Reflex single-gene non-invasive prenatal test significantly increases the cost-effectiveness of carrier screening

Running title: Clinical and economic impacts of carrier screen with reflex single-gene NIPT

Authors: Shan Riku¹, Herman Hedriana², Jennifer Hoskovec¹.

¹BillionToOne Inc., Menlo Park, CA, USA ²University of California Davis Health, Sacramento, CA, USA

Correspondence: Jennifer Hoskovec, BillionToOne Inc., Menlo Park, 1035 O’Brien Dr., Menlo Park, CA 94025, phone: (650) 460-2551, email: jhoskovec@billiontoone.com.

Conflict of interest statement:
SR and JH are employees of BillionToOne (or a subsidiary) and hold stock or options to hold stock in the company. HH serves on the Advisory Board for BillionToOne and does not hold stock or option to hold stocks.

Funding statement:
BillionToOne, Inc. provided financial support for the conduct of the research and preparation of the article.

Data availability statement:
The data that support the findings of this study are available from the corresponding author upon request.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Objective: To evaluate whether adoption of a carrier screen with reflex single-gene non-invasive prenatal test (sgNIPT) in prenatal care is clinically and economically beneficial.

Method: A decision-analytic model was developed to compare reflex sgNIPT as first-line carrier screening to the traditional sequential carrier screening workflow (positive maternal carrier screen is followed by paternal screening to evaluate fetal risk). The model compared the clinical outcomes and cost effectiveness between the two screening methods.

Results: Reflex sgNIPT carrier screening detected 108 of 110 affected pregnancies per 100,000 births (sensitivity 98.5%). This is a 2.4-fold improvement compared to the traditional sequential carrier screening, which detected 46 of 110 affected pregnancies per 100,000 births (sensitivity 41.5%). The testing costs in reflex sgNIPT carrier screening to identify one affected birth were $0.65 million, reduced by 62% from $1.73 million in traditional sequential carrier screening. Adoption of reflex sgNIPT carrier screening translated to a cost savings of $90.6 million per 100,000 births.

Conclusion: Using reflex sgNIPT as the first-line carrier screening method improved the detection of affected births by 2.4-fold and saved $906 in healthcare costs per pregnancy screened. A real-life experience will need to assess the clinical utility of carrier screen with reflex sgNIPT.
ACKNOWLEDGEMENTS

We thank Dr. Oguzhan Atay, Dr. John ten Bosch, and Dominic Weilbaecher for providing valuable inputs to the decision-analytic model, and Dr. Rong Mao for providing editorial support for this manuscript.
1 | INTRODUCTION

Autosomal recessive disorders represent a considerable disease burden worldwide.\(^1\) Manifestation of autosomal recessive disorders in the first 25 years of life is estimated to be 1.7 in 1,000.\(^2\) In geographical areas where carriers have evolutionary advantages in genetically isolated populations, or in endogamous societies, the frequency of recessive disorders can be considerably higher.\(^3\) Carrier screening is a genetic testing methodology that aims to identify individuals or couples who carry one variant allele within a gene(s) associated with a diagnosis and are at risk of having offspring with a genetic disorder.\(^4\) The American College of Obstetricians and Gynecologists (ACOG) recommends that all women who are considering pregnancy or currently pregnant be offered the carrier screening testing options for cystic fibrosis (CF), spinal muscular atrophy (SMA) and hemoglobinopathies.\(^4\) While carrier screening is recommended prior to conception to maximize the reproductive choices, the vast majority of women are screened after they become pregnant. A study in 2019 found that 436 out of 462 patients (94.4\%) undergoing carrier screening were screened prenatally.\(^5\)

