Title Page:

Effect of hypersensitivity pneumonitis guideline on pathologic diagnosis of interstitial pneumonia

Short title: Impact of the new HP guidelines on IP diagnosis

Authors:

Mutsumi Ozasa MD¹, ⁵, Andrey Bychkov MD, PhD¹, ², Yoshiaki Zaizen MD¹, Kazuhiro Tabata MD, PhD¹, Wataru Uegami MD¹, ², Yasuhiko Yamano MD, PhD³, Kensuke Kataoka MD, PhD³, Takeshi Johkoh MD, PhD⁴, Hiroshi MukaeMD, PhD⁵, Yasuhiro Kondoh MD, PhD³, Junya Fukuoka MD, PhD¹, ²

Affiliations:

¹Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.

²Department of Pathology, Kameda Medical Center, Kamogawa, Chiba, Japan.

Electronic address:

³Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
4Department of Radiology, Kansai Rosai Hospital, Amagasaki, Hyogo, Japan.

5Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan

Corresponding author:

Junya Fukuoka, MD. PhD.

Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan

Department of Pathology, Kameda Medical Center, Kamogawa, Japan

Email: fukuokaj@nagasaki-u.ac.jp

Sources of Support:

Conflict of Interest and Source of Funding:

This research was supported by the Practical Research Project for Rare Intractable Diseases from the Japan Agency for Medical Research and Development and a Grant-in-Aid for the Diffuse Lung Diseases Research Group from the Japanese Ministry of Health, Labor and Welfare.
ABSTRACT

Hypersensitivity pneumonitis (HP) and interstitial pneumonia (IP) have several overlapping characteristics, and a high diagnostic concordance rate of HP is rarely obtained. Thus, new guidelines, highly influenced by pathology, were devised for its diagnosis.

We attempted to study the impact of the 2020 HP guidelines on pathological diagnosis of previously diagnosed cases of IP. Cases with fibrotic IP diagnosed in 2014–2019 were classified according to the 2020 HP guidelines into three categories: typical HP, probable HP, and indeterminate HP. The original pathological diagnosis and categorization based on the HP guidelines were compared. The clinical data including the serum data and the pulmonary function tests were compared among the groups. The study analyzed 247 consecutive cases classified into typical, probable, and indeterminate for HP, and alternative diagnoses. The number of cases that changed from an original diagnosis other than HP to HP based on the guidelines was 56 (23%). The clinical data of these cases bore greater resemblance to cases diagnosed as indeterminate for HP than those cases diagnosed as typical or probable HP. The ratios of typical and probable HP to those of the total cases were significantly low using cryobiopsy.

Thus, with the application of the new guidelines, the pathological diagnosis of HP
efficiently excluded HP cases but increased the rate of HP diagnosis for cases with fibrotic IP, which may not fit well to an HP diagnosis. Cryobiopsy may not be useful in imparting findings for fibrotic HP diagnosis using the new criteria.

Key words: pneumonia, interstitial lung disease, pulmonary fibrosis, classification, pathology
INTRODUCTION

The classification of interstitial pneumonia (IP) is extremely important for predicting the prognosis and determining the treatment plan (1). However, the diagnosis of IP is not easy even for experts specializing in respiratory diseases. Studies have reported high interobserver variability in the identification of fibrotic hypersensitivity pneumonitis (fHP) (2,3). One study, based on their own diagnostic algorithm, suggested that nearly half of the current cases of HP have been potentially misdiagnosed as idiopathic IP (4). This indicates diagnostic valuables between teams. There have been no consensus on the criteria for the pathological diagnosis of fHP, and most pathologists diagnose fHP based on textbooks and literature reviews (5–7).

The treatment and diagnosis of fHP are difficult. HP is always included in the differential diagnosis of fibrotic IP, although the standardization of the diagnosis of fibrotic HP has been long anticipated (8,9). Thus, the formulation of specific guidelines providing diagnostic criteria for differentiating HP and IP is highly desirable. Recently, diagnostic criteria were developed in the Modified Delphi Survey by leading authorities in this field (10); the HP guidelines were published accordingly (11).

