Self-resetting Molecular Probes for Nucleic Acids Enabled by Fuel Dissipative Systems

Na Li,a Yu Liu,a Zhe Yin,b Rui Liu,c Linghao Zhang,a Yuee Zhao,b Liang Ma,d Xiaochuan Dai,c Dongsheng Zhou,b,* and Xin Su,a,*

a College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.

c Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China

d Clinical Laboratory, China-Japan Friendship Hospital, Beijing 100029, China.

* Corresponding author

Email: xinsu@mail.buct.edu.cn, dongshengzhou1977@gmail.com

Tel: +86-10-64421335, +86-10-66948556
Abstract

Amid of COVID-19 pandemic devastating the public health around the world, it become urgent to maintain a sufficiently large supply of nucleic acid tests to screen suspected cases timely. Self-resetting molecular probes in current testing method could potentially lead to enormous amount of screening capacity, critical for the disease control. Herein, we for the first time report a kind of self-resetting molecular probes for repeatedly detecting SARS-CoV-2 RNA, enabled by orchestrating a biomimetic fuel dissipative system via dynamic DNA nanotechnology. A set of simulation toolkits was utilized for the design and optimization of the self-resetting probe, allowing for highly consistent signal amplitudes across cyclic detections of SARS-CoV-2 RNA. Idiosyncratically, FWHM regulated by dissipative kinetics exhibits a fingerprint signal for high confidential identification of single-nucleotide mutation in the virus sequence. We further exploited our self-resetting probes to examine multiple human-infectious RNA virus including SARS-CoV-2, ZIKV, MERS-CoV, and SARS-CoV to demonstrate its generic nucleic acid detection capability and superior orthogonality. Self-resetting probes were also deployed for detection of 110 clinical nasopharyngeal swabs and correctly classify all the clinical samples from 55 COVID-19 patients and 55 controls. We anticipate that the DNA nanotechnology-enabled self-resetting probe could circumvent the lack of sustainability in the diagnostics of COVID-19 and other infectious disease, thus helping disease control and building a broader global public health agenda.

Keywords: COVID-19, SARS-CoV-2, DNA nanotechnology, Kinetic simulation, MD simulation, Toehold mediated strand displacement, Exonuclease III
Introduction

COVID-19 is the disease underlying the ongoing coronavirus pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has spread rapidly, with over 1 billion reported cases and 3 million deaths worldwide as of April 2021. The pandemic has resulted in significant global social and economic disruption, including the largest global recession since the Great Depression. Early diagnosis is essential to identify the disease and provide the correct treatment. Immediate and onsite diagnostic decisions also help to prevent the spread of epidemic and pandemic infectious diseases. Developing reliable and cost-effective nucleic acid diagnostic tools is critical during the COVID-19 pandemic, as diagnostic capacity at scale becomes critical to containing outbreaks and to reducing fatality rates. 1-4

SARS-CoV-2 is a single-stranded RNA (ssRNA) virus. 5 Currently, the most reliable tool for COVID-19 diagnostics is reverse transcription quantitative PCR (RT-qPCR) (Figure 1A). 6,7 RT–qPCR exhibits high sensitivity and specificity and is used as the gold standard by the CDC worldwide. However, RT-qPCR reagents are not self-resetting, particularly labeled fluorescent probes (Taqman probes), which are expensive and labor consuming (Figure 1A). This has led to a shortage of kits during the COVID-19 pandemic, particularly in countries and regions with poor development of biotechnology and related industries. Figure 1B shows the tests conducted per new confirmed case of COVID-19. Briefly, this value is higher in developed countries than in developing countries. Countries that perform very few nucleic acid tests per confirmed case are unlikely to be testing widely enough to find all cases. Nucleic acid testing capability may become the bottleneck for COVID-19 control in some developing countries because limited testing makes it likely that many cases will be missed. The WHO has suggested approximately 10 – 30 tests per confirmed case as a general benchmark of adequate testing. In countries with limited tests per confirmed case (e.g., <10), the number of confirmed cases is likely to represent only a small fraction of the true number of infections. Where the positive rate (the reverse of the
test per confirmed case metric) is rising in a country, this finding can suggest that the virus is actually spreading faster than the growth seen based on confirmed cases. In fact, the test per confirmed case value is positively correlated with GDP per capita (Figure S1), and the control of COVID-19 in some countries is indeed limited by insufficient nucleic acid testing. Moreover, millions of daily COVID-19 tests worldwide not only consume many resources and require excessive labor but also produce abundant biomedical waste (BMW), which also consumes energy due to the need for disposal (Figure S2). The global COVID-19 pandemic has culminated in escalating BMW accumulation worldwide, and management authorities are struggling with waste treatment.

Figure 1. The ongoing COVID-19 pandemic has resulted in massive costs of nucleic acid test kits, motivating the development of self-resetting probe systems for sustainability and limited test availability in developing countries. (A) RT-qPCR is the gold standard for COVID-19 confirmation and screening commonly used by the CDC worldwide. Taqman probe in RT-qPCR is not self-resetting. Its price per nanomole in CNY and USD is shown. (B) Tests conducted per newly confirmed case of COVID-19 (from https://ourworldindata.org/coronavirus-testing). The WHO has suggested approximately 10-30 tests per confirmed case as a general benchmark of adequate testing. (C) The fuel dissipation process can provide a way for probe regeneration in homogeneous solution. Target nucleic acids serve as fuel to shift the equilibrium to a high-energy state, followed by dissipative consumption to enable the system to return to the equilibrium state, allowing for autonomous probe resetting. (D)
In the designed fuel dissipation process, the forward and reverse reactions are TMSD and enzymatic digestion, respectively.