The primary goal of carrier screen, when performed prenatally, is to identify high-risk fetuses. First, pregnant mothers are screened for their carrier status. Approximately 16\% of pregnant women in the US are carriers of CF, SMA, or hemoglobinopathies and 16,067 out of 100,000 pregnancies would screen positive at this step (Table S1). In the traditional sequential carrier screening workflow, if a woman is identified as a carrier, a paternal screen is recommended to determine the risk of the pregnancy being affected with the condition. If both parents are carriers of the same condition or if the paternal screen is not available, an invasive diagnostic testing such as amniocentesis is needed to confirm the diagnosis. While one in six women is a carrier, only one
in 900 babies is born with CF, SMA, or hemoglobinopathies, indicating that >99% of carrier women carry unaffected babies. Due to this low “positive predictive value (PPV)” of the maternal carrier screen as well as various societal, financial, and logistical barriers, the paternal carrier screen follow-up rate is low. For instance, the mother’s insurance type, whether the father has insurance, relationship status, and knowledge of the maternal carrier screen results could all contribute to the difference in the paternal participation of carrier screening. As 40% of US births are to unmarried women, male partners are often unavailable for genetic testing. Furthermore, partner testing creates significant logistical burden to obstetric clinics. For example, male partners are typically not registered in the electronic medical record (EMR) system of obstetric clinics. As a result, the traditional carrier screen model fails to identify nearly 60% of affected pregnancies.

The carrier screen with reflex single-gene non-invasive prenatal testing (sgNIPT) is designed for common recessive disorders, including CF, SMA, and hemoglobinopathies. Similar to a traditional carrier screen, the carrier screen with reflex sgNIPT first screens maternal carrier status by sequencing the maternal genomic DNA. If the mother is identified as a carrier for one of the conditions, reflex sgNIPT is performed, using the circulating cell-free DNA extracted from the same blood sample. If the fetus is identified as high-risk, the patient can proceed to invasive diagnostic testing without the need for paternal testing. In this report, we evaluated the clinical and economic impacts of adopting the carrier screen with reflex sgNIPT as a first-line screening test compared to the traditional carrier screen by using a decision-analytic model that was developed for this purpose.

2 | METHODS
2.1 Decision-analytic model

A decision tree was developed to simulate the experience of pregnant women going through a traditional carrier screening process versus a reflex sgNIPT screening process (Figure 1). The model included women with singleton pregnancies who elected carrier screening. Women undergoing preconception carrier screening and women with multiple pregnancy were excluded, based on the following rationale: a small fraction of women undergo carrier screening prior to conception (e.g., 5.6% in a 2019 study\(^5\)); and twin pregnancy rate is only 3.3% in the US.\(^7\) Therefore, this model includes \(~94\%\) of women undergoing carrier screening. The traditional carrier screen base scenario was developed from the standard workflow typically carried out in obstetric clinics in the US. We did not account for the concurrent screening model where the mother and father of the pregnancy are tested simultaneously, as this model is not commonly used in obstetric clinics. The carrier screen with reflex sgNIPT workflow (reflex sgNIPT scenario) was developed from the standard carrier screening workflow in obstetric clinics.

2.2 Model inputs

Detailed assumptions and model inputs are provided in Supplementary Materials (Method S1 and Tables S1-2). To simplify the model, several key assumptions were made as described below (basic workflow and test performance inputs are summarized in Table 1).

First, we only included the ACOG-recommended carrier screening workflow for cystic fibrosis (CFTR), spinal muscular atrophy (SMN1), sickle cell disease / beta hemoglobinopathies (HBB), and alpha thalassemia (HBA1/HBA2) in the analyses.
Second, the model assumed 100% carrier screening detection rates for both the base and reflex sgNIPT scenarios. In actual clinical settings, carrier screening panels that are offered have a wide range of detection rates ranging from 55% for certain ethnic groups on a targeted genotyping test panel\(^8\) to >99% on a next-generation sequencing (NGS)-based panel, such as the panel used for our carrier screen with reflex sgNIPT. For simplicity of the model, however, we assumed all carrier screen panels would detect 100% of positive carriers.

Third, the model focused on the comparison of workflow from the start of the carrier screening to the identification of high-risk fetuses, with both mother and father being identified as carriers in the base scenario and receiving a high-risk sgNIPT result in the reflex sgNIPT scenario. Due to the difference in how the tests are offered, uptake of the traditional carrier screening panels and the carrier screen with reflex sgNIPT panel among patients may vary. Further, due to the difference in reported fetal risk (25% fetal risk based on autosomal recessive inheritance with the traditional screening method, and 25-90% fetal risk based on internal criteria for carrier screen with reflex sgNIPT), uptake of diagnostic testing such as amniocentesis after the high-risk screening result may differ. However, given the insufficient data to fully simulate these differences, the uptake of diagnostic testing was excluded from the comparison model.