According to these position papers and guidelines, the pathological diagnoses of HP are divided into the following four categories: “typical HP,” “probable HP,” “indeterminate for HP,” and alternative. The final multidisciplinary discussion diagnosis using the suggested algorithm would lead to the identification of HP and, if the
pathological criteria point towards typical or probable HP, the patient will be clinically treated for HP regardless of the clinical and radiological features. This illustrates the critical value of the pathological diagnosis.

If the idiopathic pulmonary fibrosis (IPF) and HP guidelines were used simultaneously, the decision regarding the more suitable of the two guidelines would be difficult in some cases. Furthermore, fHP cannot be easily distinguished histopathologically from diseases that also exhibit patterns of usual IP (UIP) such as collagen diseases (12,13).

At present, no study has investigated the influence of the histological criteria of the 2020 HP guidelines on the diagnosis of IP and the extent of the correlation between the diagnostic variations and the clinical features. Therefore, our study, focused on the pathological domain, applied the HP guidelines to cases of fibrotic IP and compared the pathological diagnoses of the new guidelines to the original pathological diagnoses to elucidate the findings.

MATERIAL AND METHODS

The research protocol was approved by the institutional review board of our institution (No. 20101918). Patients with pathological evidence of fibrotic IP obtained using video-assisted thoracoscopic surgery (VATS) or transbronchial lung cryobiopsy (TBLC), whose pathology was sent to Nagasaki University Hospital for consultation.
between 2014 and 2019 from Tosei General Hospital were enrolled in this study. Only pathological diagnoses with a synoptic report of the findings made by multiple pathologists were used, and the presence or absence of granulomas and peri-airway lesions in the described findings was identified. Patients with a clinically definitive diagnosis of collagen disease and those with a diagnosis of non-IP conditions, such as sarcoidosis and pulmonary alveolar proteinosis, were excluded.

Pathological data were obtained from the findings of a synoptic report formulated by consensus of three expert pulmonary pathologists (Y.Z, K.T., J.F). The presence of granulomas and airway-centered lesions was determined from the report. All the above findings in each case were reviewed by two pulmonary pathologists (M.O., J.F.) who have dedicated expertise in interstitial lung disease. Findings suggestive of autoimmune features, i.e., lymphoid follicle with germinal center and plasmacytosis, were also extracted from these reports, along with aspirated particles, and necrotizing granulomas, which are pertinent negative findings of HP. Cases with those extracted findings were considered as alternative disease and excluded from further analysis based on the HP guidelines. Our original criteria of HP diagnosis were based on these studies (5–7) and on the synoptic reports; the findings extracted from the cases and used for judgment were poorly formed loose granulomas, interstitial giant cells with cholesterol cleft, peribronchiolar metaplasia, airway-centered accentuation, bridging fibrosis, and diffuse cellular infiltration.

Patients were classified into three categories: typical fHP, probable fHP, and indeterminate for fHP according to the HP guidelines. The original pathological
diagnosis and categorization based on the HP guidelines were compared. Clinical information was extracted from all cases, and a comparative study was conducted between the group that did not change between fHP and not HP, and the group in which the original diagnosis changed upon application of the HP guidelines.

The patients were categorized into four groups. First, cases with an original diagnosis of HP, which was further judged to be typical or probable HP according to the new guidelines were included in the HP+/HP+ group; second, cases whose original diagnosis was not HP and changed to either typical or probable HP according to the HP guidelines were included in the HP-/HP+ group; third, cases which were not originally diagnosed as HP, which were judged to be indeterminate for HP by the new guidelines, were designated as the HP-/indeterminate group; and finally, cases diagnosed as HP, which were judged to be indeterminate for fHP by the new guideline evaluation, were designated as the HP+/indeterminate group.

