Cohort profile:

Actionable Register of Geneva Outpatients with SARS-CoV-2

(ARGOS)

Camille Genecand†,1,4, Flora Koegler*,†,2, Dan Lebowitz3, Denis Mongin1, Simon Regard1,6, Mayssam Nehme4, Olivia Braillard4, Marwène Grira4, Dominique Joubert5, Pierre Chopard5, Elisabeth Delaporte1, Jerome Stirnemann2, Idris Guessous4, Aglaé Tardin1, Delphine S. Courvoisier5

Authors affiliations:

† Joint first authors

* Corresponding author
flora.koegler@hcuge.ch
Division of General Internal Medicine,
University Hospitals of Geneva,
4, rue Gabrielle Perret-Gentil,
CH, Geneva, Switzerland

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
1 Division of General Surgeon, Geneva Directorate of Health, Geneva, Switzerland;
2 Division of General Internal Medicine, Department of Internal Medicine, Geneva University Hospital, Geneva, Switzerland;
3 Infection Control Program, University of Geneva Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland;
4 Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, Geneva University Hospital, Geneva, Switzerland;
5 Quality of Care Service, University Hospital of Geneva, Geneva, Switzerland;
6 Division of Emergency Medicine, Department of Acute Medicine, Geneva University Hospital, Geneva, Switzerland.
Abstract:

Purpose

The Actionable Register of Geneva Outpatients with SARS-CoV-2 (ARGOS) is an ongoing prospective cohort created by the Geneva Directorate of Health (GDH). It consists of an operational database compiling all SARS-CoV-2 test results conducted in the Geneva area since late February 2020. While the disease evolution of patients hospitalized with SARS-CoV-2 are now relatively numerous, the same cannot be said for outpatients. This article aims at presenting a comprehensive outpatient cohort in light of the varying public health measures in Geneva, Switzerland, since March 2020.

Participants

As of July 28, 2020, the database included 58’226 patients, among which 6848 had at least one positive test result for SARS-CoV-2. Among all positive patients, 66.8% were contacted once, and 21% of participants had 3 or more follow-up calls. Participation rate is 96.9%. Data collection is ongoing.

Findings to date

ARGOS data illustrates the magnitude of COVID-19 pandemic in Geneva, Switzerland, and details a variety of population factors and outcomes. The content of the cohort includes demographic data, comorbidities and risk factors for poor clinical outcome, COVID-19 symptoms, environmental and socio-economic factors, contact tracing data, hospitalizations and deaths.
Future plans:

The data of this large real-world registry provides a valuable resource for various types of research, such as epidemiological research or policy assessment as it illustrates the impact of public health policies and overall disease burden of COVID-19.

STRENGTHS AND LIMITATIONS OF THIS STUDY

- ARGOS’ main strength consists of its large number of cases, representative of all diagnosed cases on a regional level with the primary aim of assessing all cases.

- ARGOS involves every tested individual and is not limited to hospitalized patients, thus providing a valuable resource to assess the impact of public health policies and overall disease burden of COVID-19 in a geographically defined population.

- To mitigate confounding effects and improve data analysis and interpretation, we present the data according to four policy periods.

- This cohort is multicentric as it includes all tests performed in Geneva’s hospitals (both public and private), private practices and medical centers.

- Due to operational needs, symptoms and comorbidities are self-reported, which may lead to measurement error or misclassification.