Fourth, we assumed the same procedure cost inputs for traditional carrier screen and the carrier screen with reflex sgNIPT (both estimated to be $694, based on Fee schedules set by Center for Medicare and Medicaid Services (CMS); Table S4).

2.3 Assumptions for treatment cost comparison

The genetic disorders tested by our carrier screen with reflex sgNIPT (CF, SMA, and hemoglobinopathies) are serious genetic conditions that often require life-long treatments. To
compare the treatment costs between the base and reflex sgNIPT scenarios, we made several assumptions. By using the reflex sgNIPT workflow, it is possible to identify high-risk fetuses earlier due to a shortened testing timeframe. The average turnaround time for final reflex sgNIPT results, including fetal risk assessment, is two weeks. In the traditional screening workflow, two separate tests must be ordered, drawn, and reported, resulting in a period of 6-8 weeks to identify high risk fetuses, as demonstrated in a recent study where the average time between maternal result disclosure and paternal blood draw was 13.9 days (Figure 1).

Early identification of high-risk fetuses offers clinicians and patients additional time to discuss options for prenatal and neonatal interventions, such as termination of pregnancy. For the model inputs, we used previously reported termination rates (14-55%) for the disorders screened (Table S6). For many cases, termination is only a viable option when prenatal screening is completed before the end of the second trimester. In the base scenario, this option may be challenging given the extra time it takes to consult with patients for the initial maternal carrier result, arrange the paternal testing, and await the paternal result. The entire workflow before a diagnostic testing can take up to eight weeks. In the reflex sgNIPT scenario, the timeline is shortened to two weeks. While it is reasonable to postulate a higher termination rate in the reflex sgNIPT workflow due to the earlier identification of a high-risk fetus, for simplicity of the model, we assumed the same termination rate in both scenarios.

Another significant clinical intervention is early neonatal treatment for SMA (Table S3). There is significant potential cost savings from prenatal identification of SMA followed by immediate newborn treatment. In our model, we simulated the differences in treatment choice between the base and reflex sgNIPT scenarios. Detailed assumptions and calculations are described in Supplementary Materials (Method S3).
Ethical committee approval was not necessary given the design of study as no human participants were involved.

3 | RESULTS

3.1 | Clinical outcome
We calculated the following outcome for 100,000 pregnancies (Table 2). In the base scenario, 16,067 women were screened to be positive carriers for one of the disorders, and 41.5% of them followed up with paternal testing based on previously published data. Through the paternal testing, 182 were identified as “high-risk fetus” (both mother and father are carriers of the disorder; therefore, the fetus has 25% chance of being affected). This means that 46 of the affected fetuses (182 / 4 = 46) were identified through this process. Based on the incidence rate of these disorders, 110 of 100,000 fetuses are affected by one of the disorders. This means the traditional workflow missed 64 affected fetus (110 – 46 = 64; 58.5%) due to the lack of paternal follow-up. In the reflex sgNIPT scenario, 211 women received positive-carrier and high-risk sgNIPT results with 25-90% risk of fetus being affected. PPV of the sgNIPT assay is 52% based on 98.5% sensitivity, 99.9% specificity, and the disease incidence data. Therefore, 211 high-risk results identified 108 affected fetuses (211 × 0.52 = 108). Two (1.5%) affected fetuses were missed through this workflow. Overall, carrier screen with reflex sgNIPT was a superior screening method with a 2.4-fold increase in detection rate.

3.2 | Cost effectiveness
We then calculated the screening costs per affected pregnancy detected in the base and reflex sgNIPT scenarios (detailed calculation provided in Method S2). For the cost calculation, the initial maternal carrier screen cost as well as the follow-up costs from paternal testing to invasive diagnostic testing were included (Table S4). When the fetus was identified to have a 25% chance of being affected (after both maternal and paternal carrier screen were completed) or as high-risk by reflex sgNIPT (fetal risk ranges from 25% to 90%), we considered the affected pregnancy detected regardless of the invasive testing uptake.