Moreover, the effects of the HP guidelines on each modality, i.e., VATS, biopsy, and TBLC, were compared.

Statistical analyses were conducted using the Fisher’s exact test followed by the chi-squared test, one-way analysis of variance, and multivariable Tukey analysis. To visualize the change in diagnosis, an alluvial diagram was created using ggalluvial in R. Statistical analysis was performed using the open-access EZR software (14).

RESULTS
A total of 371 out of 780 consultation cases with fibrotic IP were selected from a single hospital and registered. We excluded 124 of the 371 cases owing to cellular IP without fibrotic change, connective tissue disease-related IP, lymphangioleiomyomatosis, pulmonary alveolar proteinosis, sarcoidosis, carcinoma, and others. Eventually, 247 cases were enrolled in the study.

Disease distribution based on the guidelines

Forty-two cases were histologically considered as alternative disease by the guidelines and excluded due to the presence of strong histological autoimmune features such as plasma cell infiltration, extensive lymphoid follicles, or sarcoid like reaction. These pathological diagnoses include 36 IP with autoimmune features, three unclassifiable idiopathic IPs, two sarcoid like reactions, and one human adjuvant disease. Eventually, 205 cases were classified into typical fHP (n = 20), probable fHP (n = 65), and indeterminate for fHP (n = 120) using the 2020 HP guidelines (Figure 1).

Seventeen (85%) of the typical fHP cases were originally diagnosed with HP. Three cases (15%) had an original diagnosis other than HP, of which two were IPF, and one case was idiopathic non-specific IP (iNSIP).

Twelve cases (18%) of the probable fHP were originally diagnosed as HP. Fifty-three cases (82%) had an original diagnosis other than HP, among which the largest number of cases (n=40) was diagnosed as IPF. The second highest number of cases
(n=7) was diagnosed as unclassifiable idiopathic IP; of these, three cases were diagnosed as idiopathic airway-centered idiopathic fibrosis (ACIF). Moreover, the diagnoses of smoking-related interstitial lung disease, idiopathic nonspecific IP (iNSIP), and familial IP were made for 3, 2, and 1 case, respectively. There was uncertainty between the diagnosis of chronic hypersensitivity pneumonitis and IPF in the 12 cases of the 120 judged to have indeterminate fHP, ten of which were tested using TBLC.

Change of diagnosis by the guidelines

There were 29 cases in the HP+/HP+ group. As indicated in Figure 1, the breakdown of 29 cases was 17 typical fHP and 12 probable fHP. The HP-/HP+ group included 56 cases, the breakdown of which was 3 typical fHP and 53 probable fHP. The remaining 120 patients belonged to the indeterminate group. There were zero and three cases in the HP+/indeterminate group before and after the erratum change of the guidelines, respectively (15) (Figure 2). These three cases, two VATS and one cryobiopsy, were moved from the typical fHP to indeterminate fHP by the change reported by an erratum in the guidelines. All of the three had non-necrotizing granulomas on the biopsy but lacked ACIF and were recategorized as indeterminate fHP (Figure 4).

Of the HP-/HP+ group, three cases were converted to typical fHP. The major differential diagnosis of these cases was IPF (see figure, supplemental digital content 1); two of the three cases had granulomas only in the pleura, and the changes in the lung
fields were determined to be definite UIP in one case and definite fNSIP in the other. The granulomas were considered incidental findings owing to their location. One case showed a definite UIP without conspicuous inflammatory cell infiltration.

Of the 53 cases classified as probable HP by the guidelines among 56 HP-/HP+ cases, 25 possessed smoking-related emphysema (Figure 5).

Correlation to clinical data

Table 1 shows the comparison of clinical information of the three groups. Factors such as Krebs von den Lungen-6 (KL-6) \((p = 0.04) \), bird antigen \((p < 0.01) \), lymphocyte fraction of bronchoalveolar lavage fluid \((p < 0.01) \), CD4/CD8 \((p = 0.01) \), and % forced vital capacity (FVC) \((p < 0.01) \) showed statistically significant differences.