Text word count: 2670 words
Introduction

In December 2019, an increasing number of cases of pneumonia caused by a novel coronavirus, SARS-CoV-2\(^1\), was observed in Wuhan, China. On March 11, 2020, the World Health Organization (WHO) declared the coronavirus disease 2019 (COVID-19) outbreak a global pandemic\((1,2)\). As of July 29, 2020, the virus spread to 188 countries, infected close to 17 million people and caused 662 000 deaths\((3,4)\). In Switzerland, the cumulative incidence of laboratory confirmed COVID-19\(^2\) cases is one of the highest in Europe, with about 400 confirmed cases per 100’000 population at the end of July 2020\((4,5)\) In the Geneva area, the first COVID-19\(^2\) patient was diagnosed on February 26, 2020\((6)\). Possibly due to the city’s geographical proximity to Northern Italy\((7)\), the epidemic curve showed a steep upward trend. The first wave of the epidemic peaked in Geneva on April 2nd with 233 cases in 24 hours in an area with a population of 500’000. Geneva’s cumulative incidence of confirmed cases is almost 3 times that of Switzerland\((5)\), with more than 1’000 cases per 100’000 population\((6)\), while the seroprevalence was estimated to be close to 10 times that of the confirmed cases as 9.7% of the population had antibodies three weeks after the height of the epidemic\((8,9)\).

A database was created in early March in order to contact new cases and keep track of their follow-up. The Actionable Register of Geneva Outpatients with SARS-CoV-2\(^1\) (ARGOS) includes all SARS-CoV-2\(^1\) test results conducted in the Geneva area since late February 2020, as well as those from Geneva residents being tested in other Swiss cantons. The primary aim of this article is to present this comprehensive cohort, its

\(^{1}\) Severe acute respiratory syndrome coronavirus 2

\(^{2}\) coronavirus disease 2019
characteristics and the content of the data collected. The secondary aim is to interpret the data according to the public health measures implemented over time since the cohort profile was influenced by the varying policies enacted by the Swiss government and the Geneva State.

COHORT DESCRIPTION

The ARGOS database

ARGOS is an ongoing prospective cohort created by the Geneva Directorate of Health (GDH) and consists of an operational database compiling all SARS-CoV-2 test results conducted in the Geneva area. Data are collected and managed using the REDCap electronic data capture tools(10,11) allowing the GDH to contact positive cases in order to promote public health measures and coordinate medical follow-up. It is set up as a collaborative tool between different institutions and medical entities, including the GDH, Geneva University Hospitals (HUG), and Geneva’s main private medical centers. The latter have restricted access to data regarding their own patients only. The GDH and HUG are the only users to implement follow-up data in the electronic register. The data is hosted on HUG’s secure servers. The register is administered by a committee of co-Principal Investigators belonging to the GDH and HUG, with the agreement of the cantonal ethic committee (CCER protocol 2020-01273). Participants in the database had the opportunity to refuse to participate in the registry, and those who did are excluded from the analyses presented here. The participation rate was 96.9%. Deidentified ARGOS data can be available upon reasonable request, including a research protocol, using the form.
Data collection

All Geneva laboratories performing SARS-CoV-2 testing are required to send the results to the GDH. Swabs are collected from the upper respiratory tract in medical centers, private practice or during home visits by trained healthcare professionals(12). Between January 24 and July 28, 2020, 68577 tests for SARS-CoV-2 were performed by real-time reverse transcriptase–polymerase chain reaction assays and recorded in the ARGOS database. The majority were performed in the Geneva area and a small number consisted of tests conducted on Geneva residents in other Swiss Cantons, and declared to the GDH by the Federal Office of Public Health. Furthermore, hospitals and the Geneva Cantonal Population Office are required to declare COVID-19 related hospitalizations and deaths respectively, which are also recorded in ARGOS. Importantly, patients reporting COVID-19 symptoms between March 13 and March 29, 2020, did not get tested due to shortage of testing materials, unless they were healthcare workers, considered at-risk or hospitalized. However, symptomatic patients who visited the HUG COVID-19 testing center without fulfilling testing criteria were entered in the database as “suspected cases”. Some of these patients later received a test as policy evolved on March 30, 2020.

Patient and Public involvement

Patients or the public were not involved in research.