It was determined that in the base scenario, 46 out of 110 affected fetuses would be identified per 100,000 pregnancies (Table S2). The total cost of screening for the base scenario is the sum of maternal carrier screen test ($69.40M), the follow-up counseling and paternal testing ($9.37M), and the diagnostic testing cost for high-risk fetuses ($0.07M). The total cost is therefore: 69.40M + 9.37M + 0.07M = $78.84M. To obtain the cost for identifying one affected pregnancy, we divided $78.84M by 46 (number of affected fetuses identified): $78.8M ÷ 46 = $1.73M.

In the reflex sgNIPT scenario, the total cost of screening is the sum of maternal carrier screen test ($69.40M) and the follow-up MFM visits ($0.7M), and diagnostic testing cost ($0.2M). The total cost is therefore: $69.4M + $0.70M + $0.21M = $70.31M. Reflex sgNIPT scenario identified 108 out of 110 affected pregnancies. Thus, the cost to identify one affected pregnancy is: $70.31M ÷ 108 = $0.65M.

The reflex sgNIPT scenario, the cost to identify one affected pregnancy is reduced to $0.65M, a 62% reduction from base scenario calculation (Figure 2). This is largely due to the increased sensitivity of the reflex sgNIPT workflow (90% of the cost saving contribution), followed by the elimination of paternal testing cost. Internal quality assurance data supports that patients with low-risk sgNIPT results are not proceeding with partner carrier screening during the
pregnancy speaking to the elimination of paternal testing cost with the reflex sgNIPT workflow in a clinical setting. Of note, in either the base or reflex sgNIPT scenario the cost to screen one affected fetus is lower than the lifetime treatment cost (the weighted average lifetime treatment cost for the disorders screened is estimated to be $2.6M; details provided in Method S3 and Table S5).

3.3 | Carrier screen with reflex sgNIPT test pricing simulation

The cost-effectiveness model assumed the same testing costs for the traditional maternal carrier screen and the carrier screen with reflex sgNIPT. However, compared to traditional screen, the carrier screen with reflex sgNIPT also includes the fetal risk assessment through additional cell-free DNA analysis that adds more testing cost. Thus, we attempted several approaches to assess the fair pricing for the carrier screen with reflex sgNIPT offering. One way to price the test is fee-based assessment. When reflex sgNIPT portion replaces the paternal carrier testing, it should be priced similarly. Using the fee-based approach, we calculated the new carrier screen with reflex sgNIPT test cost to be $846 (Table 3), based on the assumption that the paternal testing cost is $944 per test ($694 testing cost + $250 follow-up prenatal visit, counseling, and administrative costs) and this cost is applied to 16% of the carrier positive cases. Another approach to assessing the fair pricing is based on the value that the test provides. In this approach, we assumed that same cost of screening per affected pregnancy for the traditional and reflex sgNIPT workflow. The resulting carrier screen with reflex sgNIPT test pricing is $1,847 (Table 3). This result suggests that the carrier screen with reflex sgNIPT could be priced up to 2.66 times higher than the traditional carrier screen.
3.4 | Potential healthcare cost saving from prenatal and neonatal interventions

Early identification of high-risk fetuses allows additional prenatal and neonatal intervention options for clinicians and patients (Table S3). One such intervention is SMA treatment. The U.S. Department of Health and Human Services added SMA to the federal Recommended Uniform Screening Panel (RUSP) in 2018. However, as of November 2020, only 33 states include SMA on their newborn screening panel accounting for approximately 68% of births in the US. Given that 32% of newborns in the US are not screened for SMA during routine newborn care, prenatal diagnosis is essential for affected families to have reasonable access to early treatment options.\(^{14}\)

Compared to the base scenario, a higher percent of SMA-affected fetuses are identified prenatally in the reflex sgNIPT scenario, resulting in fewer babies missing the treatment window for Zolgensma, an effective gene therapy that can only be administrated from birth to two years of age. Further, the lifetime treatment cost is lower for Zolgensma compared to the other SMA drug, Spinraza. The total cost saving from more access to Zolgensma in the reflex sgNIPT scenario is estimated to be $18.9M per 100,000 pregnancies (Method S3). Another possible intervention is termination of pregnancy. In the reflex sgNIPT scenario, more high-risk fetuses are identified due to its increased sensitivity than in the base scenario. The total cost savings from increased access to termination is $63.2M.