This challenge has highlighted the need for a reliable and self-resetting molecular probe system for nucleic acid detection at the point of care. To date, there have been no reports about self-resetting probes for detecting SARS-CoV-2 RNA. Most reusable biosensors rely on the immobilization of molecular receptors or probes (e.g., antibodies, nucleic acids, and aptamers) on chips or particle surfaces.8-10 To regenerate the biosensors, target dissociation steps are needed, which not only is time consuming but also increases BMW. It is ideal to realize the repeated use of molecular probes in homogeneous solutions, which is challenging because detection targets must be degraded after they bind with molecular probes. Moreover, the cumulative waste originating from target degradation should have no effect on the next test.

Here, we first developed a self-resetting probe system for SARS-CoV-2 RNA detection in homogeneous solution based on out-of-equilibrium fuel dissipation.11,12 In this system, target nucleic acids act as a fuel to activate nucleic acid probes to generate a fluorescence signal and is then consumed by nuclease, enabling autonomous probe resetting. The entire process follows a typical energy dissipation process, where signal-on and signal-off states are the high- and low-energy states, respectively. The rational design of the probe system relied on simulation, including molecular dynamics (MD) and reaction kinetics, which bypasses empirical optimization of reaction conditions. Simulation-guided dissipative self-resetting probe systems not only balance sensitivity and detection time but also create a new mode for single-nucleotide variant (SNV) detection. Self-resetting probes can be used at least five times for clinical COVID-19 samples and can distinguish SARS-CoV-2 mutants (e.g., D614G). In combination with isothermal amplification, this method can reach a detection limit of 0.01 fM and is feasible for instrument-free detection. The probe can be easily applied for the detection of other pathogens, such as ZIKV, MERS-CoV, and SARS-CoV, by merely redesigning the hybridization regions of the probes.

\textbf{Results}
Fuel dissipation and self-resetting probe system

The design principle of self-resetting probes in homogeneous solution is that the flux of the detection target should cause a significant conformational change to generate signals and then be sufficiently consumed in the solution. A key issue of self-resetting probe systems is the design of an out-of-equilibrium system that regulates fuel dissipation, which is commonly found in biological systems, such as during cell division and signal transduction, typically employing chemical energy stored in kinetically stable, high-energy molecules to drive processes.13,14 As shown in Figure 1C, the target acts as a fuel to shift the equilibrium to a high-energy state, which is thermodynamically disfavored. The fuel molecule is subsequently consumed, and the system returns to the equilibrium state, allowing for autonomous probe resetting. The entire process can be simplified as fuel-to-waste conversion. The high-energy state can be populated and transiently stabilized for a certain time by regulating the forward and the backward reactions. DNA nanotechnology can orchestrate strand self-assembly in a highly programmable way and enables the design of molecular logic systems.15 Fuel dissipative processes such as molecular cargo loading,16 nanostructure dynamic steady assembly,17 and constitutional dynamic networks18 have been realized. In our case, nucleic acids acted as the fuel. To this end, we chose toehold-mediated strand displacement (TMSD)19 and enzymatic digestion as the forward reaction and backward reaction, respectively (Figure 1D). The kinetics of these two reactions could be easily tuned in a programmable manner to fulfill the fuel dissipation requirement. To achieve effective signal and probe reuse, we performed simulations to guide system design.

DNA probe design guided by oxDNA simulation

Here, we first performed MD simulations to guide the design of the basic form of DNA probes. The forward reaction TMSD has emerged as the core reaction in dynamic DNA nanotechnology and has been fully developed for constructing biosensors20 and gene regulators.21 In TMSD, the target strand binds to the toehold region and initiates branch migration, resulting in reporter strand release. If the fluorophore and quencher are labeled at appropriate positions of the probe, target
recognition can be viewed by fluorescence dequenching. In principle, the probe can be designed into two forms: linear and hairpin (Figure 2A). In the linear design, intermolecular TMSD results in the complete separation of fluorophores and quenchers, whereas in the hairpin design, intramolecular TMSD leads only to an increase in the distance between the two groups. With the coarse-grained MD simulation program oxDNA, the molecular behavior and structural flexibility of the hairpin probes were evaluated to study the distance distribution of the fluorophore and quencher upon target recognition. The simulation conditions and schematic drawings are noted in Table S2 and Figure S3, respectively. The distance increased as a function of loop length, but all the average distances were less than 10 nm, which is in the range of fluorescence resonance energy transfer (FRET) quenching (Figure 2B). Moreover, due to the flexibility of single-stranded DNA (ssDNA), the distance exhibited a broad distribution, increasing the intramolecular collision frequency in the DNA nanostructure, which could result in unexpected quenching. Experimentally, the fluorescence enhancement of all hairpin probes was weaker than that of the linear probe, which was consistent with the theoretical simulation (Figure 2C). Although the design of hairpin probes was simpler, partial separation of the fluorophore and quencher led to a low signal. Taking into account the above evidence, we chose the linear design for self-resetting probe construction.