What is being measured?
An overview of collected data is provided in Table 1. The surveys were created by the GDH and HUG medical task forces. Within the first 48h of testing, patients with a positive test result for COVID-19 receive a call by a professional nurse with support from a medical doctor if needed. During this call, demographic data are collected(13), as well as symptoms(14–17), clinical and environmental risk factors, and clinical red flags. A special attention is paid to psychosocial and cultural factors, and resources are provided when needed. The clinical evaluation is used to identify patients who need immediate emergency care, or to address them for syw-up care by their general practitioner, by one of Geneva’s medical centers, or by the GDH-HUG team via telemedicine. These follow-up calls are performed either by a professional nurse or by a medical student with supervision from a medical doctor. Patients’ symptoms are recorded in subsequent surveys on the database. Patients’ estimated compliance to isolation measures are also assessed. Depending on the patients’ health condition, follow-up calls continue every one to two days until recovery. Some patients from the cohort are also called back at 1-month and 3-months to monitor the persistence of symptoms. All SARS-CoV-2 positive patients in Geneva who require hospitalization are admitted at HUG. At the time of discharge from the hospital, they receive follow-up calls by the HUG team as long as required by their health condition. COVID-19 positive patients identified as nursing home residents or who are hospitalized at the time of diagnosis are not systematically called since they already receive medical attention and isolation measures are enforced by the medical staff. As of April 27, 2020, close contacts of index cases are individually contacted and followed up until the end of the quarantine period (10 days). The type of contact they had with the index case, the
presence of COVID-19 symptoms and their compliance to quarantine measures are also recorded.

Findings to date

On July 28, 2020, of all 58'226 patients recorded in the ARGOS database, 6848 had at least one positive test result, 51’378 had one or more negative test results and no positive one, and 236 were suspected COVID-19 cases without a positive test to confirm the disease. Therefore, the positivity rate of recorded patients from February 26 to July 28 was 11.5%. Among these patients, 791 persons did not allow their data to be used for research and were excluded from analyses. The remaining number of positive cases available for analysis is 6635. 66.8% of participants have a first contact only, 8.3% and 3.9% have one and two follow-up call respectively. 21% of participants have three or more follow-up calls. From the end of February until the end of April, nearly all positive patients had symptoms. The cohort shows a slight female predominance, with women representing 51.3% to 57.1% of all patients depending on the defined period (Table 2). Eighty to 90 percent of all recorded patients have no risk factor for a poor clinical outcome(18). Significant differences are observed for age, comorbidities and presence of acute symptoms upon testing depending on the phases of the epidemic and of public health measures, highlighting the impact of changes in testing policies over time in Geneva. To mitigate confounding effects and improve data analysis and interpretation, we present the data according to four policy periods.

February 26 to March 13, 2020 (first phase)
Unlike many countries which implemented near-complete lockdowns (19) and despite a high burden of confirmed cases, Switzerland decided to adopt less severe measures. On February 26, 2020, gatherings of more than 1000 people were prohibited in the country. The first two and a half weeks of the epidemic were characterized by a majority of positive tests among people aged 20 to 64 years-old (82.2%). Five percent of cases were above 80 years old, and all cases were experiencing acute symptoms. The main risk factors among infected patients were advanced age, with 15.4% being older than 65, followed by chronic respiratory disease, cardio-vascular disease and diabetes (5%, 4.6%, 2.9% respectively). During this period, the positivity rate was 9.5%.

March 14 to March 30, 2020 (second phase)

On the evening of March 13, 2020, the Swiss government and local authorities placed the country under partial lockdown. Border crossings were restricted to essential workers, schools were closed, workers were asked to work from home and only essential services remained open (20). Public and private gatherings of more than 100 people and more than 5 people were banned on March 13, and March 20, 2020, respectively. From March 13 to March 29, 2020, SARS-CoV-2 reverse transcriptase–polymerase chain reaction testing was temporarily restricted to hospitalized and at-risk patients (>64 years old, presence of at least one risk factor for severe COVID-19, healthcare workers) due to shortage of testing materials. As patients receiving a test were selected based on their medical history and clinical course, we observed a first shift in the age of positive cases: the proportion of individuals 65 years and older, who are considered at risk for poor outcome, was higher (23.9%), and so was the presence of risk factors (chronic respiratory disease (11%), cardio-vascular disease (7.6%),...
diabetes (5.3%) and immunosuppression (3.9%). Individuals aged 20 to 39 years old were less represented during this period (28.5%). Healthcare workers were tested independently of their personal risk factors, and represented 12.2% of the positive patients. Limited testing modified the shape of the epidemic curve. It was concomitant with a sudden decrease of daily cases, mainly for younger people (Figure 1) and we witnessed a higher positivity rate (30.9%).