Table S5 summarizes the estimated lifetime treatment cost for each condition analyzed in this study. The weighted average (based on the incidence rate) of the lifetime treatment cost is $2.6M per affected individual. Taking into account the two cost saving arms above, we calculated the total cost saving to be $82.1M per 100,000 pregnancies. This means that each carrier screen with reflex sgNIPT ($694 baseline cost) provides $821 cost savings to the healthcare system through prenatal and neonatal interventions alone (Table 4).
3.5 | Overall cost savings from adoption of carrier screen with reflex sgNIPT

Taking into account all cost savings described above through: (1) eliminating paternal carrier screen follow-up costs ($8.5M); and (2) detecting higher number of high-risk fetuses earlier during pregnancy ($82.1M), we estimated that reflex sgNIPT scenario provides a total cost saving of $90.6M (Table 6).

4 | DISCUSSION

Results from our decision-analytic model analyses showed that compared to the traditional sequential carrier screen workflow, the reflex sgNIPT workflow has superior sensitivity (41.5% vs. 98.5%, respectively). While it takes $1.73 million in testing costs to identify one affected newborn in the traditional carrier screen workflow, these costs are reduced to $0.65 million for reflex sgNIPT workflow (a 62% reduction). The total cost saving of adopting reflex sgNIPT workflow is estimated to be $90.6M per 100,000 births. Clinically, the time between carrier screening and counseling of options in affected pregnancies is shorter in the reflex sgNIPT screening method compared to the traditional method. Therefore, using carrier screen with reflex sgNIPT as the first-line screening method not only drastically improves the clinical outcome, but also saves $906 in healthcare costs per pregnancy screened.

The carrier screen with reflex to sgNIPT has several advantages over the traditional carrier screen. Although the traditional workflow is effective for detecting carriers of autosomal recessive conditions, the detection rate of high-risk fetuses is up to 42%, as the lack of paternal follow-up testing is significant and leaves > 58% of carrier women without a fully informative risk
assessment for their pregnancy.5,6 In contrast, the reflex sgNIPT carrier screen provides patients and physicians with a personalized risk assessment for the fetus, allowing for more informed counseling and decision making regarding follow-up testing. Additionally, the reflex sgNIPT workflow reduces the time from blood draw to identification of high-risk fetuses by up to eight weeks, which is clinically important with regard to prenatal diagnostic testing and reproductive options, often with varying gestational-age limitations. Finally, with reflex sgNIPT, the reduced need for paternal follow-up testing may significantly lower the burden on the physician, clinical staff, and patient, given the logistics involved in counseling about and arranging paternal testing.

Early identification of high-risk fetuses will improve pregnancy and delivery management, patient counseling and education, and access to early intervention, therapeutics, research studies, and clinical trials. Of note, some treatment options are most effective when implemented prior to the onset of symptoms. Uptake of genetic counseling and patient education after a positive newborn screen is low for some conditions.14 Early prenatal identification of high-risk fetuses makes it possible to connect the affected families with medical professionals who can educate and support them regarding options for diagnosis, treatment, and interventions.

The findings reported herein should be considered in light of several limitations. First, we recognize that paternal follow-up rates may vary between populations. The model can be refined if additional data on paternal follow-up rate are available. Second, clinical performance metrics in this report could change when data from a larger clinical performance study on the carrier screen with reflex sgNIPT become available. Third, since paternal carrier screening likely remains useful for future pregnancies of identified carriers, reflex sgNIPT workflow may not completely eliminate the cost of paternal testing, although it likely would reduce the urgency of the test. Fourth, cost savings from prenatal and neonatal interventions were calculated based on limited available
literature, including that on termination rates and other variables. Despite the above limitations, the current study provided a comprehensive assessment, using available data, on the clinical outcomes and cost effectiveness when using carrier screen with reflex sgNIPT as a first-line screening method versus the traditional sequential screening workflow.

