1-24.0)</td>
<td>0.856</td>
<td>7.6 (0.1-79.0)</td>
<td>7.6 (1.2-21.6)</td>
<td>0.849</td>
</tr>
<tr>
<td>NL (×10³/µl)</td>
<td>2.5 (0.9-5.8)</td>
<td>1.9 (0.9-4.2)</td>
<td>2.9 (0.9-5.8)</td>
<td>≤0.001</td>
<td>2.1 (0.9-4.2)</td>
<td>2.6 (0.9-5.8)</td>
<td>0.001</td>
</tr>
<tr>
<td>LYMPH (×10³/µl)</td>
<td>1.2 (0.0-6.0)</td>
<td>1.5 (0.1-6.6)</td>
<td>0.9 (0-3.6)</td>
<td>≤0.001</td>
<td>1.3 (0.0-6.6)</td>
<td>1.1 (0.1-2.4)</td>
<td>0.005</td>
</tr>
<tr>
<td>HB (gm/dl)</td>
<td>11.4 (2.9-16.7)</td>
<td>11.5 (5.0-16.7)</td>
<td>10.5 (2.9-15.0)</td>
<td>0.280</td>
<td>11.2 (2.9-16.7)</td>
<td>12.4 (6.6-15.2)</td>
<td>0.104</td>
</tr>
<tr>
<td>PLT (×10³/µl)</td>
<td>251.5 (6-716)</td>
<td>254.0 (6-716)</td>
<td>240.0 (11-650)</td>
<td>0.627</td>
<td>256.0 (6-716)</td>
<td>208.0 (6-485)</td>
<td>0.124</td>
</tr>
<tr>
<td>Ferritin (ng/mL)</td>
<td>371.5 (16-4947)</td>
<td>215.5 (16-2273)</td>
<td>860.5 (130-4947)</td>
<td>≤0.001</td>
<td>342.0 (16-4947)</td>
<td>878 (130-2577)</td>
<td>≤0.001</td>
</tr>
<tr>
<td>PCT (ng/mL)</td>
<td>0.9 (0-5.9)</td>
<td>0.8 (0-5.1)</td>
<td>2.8 (0.4-5.9)</td>
<td>≤0.001</td>
<td>0.9 (0-5.9)</td>
<td>2.5 (0.6-5.9)</td>
<td>≤0.001</td>
</tr>
<tr>
<td>ESR (mm/h)</td>
<td>70.0 (12-210)</td>
<td>57.0 (12-140)</td>
<td>110.0 (49-210)</td>
<td>≤0.001</td>
<td>65.0 (12-187)</td>
<td>110 (30-210)</td>
<td>≤0.001</td>
</tr>
<tr>
<td>CRP (mg/L)</td>
<td>48.0 (6.0-378.0)</td>
<td>29.5 (6.0-372.0)</td>
<td>102.5 (11-378.0)</td>
<td>≤0.001</td>
<td>45.0 (6.0-378)</td>
<td>91 (10-304)</td>
<td>0.007</td>
</tr>
<tr>
<td>D-dimer (mg/L)</td>
<td>1.1 (0.1-12.5)</td>
<td>0.8 (0.1-12.5)</td>
<td>2.5 (0.7-12.2)</td>
<td>≤0.001</td>
<td>0.9 (0.1-9.5)</td>
<td>3.4 (0.6-12.5)</td>
<td>≤0.001</td>
</tr>
<tr>
<td>LDH (IU/L)</td>
<td>222.0 (18-1889)</td>
<td>189.0 (18-1889)</td>
<td>392.0 (46-1121)</td>
<td>≤0.001</td>
<td>207 (18-1889)</td>
<td>388 (123-1091)</td>
<td>0.002</td>
</tr>
<tr>
<td>AST (IU/L)</td>
<td>26.0 (2-2044)</td>
<td>25.0 (11-2044)</td>
<td>45.0 (2-898)</td>
<td>0.018</td>
<td>25 (2-2044)</td>
<td>45 (12-898)</td>
<td>0.002</td>
</tr>
<tr>
<td>ALT (IU/L)</td>
<td>30.0 (10-1344)</td>
<td>25.0 (10-1344)</td>
<td>45.0 (10-511)</td>
<td>≤0.001</td>
<td>27 (10-1344)</td>
<td>45 (18-511)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

ALT: Alanine amino transferase; AST: Aspartate aminotransferase; CRP: C-reactive protein; ESR: Erythrocyte sedimentation rate; HB: Hemoglobin; LDH: Lactate dehydrogenase; Lymph: Lymphocytes; PCT: Procalcitonin; PLT: Platelets; NL: Neutrophils; TLC: Total leukocytic count. Data presented as median (IQR). Significance (P-value) was set at ≤0.05.
Table 4: Multivariate logistic regression analysis of risk factors associated with COVID-19 severity and in-hospital mortality.

<table>
<thead>
<tr>
<th>Variables</th>
<th>SEVERITY</th>
<th></th>
<th>Odds ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>S.E.</td>
<td>P-value</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.082</td>
<td>0.518</td>
<td>0.037</td>
<td>2.951</td>
</tr>
<tr>
<td>COPD</td>
<td>1.192</td>
<td>0.516</td>
<td>0.021</td>
<td>3.294</td>
</tr>
<tr>
<td>CT-SS (≥ 17)</td>
<td>1.416</td>
<td>0.673</td>
<td>< 0.001</td>
<td>1.205</td>
</tr>
<tr>
<td>Ferritin (≥ 350 ng/mL)</td>
<td>2.405</td>
<td>0.702</td>
<td>0.001</td>
<td>11.08</td>
</tr>
<tr>
<td>AST (≥ 40 IU/L)</td>
<td>1.124</td>
<td>0.487</td>
<td>0.021</td>
<td>3.07</td>
</tr>
<tr>
<td>Lymphocytes (< 1x10³/µL)</td>
<td>1.387</td>
<td>0.448</td>
<td>0.005</td>
<td>4.002</td>
</tr>
</tbody>
</table>

MORTALITY

| | B | S.E. | P-value | Odds ratio | 95% CI |
|----------------------|----------|------------|------------|------------|
| | | | | | |
| Dyspnea | 1.388 | 0.686 | **0.043** | 4.006 | 1.045-15.359|
| CT-SS (≥ 17) | 2.023 | 0.792 | **0.002** | 1.271 | 1.091-1.482 |
| AST (≥ 40 IU/L) | 1.061 | 0.497 | **0.033** | 2.89 | 1.091-7.661 |

AST: Aspartate aminotransferase; COPD: Chronic obstructive pulmonary disease; CT-SS: CT-scoring system. Significance (P-value) was set at ≤0.05.