The serum levels of KL-6 differed significantly only between the HP+/HP+ and HP-/HP+ groups (Figure 3). The exposure to bird antigens differed significantly between the HP+/HP+ and HP-/HP+ groups and the HP+/HP+ and HP-/indeterminate groups. The lymphocyte fraction in the bronchoalveolar lavage fluid differed significantly between the HP+/HP+ and HP-/indeterminate groups. No significant difference was observed between the HP+/HP+ and HP-/HP+ groups. CD4/CD8 in the bronchoalveolar lavage fluid differed between the HP+/HP+ and HP-/indeterminate. %FVC differed from the other parameters in that it differed significantly between the HP-/HP+ and HP-/indeterminate groups. The values of %FVC were similar in the HP+/HP+ and HP-/indeterminate groups. The %FVC of the HP-/HP+ group was significantly higher than
that of the other two groups.

Analysis by sampling modality

We also examined the differences in clinical data depending on the biopsy method. Based on the HP guidelines, 143 cases tested using VATS were classified into three categories of fHP, of which, 17 were typical fHP, 60 were probable fHP, and 66 were indeterminate fHP. Twenty-three cases belonged to the HP+/HP+ group, 54 to the HP-/HP+ group, and 66 to the indeterminate group. A comparative study of the VATS biopsy data of the three groups revealed statistically significant differences in KL-6, bird antigen exposure, and %FVC (see table, supplemental digital content 2). KL-6 differed significantly amongst all three groups ($p = 0.03$). This finding revealed that the serum KL-6 levels were higher in fHP than those in other IPs, which was consistent with previously reported data (16,17).

Bird antigen exposure also differed significantly among the three groups ($p < 0.01$). A statistically significant difference was observed between the HP+/HP+ and HP-/HP+ groups. The %FVC also differed significantly among the three groups sampled using VATS; there was a significant difference between the HP+/HP+ and indeterminate groups ($p = 0.02$).

TBLC was performed in 62 cases, of which three were typical HP, 5 were probable HP, and 54 were indeterminate for fHP; there were two cases of HP-/HP+. The quality of the 62 specimens was high confidence in 58 cases and low confidence in only
4 cases, indicating that 94% of the specimens were appropriate for evaluation. The results were similar to those previously reported for TBLC specimen adequacy (18,19). The ratios of typical HP and probable HP to the total number of cases was 11.9% and 42%, respectively, for VATS, and significantly low at 4.8% and 8% for TBLC, respectively ($p < 0.01$).

DISCUSSION

The 2020 ATS-JRS-ALAT HP clinical practice guidelines pave the way for the standardization of HP diagnosis on the international scale, which, among other benefits, is expected to prevent misdiagnosis with other IP entities. Reporting institutional experiences on the impact of the new guidelines is important to highlight its strengths and potential pitfalls. Accumulation of such reports will inevitably prompt further modifications and ensure suitable development and evolution of the guidelines. The institutional experience presented herein revealed that the 2020 HP guideline classification scheme allowed the identification of most fHP cases based on the typical and probable HP criteria.

In this study, 85 (34%) of 247 cases had typical fHP or probable fHP according to the HP guidelines, whereas fHP was not suspected in the original diagnosis, which changed according to the 2020 HP guidelines in 56 cases (22.7%). These results indicate that the diagnosis of nearly one-fourth of all cases will change according to the
new HP guidelines. Among 85 cases, total of 42 cases were originally diagnosed as IPF/UIP. The use of steroids with or without immunosuppression in cases of IPF may be a factor that worsens the patient's prognosis. Currently, there is little evidence to determine whether those 42 patients whose diagnosis changes from IPF to fHP in the new guidelines are eligible for steroids. A simple adaptation of the new guidelines to these cases may lead to unfavorable outcomes.