Our findings are consistent with those from previous studies that evaluated the impacts of NIPT for aneuploidies, which have indicated that aneuploidy NIPT can be a cost-effective screening option for all women, regardless of a priori risk. Nevertheless, the cost savings for screening aneuploidies are generally not as straightforward. For example, a cost-effectiveness analysis on NIPT in the general pregnancy population found that NIPT leads to more prenatal identification of fetal trisomy cases than first trimester combined screening (FTS) and is more economical than FTS.15 Other cost-effectiveness analyses of NIPT for aneuploidies found that universal NIPT remained less costly than conventional maternal serum screening as long as the cost of NIPT was below $619,16 or that replacing fetal aneuploidy conventional screening with NIPT would reduce healthcare costs if provided for $744 or less.17 However, it has also been reported that universal NIPT is more effective but also costlier than the usual screening, with very high incremental cost-effectiveness ratios, suggesting that the cost-effectiveness of contingent NIPT is uncertain, while the universal NIPT is not cost-effective.18 In contrast to the mixed results from NIPT for aneuploidies, our analyses on NIPT for single-gene recessive disorders showed more robust evidence for cost savings than those found from studies on aneuploidies.

5 | CONCLUSION
Carrier screen with reflex sgNIPT not only provides higher sensitivity, but also significant cost savings for the healthcare system. By eliminating paternal carrier screen follow-up cost and detecting more high-risk fetuses at earlier gestations, clinicians and patients likely have access to additional prenatal and neonatal intervention options. These findings support the clinical utility of carrier screen with reflex sgNIPT as an approach that identifies high-risk fetuses more effectively, efficiently, and earlier in gestational age compared to traditional carrier screening. Follow-up clinical studies are needed to assess the realized clinical utility of the carrier screen with reflex sgNIPT.
REFERENCES

8. Test Results of: SAMPLE REPORT, 480533. LabCorp;2016.
TABLES

TABLE 1. A summary of clinical decision probabilities and test performance as part of the key assumptions for the decision-analytic model used in our analyses.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Input value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical decision probabilities (base scenario)</td>
<td></td>
</tr>
<tr>
<td>MFM referral rate upon positive maternal carrier result</td>
<td>36%*</td>
</tr>
<tr>
<td>Follow-up paternal carrier screening uptake</td>
<td>41.5%1</td>
</tr>
<tr>
<td>Clinical decision probabilities (reflex sgNIPT scenario)</td>
<td></td>
</tr>
<tr>
<td>MFM referral rate upon positive maternal carrier result</td>
<td>80%**</td>
</tr>
<tr>
<td>Reflex sgNIPT test performance3</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>98.5%</td>
</tr>
<tr>
<td>Specificity</td>
<td>99.9%</td>
</tr>
<tr>
<td>sgNIPT no-call rate</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

* Based on internal OBGYN market research results. Four out of 11 OBGYNs (36%) interviewed refer patients to MFM clinic upon positive maternal carrier screen results.

** Uptake for invasive diagnostic testing upon high-risk trisomy NIPT results are 73% for Trisomy 21, and 90% for Trisomy 18 and Trisomy 13.17 Assuming a similar MFM referral rate for high-risk sgNIPT results to those for trisomy NIPT, we estimated the referral rate to be 80%.

MFM, maternal-fetal medicine. sgNIPT, single-gene non-invasive prenatal testing; OBGYN, obstetrics and gynecology.
Table 2. A summary of clinical outcomes per 100,000 individuals screened in the base and Reflex sgNIPT scenarios of our decision-analytical model and the differences between these two scenarios.