Kinetics simulation of the fuel dissipation-based self-resetting probe system

The design of the self-resetting probe based on energy dissipation is shown in Figure 2D. Target binding induced reporter strand release through TMSD, resulting in fluorescence restoration. The TMSD product was the substrate for an enzyme, activating an enzymatic digestion reaction. Exonuclease III (Exo III) was chosen as the enzyme for fuel dissipation. Exo III is a double-stranded DNA (dsDNA)-specific exonuclease that catalyzes the removal of single nucleotides from linear or nicked dsDNA in the 3' to 5' direction. To prevent digestion of the probe strands, we used phosphonothioate at the 3' ends of the probes (Table S1). When the target was digested by Exo III, the reporter strand rehybridized with the receptor to realize autonomous probe resetting, leading to fluorescence requenching. TMSD transfers
chemical fuel from the target strand into an increase in hydrogen bonds and phosphodiester bonds in the DNA structures, while the exonuclease consumes this fuel by breaking these bonds via hydrolysis. This dynamic network is a typical dissipative out-of-equilibrium system. The conversion of the equilibrium state to a high-energy state is driven by external fuel via self-assembly, and the return process to the equilibrium state consumes the fuel. The forward and backward reactions are chemically independent, structurally selective, and kinetically tunable reactions. The structure is completely reversible on a molecular level, which is a critical feature for the construction of self-resetting probes. Consequently, this target oligonucleotide-fueled dynamic network constitutes a general strategy to establish dissipative self-resetting DNA probes.
Figure 2. Simulation of the fuel dissipation-based self-resetting probe. (A) Schematic drawings of the linear probe and hairpin probes. (B) Simulated distance distribution of the labeled fluorophore and quencher of the hairpin probes with different loop lengths obtained with the coarse-grained MD simulation program oxDNA. (C) Fluorescence emission spectra of the opened hairpin probes and linear probe. (D) Schematic illustration of the fuel dissipation system. The probe comprises a fluorophore-labeled reporter strand and a quencher-labeled receptor, which form a partial duplex. The target initializes TMSD to release the reporter, and Exo III binds the TMSD products to digest the target, allowing for probe resetting via rehybridization. The 3’ partial phosphonothioates in the probe are designed to prevent the probe from undergoing Exo III digestion. (E) Expected kinetics trace of the reporter. The single oscillation pattern is attributed to the asymmetric speed of TMSD and enzymatic digestion. (F) Simulated reporter kinetic traces under different setups (for details see Table S3) yield different height/FWHM values. (G) Height and FWHM in the reporter kinetic traces depend on the TMSD reaction rate constant (toehold length), Exo III concentration and catalytic kinetics constant k_{cat}. (H) When the toehold length is fixed at 6, the appropriate enzyme concentration and k_{cat} renders the highest height/FWHM value.

The cooperative action of TMSD and the enzymatic reaction creates a dynamic system allowing for autonomous probe resetting. As discussed above, the reporter concentration was expected to follow a single oscillation pattern (Figure 2E). The maximum concentration of the reporter represents the probe sensitivity, and the lifetime of the reporter represents the detection efficiency. The kinetics condition for the formation of this dissipative system requires that TMSD is faster than enzymatic cleavage. As long as the enzymatic reaction is slowed down, we can increase the maximum concentration of the reporter, but this will also increase the lifetime of the reporter. The long lifetime of the reporter not only leads to low detection efficiency but also reduces the number of cycles the system can undergo because the enzyme activity may decay over time. Therefore, we needed to draw a compromise between the height and full width at half maximum (FWHM) of the curve in Figure 2E. We defined the ratio of height and FWHM (height/FWHM) as a key factor for the simulation and optimization, varied conditions can lead to different height/FWHM (Figure 2F, Table S3). In this nonequilibrium system, height/FWHM reflects the capability for fuel dissipation per unit time. We established kinetics differential
equations to simulate the system kinetics and guide the choice of detailed parameters, such as the toehold probe configuration, enzyme concentration, and catalytic rate constant. For the forward reaction of the dissipative system, there were two scenarios: the TMSD is irreversible (Figure 2D) or reversible (Figure S4) (see Supplementary note 1 for the corresponding differential equations). The kinetics of TMSD are fully understood, and according to the established model, the toehold length has a great influence on the kinetics. The rate constant increased exponentially from 10 to 10^6 M$^{-1}$ s$^{-1}$ as a function of toehold length in the range from 0 to 6. The rate could be saturated when the toehold length is more than 6. Considering the kinetics boundary, i.e., the speed of TMSD should be faster than enzymatic digestion, we chose toehold lengths from 2 to 6 for simulation, and their rate constant k_{TMSD} was predicted by using the established model. To simulate the scenario with reversible TMSD, we predicted the rate constants k_{TMSD}^+ and k_{TMSD}^- for reverse toehold lengths of 2 and 4 when the forward toehold length was 6. For the backward reaction of the dissipative system, we obtained a Michaelis-Menten constant (K_m) of 120 nM and rate constant (k_{cat}) of 0.44 s$^{-1}$ for Exo III with a dsDNA substrate with a blunt 3' terminus (see Supplementary note 2 for more details of the simulation parameter setup).

Based on the above parameters, we used the Runge–Kutta method to solve the differential equations to obtain concentration-vs-time curves of all species, which were consistent with expectations. The reporter concentration followed a single oscillation pattern (Figure S5A), and the Exo III concentration agreed with the Michaelis–Menten kinetics model (Figure S5B). To guide the setup of experimental conditions, we simulated different conditions to obtain the highest value of height/FWHM. For the forward reaction, the height increased as a function of toehold length, and FWHM showed a reverse trend; the highest height/FWHM value was observed when the toehold length was six (Figure 2G). Forward toehold lengths of 2 and 3 exhibited a low height and a broad FWHM (Figure S6). The height slightly decreased and the FWHM slightly increased as the reverse toehold length increased when reverse TMSD was present (Figure S7A and B). For the backward reaction, the enhancement of enzymatic digestion (e.g., increasing k_{cat} or Exo III concentration)
decreased the FWHM and height simultaneously (Figure 2H). Appropriate k_{cat} and Exo III concentrations yielded the highest height/FWHM value (Figure 2H). Collectively, in order to obtain highest height/FWHM experimentally, the forward and reverse toehold length were set up to six and zero, respectively, enzymatic reaction condition was chosen as the region in the black circle in Figure 2H.