March 31 to April 27, 2020 (third phase)

During this period, political measures remained identical but testing policy evolved. As of March 30, 2020, all patients visiting Geneva’s hospitals and medical centers and presenting symptoms consistent with COVID-19 were tested regardless of their age or comorbidities. The number of daily cases reached its peak shortly after this policy came into effect and the positivity rate decreased to 18.4%. The proportion of individuals 65 years and older was 23.7% during this period. Nursing home residents were significantly more impacted by COVID-19, reaching 8.5% of all positive cases. 10.5% of positive patients were identified as living in an at-risk environment (collective house resident, homeless people)(21). The proportion of healthcare workers decreased significantly as of April 2020, reaching 4.2% of cases.

April 28 to July 28, 2020 (fourth phase)

On April 27, 2020, the Swiss authorities started to lift some of the lockdown measures following the decreasing incidence of new cases and hospitalizations. During the first step of containment release, non-urgent medical and surgical care, do-it-yourself stores and basic services like hairdressers could reopen. Primary schools opened under some
regulations as well. The second step started on May 11, 2020 with the reopening of all shops, restaurants, and museums. Finally, on June 6, 2020, gatherings of less than 300 people were allowed, and nightclubs, cinemas, theaters and most schools reopened.

The end of the lockdown measures was accompanied by the regulation of test prices in order to facilitate the access to free testing of symptomatic patients in Geneva. During this fourth phase, the cumulative number of cases reached a plateau. The proportion of patients with acute symptoms decreased significantly, reaching 86.5%. We observed a second shift in the age of positive cases, with 56.6% aged from 0 to 39 years, and only 10.8% older than 65 years old. 90.6% had no risk factor for severe disease. The positivity rate was 2.1%.

One month after the beginning of the third step of containment release, we observed a new increase in daily cases, mainly affecting people from 20 to 39 years old, and leading to implementation of new public health policies. This ongoing phase of the epidemic will not be discussed in this article.

Discussion

COVID-19 represents a major challenge to each country’s healthcare system.

Collaboration between healthcare providers and public health authorities is particularly important in order to improve both our understanding of the disease and our response(22–24). The publication of the ARGOS cohort underscores our willingness to share data for research purposes and for optimizing public health measures.

Furthermore, analysis from the ARGOS database illustrates the impact of various testing policies on the proportion of risk factors or age groups identified among
confirmed cases. The partition of data analysis and interpretation according to policy period confirms the variations within each group depending on the period of interest and could thus guide public health decisions.

STRENGTHS AND LIMITATIONS

The state of Geneva accounts for half a million residents and the local Directorate of Health ordered the recording of all COVID-19 positive cases since the beginning of the epidemic, according to recommendations from the Federal Office of Public Health. Due to this policy, the database’s main strength consists of its large number of cases, representative of all diagnosed cases on a regional level primarily serving operational needs and not scientific purposes, with one main objective: assessing all cases. This cohort is also multicentric as it includes all tests performed in Geneva’s hospitals (both public and private), private practices and medical centers. The fact that a very large proportion of all cases are assessed reduces the risk of biased data. Also, as data is recorded on the day of the call to the patient, recall bias is very low. Finally, the ARGOS³ database is characterized by a high number of follow-ups.

Despite these strengths, ARGOS has been influenced by the testing policy and the results must be seen in light of these influences. First, individuals without risk factors for COVID-19 and those younger than 65 years old are underrepresented in the database during the testing restriction period. The shapes of the graphics in Figure 1 and 2 confirm the impact of this policy as there is a sudden decrease in number of cases after March 20, 2020, when restriction started. Other factors could have amplified this phenomenon such as less symptomatic forms of disease in younger people and
children. Reasons to get tested have also evolved over the first months of the epidemic.
For example, anosmia or ageusia became a testing criteria only in late April. Patients who presented with these isolated symptoms within the first two months of the epidemic could thus have been undertested. Seroprevalence study results confirm the underrepresentation of certain groups and the undertesting of the overall population (8).