<table>
<thead>
<tr>
<th>Clinical outcomes</th>
<th>Base scenario</th>
<th>Reflex sgNIPT scenario</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of positive maternal carrier</td>
<td>16,067*</td>
<td>16,067*</td>
<td>-</td>
</tr>
<tr>
<td>Number of paternal testing performed</td>
<td>6,668</td>
<td>-</td>
<td>(6,668)</td>
</tr>
<tr>
<td>Number of high-risk fetus results**</td>
<td>182</td>
<td>211</td>
<td>29</td>
</tr>
<tr>
<td>Number of affected fetus detected</td>
<td>46</td>
<td>108</td>
<td>62</td>
</tr>
<tr>
<td>Number of affected fetus missed</td>
<td>64</td>
<td>2</td>
<td>(62)</td>
</tr>
<tr>
<td>Affected fetus detection rates (sensitivity)</td>
<td>41.5%</td>
<td>98.5%</td>
<td>57.0%</td>
</tr>
</tbody>
</table>

* This number is based on the carrier frequency computed in Table S1 per 100,000 individuals (100,000 × 16.1%).

** The high-risk fetus results do not include any no-call sgNIPT result.

sgNIPT, single-gene non-invasive prenatal testing.
TABLE 3. Simulation on carrier screen with reflex sgNIPT pricing.

<table>
<thead>
<tr>
<th>Carrier screen with reflex sgNIPT pricing scenarios</th>
<th>Test unit price ($)</th>
<th>Cost per affected pregnancy detected (SMM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Base case (same as traditional carrier screen)</td>
<td>$694</td>
<td>$0.65</td>
</tr>
<tr>
<td>2) Fee-based (sgNIPT = paternal testing cost)</td>
<td>$846</td>
<td>$0.79</td>
</tr>
<tr>
<td>3) Value-based (same cost to identify one affected pregnancy)</td>
<td>$1,847</td>
<td>$1.73</td>
</tr>
</tbody>
</table>

sgNIPT, single-gene non-invasive prenatal testing.
TABLE 4. Total cost saving from Reflex sgNIPT scenario per 100,000 pregnancies.

<table>
<thead>
<tr>
<th>Item</th>
<th>Base scenario</th>
<th>Reflex sgNIPT scenario</th>
<th>Cost savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal carrier screening cost ($MM)</td>
<td>$69.4</td>
<td>$69.4</td>
<td>$0.0</td>
</tr>
<tr>
<td>Follow-up cost with positive result ($MM)</td>
<td>$9.4</td>
<td>$0.9</td>
<td>$8.5</td>
</tr>
<tr>
<td>% carrier results that need follow-up (%)</td>
<td>16%</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>% follow-up needed for reflex sgNIPT panel</td>
<td>-</td>
<td>0.7%</td>
<td>0%</td>
</tr>
<tr>
<td>% patients completing paternal testing</td>
<td>42%</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>Paternal Test follow-up cost per case (Test & Admin)</td>
<td>$944</td>
<td>-</td>
<td>$0</td>
</tr>
<tr>
<td>% patients referred to MFM</td>
<td>36%</td>
<td>80%</td>
<td>0%</td>
</tr>
<tr>
<td>Additional MFM follow-up cost per case</td>
<td>$1,236</td>
<td>$1,236</td>
<td>$0</td>
</tr>
<tr>
<td>% of positive paternal result</td>
<td>2.7%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>% diagnostic testing uptake</td>
<td>50%</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Cost of diagnostic testing</td>
<td>$710</td>
<td>$710</td>
<td></td>
</tr>
</tbody>
</table>

Cost Saving from earlier clinical intervention

($MM) | | | $82.1

Saving from earlier diagnosis of SMA and change in therapy | - | - | $18.9

Saving from elective termination | - | - | $63.2

Total cost savings ($MM) | | | $90.6

MFM, maternal-fetal medicine; SMA, spinal muscular atrophy.
FIGURE 1. Schematic diagram of the decision tree model used in the present study. A-B illustrate the decision tree model in traditional sequential carrier screen workflow and reflex sgNIPT carrier screen workflow, respectively.
FIGURE 2. Comparison of cost effectiveness between base and reflex sgNIPT scenarios.