Experimental validation of the self-resetting probe

Based on the simulation results, we performed a fluorescence assay by using the sequences shown in Figure 3A to validate the dissipative process, where all DNA strands were present at 200 nM, and Exo III was present at 8.6 nM. The toehold length was 6, and the enzyme activity k_{cat} (0.44 s$^{-1}$) was not tuned by an inhibitor or enhancer. The fluorescence intensity was converted to the reporter concentration. The kinetics of the basic reaction modules were characterized, and target-initiated TMSD allowed for up to 90% reporter release within 1.6 min (blue line, Figure 3B). The rehybridization process in the absence of the target rapidly recycled the released reporter, enabling 90% probe resetting within 1.16 min (green line, Figure 3B). If the enzyme was added after TMSD, the target could be digested, and the probe could be reset via rehybridization (brown line, Figure 3B). Under dissipative conditions, the addition of DNA fuel resulted in a rapid increase in reporter concentration, followed by a gradual decrease, indicating autonomous probe resetting (Figure 3C). Owing to the simulation-guided parameter set, the reporter concentration reached a maximum of 177 nM (88.5%), and 95% of probe resetting occurred within 10 min. There was no increase in the reporter concentration in the absence of the target, suggesting that there was no degradation of the probe caused by Exo III. The probe was rapidly degraded by Exo III if no phosphonothioate bases were appended at the 3’ termini of the probe strands (Figure S8). Gel electrophoresis results also verified the dissipative process (Figure 3D), and the band of the reporter appeared due to TMSD (lane 2) and disappeared under dissipative conditions (lane 3). The reversibility of the probe was validated by performing multiple cycles through repetitive additions of a constant amount of target, demonstrating that the probe could be used at least 10 times (Figure 3E). The peak heights were almost identical for all cycles, and the FWHM increased
slightly with cycling, which likely originated from the limited stability of the enzyme over time (Figure 3F). Notably, the FWHM remained less than 10 min, which is acceptable for the clinical application of this self-resetting probe.

Figure 3. Validation of the self-resetting probe system by fluorescence assay and gel-based characterization. (A) Target and probe sequences (3’ partial phosphonothioates in italics). (B) Time-dependent change in the reporter concentration of single reaction modules and reaction cascade. (C) Time-dependent change in the reporter concentration under dissipative conditions. The data are from three replicates. (D) Gel electrophoresis analysis of the dynamic reactions, lane 1: probe, lane 2: TMSD products, lane 3: fuel dissipation (one cycle), lane 4: fuel dissipation (ten cycles), lanes 5-8: ssDNA used in the reactions. (E) Kinetic trace of the reporter demonstrating identical dynamic behavior for the different cycles, indicating that the probe can be used at least 10 times. (F) Comparison of the peak height and FWHM of the dissipative trace (***P < 0.001; two-sided t-test). The peak height was normalized as the theoretical maximum reporter concentration (200 nM). All DNA strands were present at 200 nM, and Exo III was present at 8.6 nM. Buffer conditions: 10 mM Bis-Tris-Propane-HCl, 10 mM MgCl₂, 1 mM DTT, pH 7.

We performed dissipative reactions under different conditions to validate the rationality of the simulation. First, the toehold length was varied to adjust the flux of the target (Figure S9A). Typical TMSD kinetics were observed when the toehold length was longer than 2 (Figure S9B). Fuel dissipation with a toehold length of 6 and toehold length of 8 could be achieved at least five times, and their kinetics are almost
identical; however, a toehold length of 4 did not lead to a significant signal, owing to the slow forward reaction rate under dissipative conditions, which is consistent with the simulation (Figure S9C and D). Interestingly, a toehold length of 8 yielded a broader FWHM, probably because the degradation of longer targets by Exo III needed more time (Figure S9E). Next, the effect of the reverse toehold was investigated, where the reverse toehold length was set as 2 and 4 (Figure S10A). The presence of the reverse toehold slightly decreased the TMSD rate (Figure S10B), thereby reducing the peak height (Figure S10C and D) and did not affect the FWHM (Figure S10E). These results were consistent with the simulation prediction. We changed the Exo III concentration from 2.15 nM to 17.2 nM (Figure S11A), and the increase in the Exo III concentration had two main effects: a lower peak height (Figure S11B) and a narrower FWHM (Figure S11C) in the kinetic trace. Both effects can be explained by a shift in the kinetic balance toward enzyme digestion by its selective acceleration. The dissipation system could also be tuned by changing the temperature, which is particularly crucial to understand at room temperature (25 °C) for performance of instrument-free detection (Figure S12A). Exo III showed the highest activity at 37 °C, exhibiting a faster digestion rate than at the other temperatures. TMSD yielded faster kinetics at 37 °C than at 25 °C, but according to the prediction model, the difference was negligible when the toehold length was longer than six. The lower temperature (25 °C) disfavored digestion, shifting the reaction balance to the TMSD side. The slightly reduced enzymatic reaction rates at room temperature and slower fuel dissipation had negligible effects on the peak height (Figure S12B) but observable effects on the FWHM (Figure S12C). The FWHM at 25 °C exceeded that at 37 °C during the first few cycles; however, the FWHM showed the opposite trend after the third cycle (Figure S12C). This result suggests that the decay rate of enzyme activity was slower at lower temperatures. The FWHM at room temperature (25 °C) was less than 5 min for five cycles, which is feasible for instrument-free detection. Overall, all the single-cycle dissipation results from the optimization experiments agree with the simulation, highlighting the prediction accuracy of the kinetics simulation, and the
multiple-cycle dissipation experimental results provide more information to guide the experimental parameter setup.