We compared the cases belonging to the HP+/HP+ and HP-/HP+ groups to understand the effect on cases whose diagnosis had changed to fHP using the HP guidelines and found significant differences in the lymphocyte fraction, and presence of bird antigens between them. Moreover, there was a statistically significant difference in the CD4/CD8 ratio in the bronchoalveolar lavage fluid of the HP+/HP+ and the indeterminate groups. Although no difference between the HP+/HP+ and HP-/HP+ groups was found, the results of the HP-/HP+ group were similar to those of the indeterminate group. These data imply that the new guidelines may have a possibility to lead to a false fHP diagnosis in some cases. Further research is needed to investigate this issue.

Of the HP-/HP+ group, 53 of the 56 patients had their diagnosis changed to probable fHP owing to the presence of ACIF. This suggests that the ACIF determination is important in the diagnosis of HP. One setback may be that the HP guidelines do not clearly state what level of ACIF should be considered significant. Four other cases were converted to typical fHP, and three of them were originally diagnosed as IPF (see figure, supplemental digital content 1). A review of their histopathology revealed granuloma, but it
was present in the pleura and the airspace, with concurrent smoking-related changes.

On the other hand, the diagnosis of IPF was made because of the high degree of fibrotic lesions on the lobes and the clear findings of honeycombing and fibroblastic focus. Proper use of both the IPF guidelines and the HP guidelines in such cases is a challenge. In addition, strong smoking-related pathological findings such as emphysema were observed in 25 of the 56 patients in the HP- / HP + group. It has been reported that smoking-related fibrotic lesions are found around the airways (20,21,22), all of which were diagnosed to be idiopathic IP by the original diagnosis, indicating that the ACIF misinterpretation should be kept in mind in cases of smoking-related pathological findings.

Before the change of the pathological criteria by an erratum, none of the cases judged as indeterminate for fHP according to the HP guidelines included cases that were diagnosed as fHP in the original diagnosis, but three cases were recategorized as indeterminate fHP due to the absence of ACIF. As indicated in the supplementary figure, two VATS biopsies showed endstage honeycomb lung with granulomas, and ACIF was impossible to be observed. One cryobiopsy was difficult to identify ACIF probably due to its limited size.

fHP and IPF were suspected to be pathologically equivalent in 12 cases. Giant cells with cholesterol clefts in the stroma, cellular IP, or foci of organizing pneumonia were observed as a minor component in most of these cases. These findings are important and should be recommended and evaluated for their future inclusion in the fHP criteria.
We examined whether the HP guidelines could be applied to TBLC and found that the proportion of cases identified as indeterminate for HP was highest in the TBLC group. This is because findings such as airway-centered fibrosis and granuloma are rarely observed in TBLC without sampling a large section of lung tissue, and even if fHP is suspected pathologically, the judgment with the HP guidelines is often indeterminate for fHP. This indicates that the judgment of samples obtained using TBLC may be underestimated using the current HP guidelines. Thus, based on our experience, simply applying the HP guidelines in their current form to IP samples obtained with TBLC is not recommended.

The judgement of one criterion, ACIF, is critical for the HP guidelines; however, its specificity for fHP diagnosis is unclear. Our previous study demonstrated a large disagreement between pathologists in the recognition of ACIF (23). Tanizasa et al. (24) compared UIP cases, with and without ACIF; although cases with ACIF were diagnosed significantly more frequently than fHP, there was no other significant difference between them, including genetic mutations. These reports indicate that the clinical relevance and reproducibility of ACIF are unclear and these need to be clarified in the future.

There are several limitations to this study. First, the study comprised a purely pathological assessment of the effect of the guidelines on the HP diagnosis, and multidisciplinary discussion was not performed to reach a final clinical, radiological, and pathological consensus diagnosis. However, this was not within the scope of our study, which focused on the pathological domain, and should be addressed in a separate research project. Second, the study was retrospective in design. Third, we used cases
from a single center, which may have introduced some selection bias. Nevertheless, this is the first study to date to address the impact of the newly introduced HP guidelines in a large case series.