Quantification capability and single-base specificity of the self-resetting probe system

To evaluate the quantification capability of this system, we simulated reporter kinetic curves with different target concentrations (Figure 4A, Figure S13A). The peak height was proportional to the target concentration, yielding an R^2 value of 0.995 (Figure 4B, Figure S13B). Consistent with the simulation, the target concentration showed a linear relation with the maximum concentration of released reporters (peak height), yielding an R^2 coefficient of 0.985 (Figure 4C and D). Additionally, independent replicate experiments confirmed the high reproducibility of this system. The high linearity can be attributed to the fact that the yield of the TMSD reaction is proportional to the invader strand amount. These results suggest that this dissipative self-resetting probe in combination with suitable amplification steps, such as PCR or recombinase polymerase amplification (RPA), would allow the quantification of low-concentration targets.

![Figure 4](image-url)

Figure 4. Quantification and single-base specificity of the dissipative self-resetting probe. (A) Simulated kinetic traces of fuel dissipation with different target
concentrations. (B) The linear relation between the target concentration and simulated peak height (maximum reporter concentration) yielded an R^2 of 0.995. The toehold length was six. The results for toeholds with lengths of 5 and 4 are shown in Figure S13. (C) Experimental results with different concentrations of fuel (target)-driven dissipation. All strands were present at 200 nM, Exo III was present at 8.6 nM, and the assays were performed at 37 °C. (D) Linear regression of the target concentration and signal yielded an R^2 of 0.985. (E) Strand sequences for testing single-base specificity. SNVs are marked with gray circles. (F) Dissipative kinetic traces for PM and MM species. All strands were present at 200 nM, Exo III was present at 4.3 nM, and the assays were performed at 37 °C. (G) The peak heights are proportional to the target concentration for both the PM and MM. (H) Experimental and (I) simulated FWHMs for the PM and MM originating from 20 concentrations of targets. (J) Multiple cycles of dissipation can discriminate the PM and MM via peak height and FWHM. (K) Peak height and (L) FWHM extracted from panel J (**$P < 0.01$, ***$P < 0.001$, ****$P < 0.0001$; two-sided t-test).

The kinetics of TMSD are sensitive to base mismatches, and the presence of mismatches at different positions changes the kinetics to different extents.26,27 Moreover, the kinetics of enzyme digestion are also sensitive to base mismatches. Accordingly, the entire dissipation process can be affected by mismatches, allowing the detection of SNVs. To verify this ability, we tested the dissipative kinetics in the presence of a T-T mismatch (MM) at the toehold domain (Figure 4E). The peak height of 42 nM for the MM was fourfold lower than that for the perfect match (PM), and the FWHM was 17.6 min, which was 7.6 times broader than that of the PM (Figure 4F). The peak height in the kinetic trace of the MM was also proportional to the MM concentration (Figure 4G). More importantly, we found that the FWHM did not vary with species concentration (Figure 4H). We also simulated the dissipative process of the MM target. The kinetics of TMSD and enzymatic reaction for the MM were measured for the simulation; k_{TMSD} for the MM was fit as 4.5×10^3 M$^{-1}$s$^{-1}$, which is ~100 times lower than that for the PM (Figure S14A); k_{cat} for the MM was slightly lower than that for the PM; and K_m had no significant difference between the two species (Figure S14B). The simulation results also suggest that the FWHM is dependent on species but independent of species concentration (Figure 4I). Notably, the simulated FWHM value for the PM was very close to the experimental results, but
that for the MM was much higher than the experimental results (Figure 4H and I). The reason for this fact may be complicated; for the MM species, there may be unknown interactions between TMSD and the enzymatic reaction (see Supplementary note 3 for additional details). Based on the experimental and simulation results, we speculated that the FWHM in dissipative kinetic traces can be used as fingerprints to identify species. Conventionally, the discrimination of PM and MM targets relies on the difference in reaction thermodynamics or kinetics; in such cases, different PM and MM concentrations may contribute very similar signals, resulting in poor specificity.\(^{28,29}\) By using this dissipative probe, we could distinguish the PM and MM via FWHM fingerprints that were independent of target concentration, representing a novel signal mode for SNV detection. The multiple-cycle use of this probe also allowed for the effective discrimination of the PM and MM (Figure 4J), and the difference in peak height and FWHM slightly decreased with cycling (Figure 4K and L) due to the decay of Exo III activity, which highlights the importance of preventing enzymatic activity loss.

Feasibility of the dissipative self-resetting probe for pathogen detection
Figure 5. Feasibility of the dissipative self-resetting probe for pathogen nucleic acid detection. (A) Schematic illustration of the TWJ probe for the economical use of fluorophore- and quencher-labeled strands for multiplexed detection. (B) Procedure for the combination of isothermal amplification (RT-asyRPA) and detection by self-resetting probes. (C) In-sample multiplexed detection of pathogen RNAs with dissipative probes labeled with different dyes. The data are presented cycle by cycle. (D) Genome map showing the amplified fragments for SARS-CoV-2 detection. (E) Kinetic traces of five cycles of probe use for detecting SARS-CoV-2 genes. (F) Quantification of the SARS-CoV-2 orf1ab gene fragment with different cycles of self-resetting probe use. (G) Each probe use cycle yielded R^2 values > 0.9. (H) Sequences for the detection of the D614G gene mutation of SARS-CoV-2. The SNV is marked with a gray circle. (I) Dissipative kinetic traces of D614G and D614A targets. All dissipative reactions were performed at 25 °C.

To demonstrate the broad adaptability of the self-resetting probe, we performed detection of nucleic acid biomarkers from various pathogens. We designed three-way junction (TWJ) probes for detecting various targets (Figure 5A), where the fluorescent strand was labeled with the dyes FAM, HEX, ROX, and Cy5 to designate the human-infecting RNA viruses SARS-CoV-2, ZIKV, MERS-CoV, and SARS-CoV, respectively, and the quencher strand was labeled with BHQ1 for FAM, HEX, and ROX, with BHQ3 for Cy5. The TWJ design enables the economic use of labeled strands because only the unlabeled strands need to be altered if detecting additional targets. MD simulation was performed to study the average distance of the fluorophore and quencher in the TWJ, as shown in Figure S15. The distance was narrowly distributed, with a mean of 2.8 nm, which was within the range for effective quenching. To guarantee effective degradation of the long amplification products, we first studied the digestion depth of Exo III. As shown in Figure S16, duplexes with 20, 26, and 36 bases were completely digested, but duplexes with 46 bases were partially digested. Therefore, the probes were designed to be complementary to the 35 bases at the 3’ terminus of the amplicons. We used synthetic amplicons (35 nt and 119 nt) to validate the feasibility of the probe. The two targets have the same complementary region as the probe (Figure S17A). Both targets yielded fast TMSD (Figure S17B) and underwent a similar dissipative process (Figure S17C), indicating that the probe design is feasible. To enhance the sensitivity, reverse transcription asymmetric RPA
(RT-asyRPA), which involves different ratios of forward and reverse primers, was utilized to rapidly increase the target concentration and generate ssDNA for the self-resetting probe (Figure 5B). The RT-asyRPA products were characterized by gel electrophoresis, indicating successful generation of ssDNA targets, as expected (Figure S18). We performed multiplexed detection of the four targets by leveraging orthogonal probes. The presence of DNA from different combinations of pathogens could be inferred from the presence or absence of the corresponding fluorescence signals. Conversely, little or no signal was observed in the absence of the corresponding pathogens; notably, highly orthogonal detection was achieved for all probe use cycles (Figure 5C). We further expanded the capability of the probe to enable the quantitative detection of targets. Using various concentrations of each target RNA, the self-resetting probes specifically produced fluorescence that responded only to the respective targets throughout all cycles, thereby enabling quantitative detection of the target of interest in a complex sample (Figure S19).

Next, we designed probes to detect the gene domains of SARS-CoV-2, the open reading frame 1ab (orf1ab), nucleocapsid protein (N), and envelope (E) genes (Figure 5D). As expected, the probes could be used five times to detect the above gene fragments (Figure 5E). All target gene fragments yielded almost identical peak heights for each probe use cycle (Figure S20A). The FWHM increased as the number of cycles increased due to enzyme activity decay (Figure S20B). Moreover, high target orthogonality was realized in each cycle for all targets (Figure S21). To realize quantitative detection, we optimized the RPA primer concentration (see Supplementary note 4 for details). According to the linear coefficients, the optimized primer concentration was 100 nM (Figure S22). Target quantification was also achieved for each probe use cycle, reaching a detection limit of 0.01 fM in combination with the amplification step (Figure 5F, Figure S23A). Each cycle yielded an R^2 value >0.9 for all targets (Figure 5G, Figure S23B). Recent analyses of the fine-scale sequence variation of SARS-CoV-2 isolates identified several genomic regions with increased genetic variation. The SNV D614G in the spike protein reduces S1 shedding and increases infectivity. We speculated that this
self-resetting probe can be utilized to discriminate this variation. Synthetic targets were used to demonstrate this capability. As shown in Figure 5H, we designed a TMSD probe that is fully complementary to the mutant D614G and forms a mismatch with the wild-type D614A at the probe’s toehold domain. As expected, the two targets yielded distinct dissipative kinetics (Figure 5I), and the wild type yielded a significantly broader FWHM than the mutant (Figure S24).

Overall, we demonstrated that the dissipative self-resetting probe could be easily configured to detect various pathogen RNA markers by merely redesigning the probes. High orthogonality was achieved not only for different pathogen targets but also for SARS-CoV-2 gene fragments. In combination with rapid isothermal amplification, this method enabled the detection of RNA markers down to 0.01 fM, with high linearity for each probe use cycle. More importantly, this probe was able to detect SARS-CoV-2 SNVs through FWHM fingerprints.

SARS-CoV-2 detection in clinical samples

Eventually, we confirmed the feasibility of the self-resetting probe for the detection of SARS-CoV-2 from clinical samples (nasopharyngeal swabs) from patients with COVID-19 (see Table S4 for patient information) and healthy control individuals. COVID-19 status was independently confirmed by the clinical laboratory at hospitals. Viral RNAs were extracted followed by reverse transcription and amplification by RT-asyRPA for 30 min, and then, the products were detected by using the self-resetting probes on a fluorescence multiplate reader (Figure 6A). A total of 110 samples were used as a discovery cohort (55 COVID-19 patients and 55 healthy controls). We used 22 sets of probes to detect these samples, and each set was used five times. Each set was composed of orthogonal probes for orf1ab (FAM), E (HEX), N (ROX), and RNase P (Cy5), which served as an internal control. The fluorescence for orf1ab (FAM), E (HEX), and N (ROX) was significantly higher (P < 0.0001 for all; two-sided t-test) in patients with COVID-19 than in controls, but there was no significant difference for RNase P (Cy5) between patients and controls (Figure 6B). The results were further analyzed by cycles, indicating that each probe use cycle could effectively distinguish patient and control samples and that there was no
difference among different cycles (Figure 6C, Figure S25). We further determined receiver operating characteristic (ROC) curves for the orf1ab, E, and N genes. The diagnostic accuracy was excellent, with an area under the curve (AUC) of 1 for the three genes (Figure 6D). Overall, the 22 sets of self-resetting probes correctly classified the 110 clinical samples tested, greatly reducing cost (Figure S26). We used the bright dye Alexa Fluor 488 to label the DNA probe to make this method compatible with inexpensive transilluminators. Based on images acquired by using a transilluminator (<$200), each probe use cycle could accurately diagnose COVID-19 (Figure 6E).