We confirmed that the pathological criteria of the 2020 HP guidelines efficiently excluded most non-HP cases. Concurrently, approximately one-fourth of all cases of fibrotic IP diagnostically changed from not HP to fHP, which may not correlate with the clinical features of HP. TBLC may not impart findings for fHP, and simple adoption of the HP guidelines may not be suitable for sampling methods other than VATS.

References

FIGURE LEGENDS

Figure 1. Flow diagram of the selection and application processes of the hypersensitivity pneumonitis guidelines for cases with fibrotic interstitial pneumonia diagnosed using surgical lung biopsy and transbronchial lung cryobiopsy.

Figure 2. Alluvial plot to highlight the effect of the hypersensitivity pneumonitis guidelines.

The left and right columns show the original diagnosis and the diagnosis based on the 2020 HP guidelines, respectively. Nearly one-fourth of the total cases that were originally diagnosed as not chronic hypersensitivity pneumonitis using pathology had changed to either typical or probable fibrotic hypersensitivity pneumonitis using the guidelines (red colored).

CHP: chronic hypersensitivity pneumonitis

Figure 3: Comparison of clinical factors among three groups separated by the hypersensitivity pneumonitis guidelines.

Figure 4. The diagnosis had changed to fibrotic hypersensitivity pneumonitis in two cases of fibrotic interstitial pneumonia using guidelines.

A, B. Case 1 low and middle power view (Hematoxylin and Eosin staining, 0.5× and 2×).
C, D. Case 2 low and middle power view (Hematoxylin and Eosin staining, 0.5× and 4×).

Both cases show patchy fibrosis accentuated to the peripheral area inside the lobule. Note the presence of airway-centered fibrosis (arrows).

These cases, originally diagnosed pathologically as usual interstitial pneumonia and idiopathic pulmonary fibrosis by multidisciplinary diagnosis, fit the criteria of probable fibrotic hypersensitivity pneumonitis using the 2020 HP guidelines. Case 2 shows background emphysema related to smoking.

Figure 5. Cases recategorized as indeterminate for fibrotic hypersensitivity pneumonitis.
after the change of guidelines by the erratum statements. A) Case of VATS biopsy shows diffuse end stage lung. (H&E x0.5) B) Higher magnification of the same case presenting accumulation of giant cells with aggregation of histiocytes and cholesterol clefts (H&E, x20). C) Scanning view of VATS biopsy showing end stage honeycomb lung (H&E, x0.5), D) Higher magnification of the case C) presenting poorly formed granulomas (H&E, x20). E) Scanning view of the case of cryobiopsy showing interstitial fibrosis. Fibrosis is found around terminal airway which represents the peripheral area inside the lung lobule (H&E, x2). F) Higher magnification of the case E) showing a focus of non-necrotizing granuloma (H&E, x40).

Supplemental Digital Content

Supplemental digital content 1. Figure

Supplemental digital content 2. Table
ALL cases (n=371)

Exclude non-fibrotic cellular
CTD-IP, sarcoidosis, COP
(n=124)

Fibrotic IP (n=247)

Alternative (n=42)
- IPAF (n=36)
- unclassifiable (n=3)
- sarcoi d like reaction
- Human adjuvant disease

Typical fHP (n=20)

Original Dx: not HP
(HP-/HP+: n=3)
- IPF (n=2)
- iNSIP (n=1)

Probable fHP (n=65)

Original Dx: HP
(HP+/HP+: n=12)
- IPF (n=40)
- unclassifiable (n=7)
- SR-ILD (n=3)
- iNSIP (n=2)
- familial IP (n=1)

indeterminate fHP (n=120)

Original Dx: not HP
(HP-/HP+: n=53)
- IPF (n=40)
- unclassifiable (n=7)
- SR-ILD (n=3)
- iNSIP (n=2)
- familial IP (n=1)