Figure 6. Clinical detection of SARS-CoV-2 samples. (A) Procedure for SARS-CoV-2 RNA detection from clinical samples. Extracted viral RNA from nasopharyngeal swabs was preamplified by RT-asyRPA, and then, the products were detected by the self-resetting probe. (B) Heatmap of the normalized fluorescence values (peak height of each cycle) of the discovery cohort (55 COVID-19-positive and 55 COVID-19-negative subjects). (C) The fluorescence values for the orf1ab gene were significantly higher in the COVID-19 patients than in the controls for each cycle (***, P < 0.0001; two-sided t-test, n = 55, each cycle, n = 11). (D) ROC curves. The AUC was 1 for all genes. (E) Fluorescence images of the positive and negative samples acquired by a transilluminator (orf1ab gene was chosen). The images were
taken 1 min, 2 min, 3.5 min, 5 min, and 7.5 min after the addition of the clinical sample for 1-5 cycles, respectively. All dissipative reactions were performed at 25 °C.

Discussion

Nucleic acid tests play a critical role in the containment of COVID-19, permitting the rapid implementation of approaches that control transmission through case identification, isolation, and contact tracing. Since the outbreak of COVID-19, efforts have been made to develop alternatives (e.g., reagents and devices) for PCR-based methods to realize the rapid, accurate, and portable detection of SARS-CoV-2 RNA. These approaches allow for rapid amplification at room temperature and facile signal readout (e.g., smartphone camera and paper-based assays), the presence of as little as 10 copies of SARS-CoV-2 RNA can be confirmed in minutes without using laboratory instruments such as real-time PCR devices. However, to date, few studies have focused on reagent reuse in nucleic acid tests. The use of disposable reagents results in insufficient test availability in some developed countries, costs resources and labor and generates a large scale of BMW. Conventional approaches for probe regeneration cannot satisfy the requirement of rapid and onsite SARS-CoV-2 diagnostics because of the time-consuming rinse steps, which also generate hazardous waste.

The fuel dissipation-based probe developed in this work is the first molecular probe for repeated SARS-CoV-2 detection, representing a new class of self-resetting probes. The probe has promising advantages for molecular diagnostics, such as autonomous probe resetting in homogeneous solution without external reagents, at least 5 uses for SARS-CoV-2 RNA detection, a short turnaround time for each cycle (~10 min), a low limit of detection (0.01 fM) in combination with isothermal amplification, and room temperature operation. Interestingly, this probe provides a fingerprinting signal based on kinetics to discriminate single-base mismatches, allowing for high-confidence identification of SARS-CoV-2 SNVs. In this work, we demonstrated the successful application of the self-resetting probe to four pathogens, using minimal redesign based on the highly modular structure of the probes. Moreover, the design of TWJ probes enables the economical use of modified strands that do not need to be altered if
detection targets change. The simple enzyme composition is another reason for the high robustness of probe reuse. We have shown the feasibility of this method for inexpensive and portable instruments such as transilluminators that can meet the demands of point-of-care applications. This probe can be further developed into a portable, easy-to-use test of the paper-based or lateral-flow type, as exemplified by recent developments in nucleic acid diagnostics.4,33,34

Simulation played an important role in the development of this dissipative self-resetting probe. Although DNA-based dissipation systems have been reported, none have focused on target detection. In some systems, hours and even days are needed to complete dissipation.37,38 The forward and backward reactions in the fuel-driven dissipation system need to be programmed to satisfy the two requirements for sensitive and highly efficient target detection: a large signal difference between the equilibrium state and high-energy state and a short dissipation time. However, these two requirements are contradictory (e.g., enhancing the backward reaction reduces the yield and lifetime of the dynamic transient high-energy state). Accordingly, simulation needs to be performed to guide the experimental setup. With kinetics simulation, we obtained the optimized experimental conditions that balance the sensitivity and the detection time. Furthermore, MD simulation assists in optimizing the principal probe structure to enhance fluorescence signals. This set of simulation toolkits shows adaptability for more complicated DNA circuits and dynamic networks.

The increased time for probe resetting with further use cycles indicates the need for the development of methods to maintain enzyme activity. Exo III activity decay delays dissipation, resulting in not only a long time for probe resetting (Figure 3F) but also a small difference in signal between SNVs (Figure 4L). Enzyme immobilization provides an effective way to enhance enzyme activity. Enzymes immobilized on nanoparticles are generally more stable and robust than their free counterparts, and enzyme immobilization on nanoparticles has been widely used in the field of biomedicine, biosensors, and biofuel production.39 These approaches may enable additional probe use cycles.
Overall, due to the ongoing COVID-19 pandemic and increasing number of daily tests performed worldwide, we for the first time reported a self-resetting probe for detecting SARS-CoV-2 RNA by resetting molecular probe via dynamic DNA nanotechnology. The concept of fuel dissipation in biological systems was utilized, and effective target detection and autonomous probe resetting were realized in homogeneous solution. This approach would circumvent the lack of sustainability in the diagnostics of COVID-19 and other emerging infectious diseases, thus helping disease control and building a broader global public health agenda.

References

Methods

Reagents. The modified and unmodified oligonucleotides were purified by HPLC and ULTRAPAGE, respectively; and synthetic RNAs were obtained from ExonanoRNA. Their sequences are listed in Table S1. The enzymes and their corresponding buffers were obtained from New England Biolabs (NEB). A reverse transcriptase-RPA kit was purchased from GenDx Biotech (KS104). DNase/RNase-free deionized water was used in all experiments.

oxDNA simulation. Structural analysis of the hairpin probes and the TWJ probes was achieved by using oxDNA, which is a coarse-grained MD simulation software program. The analysis contains two steps: (1) a DNA probe structure construction
step and (2) a structural movement analysis step. oxView (https://sulcgroup.github.io/oxdna-viewer/) provides some simple functions to build DNA structures. In our case, the initial DNA structures were generated from oxView, and then, two simulation files, “example.top” and “example.dat”, could be downloaded for oxDNA simulation. In this way, preparation of the basic structure of the DNA nanostructures from ssDNA in a box through the function “mutual trap” in oxDNA could be omitted. Graphical representations of generated DNA probes are shown in Figure S3 and Figure S15. Usually, the abovementioned simulation files need to be “relaxed” in oxDNA, as shown in Table S2, to produce initial structure files for virtual move Monte Carlo (VMMC) simulation. After each initial structure was generated as expected, the molecular behavior of the DNA structures was simulated by sequence-dependent VMMC conditions without mutual trapping. The detailed simulation target parameters and conditions are noted in Table S2. Default values were used for additional settings. During simulation, DNA conformations over time were recorded in “trajectory.dat”. In these cases, the conformations were recorded every 10 steps, and the total simulation step was 100000. Therefore, 10000 data points could be extracted from the trajectory through a Python script named “distance.py” in the oxDNA analysis tool. The distance from the fluorophore-modified base to the quencher-modified base was measured in each recorded conformation. The obtained data were used to construct distance histograms.

Kinetics simulation of the fuel dissipation reactions. We computationally simulated the time-dependent concentration changes in the dissipation reactions by solving the differential equation (see Supplementary note 1) via Runge–Kutta methods (see Supplementary note 2 for additional details regarding the parameter setup).

Real-time monitoring of the reactions by fluorescence dequenching. DNA probes were prepared by mixing the corresponding single strands with equal concentrations (e.g., 200 nM) in 1× NEB buffer 1 (1 mM Bis-Tris-Propane-HCl, 1 mM MgCl₂, 0.1 mM DTT, pH 7) in 50 μL PCR tubes. The strands were annealed in a PCR thermal cycler from 90 °C to 37 °C at a rate of 1 °C/min. Next, Exo III was added, and the
solutions were mixed thoroughly. Upon the addition of target strands, fluorescence was recorded immediately in a real-time PCR cycler (Rotor-Gene Q, Qiagen, Germany) at 37 °C using a gain of 10 and time interval of 5 s.

Characterization of the products of dissipative reactions and amplification by polyacrylamide gel electrophoresis (PAGE). The products of dissipative reactions and isothermal amplification were verified by native 8% polyacrylamide (19:1 acrylamide/bisacrylamide) gel electrophoresis (PAGE). The experiments were performed in Mg²⁺-containing TBE buffer (89 mM Tris-Borate, 2 mM EDTA, 12.5 mM MgCl₂, pH 8.0). Five microliters of each sample (500 nM) was mixed with 2 µl of loading buffer, and then, the mixture was added to the gel for electrophoresis. All samples were run at 120 V for 45 min at 4 °C. After 15 min of staining in SYBR gold (Invitrogen) dissolved in TBE buffer at pH 8.0, the gel was photographed with a gel imaging system.

Reverse transcription asymmetric RPA. To perform RT-asyRPA, the ratio of forward primers to reverse primers was fixed at 10:1. For the quantification assay, the forward primer concentration was optimized from 50 to 400 nM, and 100 nM exhibited the best quantification ability. RPA reactions were further run for 20 min. Considering that ‘qualification’ is more important than ‘quantification’ for SARS-CoV-2 detection in clinical samples, we adjusted the forward primer to a final concentration of 400 nM for highly efficient amplification.

Human clinical sample collection, RNA extraction, and SARS-CoV-2 detection. Negative nasopharyngeal swabs were acquired from healthy individuals with the approval of the Ethics Committee of our institute. Clinical nasopharyngeal and oropharyngeal swab samples from patients infected with SARS-CoV-2 (see Table S4 for patient information) were collected in universal transport medium (UTM) and transported to the clinical laboratory of hospitals. SARS-CoV-2 RNA was extracted following the instructions of the Qiagen DSP Viral RNA Mini Kit (Qiagen) and the MagNA Pure 24 instrument (Roche). The extracted RNA was amplified by RT-asyRPA for 30 min, where the forward primer and reverse primer concentrations
were 300 and 30 nM, respectively, followed by enzyme deactivation by heating to 90 °C for 15 min. Twenty-five microliters of the amplification products and 25 µl of the self-resetting probes (DNA and Exo III final concentrations: 200 nM and 8.6 nM, respectively) were mixed thoroughly, and the fluorescence of FAM, HEX, ROX, and Cy5 was immediately recorded at 25 °C by a multiplate reader. The DNA strand was labeled with Alexa Fluor 488 for fluorescence visualization on a transilluminator, orf1ab was chosen for demonstration, and the images (Figure 6E) were taken 1 min, 2 min, 3.5 min, 5 min, and 7.5 min after the addition of the clinical sample for 1-5 cycles, respectively.

Acknowledgement

This work was supported by State Key Research Development Program of China (2019YFC1200500, 2019YFC1200502), National Natural Science Foundation of China (31971361), the Natural Science Foundation of Beijing Municipality (5212013), the Fundamental Research Funds for the Central Universities and Research projects on biomedical transformation of China-Japan Friendship Hospital (XK-2020-08), and National Mega-project for Innovative Drugs (2019ZX09721001-007-002).

Competing interests

The authors declare no competing interests.

Supplementary information is included.