Nevertheless, ARGOS has several limitations. First, measurement error due to lack of detail of some variables can be observed, since efficiency was prioritized over detail-oriented data collection. For instance, individuals’ level of education is not recorded. Secondly, misclassification also certainly occurs as symptoms and risk factors are self-reported. Moreover, recording of information in ARGOS is performed by a large and evolving team of professionals, including healthcare workers with various backgrounds, medical students, or police recruits as of May 2020. Due to the crisis situation, training contents delivered to the GDH team often evolved, leading to a certain level of heterogeneity of phone interviews and a greater risk for misclassification of medical information. Thirdly, the patient information gathered is tailored to operational needs and growing scientific knowledge. For example, anosmia and ageusia were initially classified as general ENT symptoms, and were later detailed separately as they were recognized as frequent and specific manifestations of COVID-19 (25).

In conclusion, ARGOS is a large, real-world registry of individuals tested for SARS-CoV2. Unlike many other registries, it involves every tested individual and is not limited to hospitalized patients, thus providing a precious resource to assess the impact of public health policies and overall disease burden of COVID-19.
COLLABORATION

The publication of the ARGOS cohort underscores our willingness to share data for research purposes and for optimizing public health measures. Deidentified ARGOS data can be available upon reasonable request, including a research protocol, using the following form.

DATA SHARING STATEMENT

The deidentified data underlying this article will be shared on reasonable request to the corresponding author, using the form (https://edc.hcuge.ch/surveys/?s=TLT9EHE93C)

ETHICS APPROVAL

Research received the agreement of the Cantonal Ethic Committee of Geneva (CCER protocol 2020-01273).

FUNDING

ARGOS is supported by Geneva State public funds and by a grant from The Swiss National Science Foundation LIVES, project #2020-01273.

ACKNOWLEDGEMENTS

We thank all members of the COVID-19 team at the General Directorate of Health, as well as all healthcare providers and laboratories involved in the management of COVID-
19 patients. We also wish to thank all patients and their contacts who are included in the ARGOS database.

CONFLICTS OF INTERESTS

The authors declare no conflict of interest.

AUTHORS CONTRIBUTION

Each author contributed to this article, based on the criteria of the International Committee for Medical Journal Editors. Camille Genecand and Flora Koegler conceptualized and designed the article format, analyzed and interpreted the data, and conducted the literature review. Dan Lebowitz participated to the article design and reviewed it. Delphine Courvoisier designed the study’s analytic strategy, reviewed the article, and revisited it critically. Denis Mongin conducted the data analysis and participated in its formulation in the text. Simon Regard, Pierre Chopard, Marwène Grira, Elisabeth Delaporte, Mayssam Nehme, Olivia Braillard, Dominique Joubert, Idris Guessous, Jerome Stirnemann and Aglaé Tardin helped acquisition of data and reviewed the article’s content critically.
References:

20. OFSP. Le Conseil fédéral renforce les mesures contre le coronavirus pour protéger la santé de la population et soutient les secteurs touchés.

| **Test result** | − Positive
| | − Negative
| | − COVID-19 suspected, no test performed
| | − COVID-19 suspected, negative test result |
| **Reason for testing** | − Acute symptoms consistent with COVID-19
| | − Screening, no symptoms
| | − Patient transfer between hospitals |
| **Demographics** | − Date of birth
| | − Gender
| | − Basic professional information
| | − Personal and professional addresses |
| **Medical risk factors for COVID-19 negative outcome** | − Cardiovascular disease
| | − Hypertension
| | − Chronic respiratory disease
| | − Cancer
| | − Immunosuppression
| | − Diabetes |
| **Environmental risk factors** | − Homelessness
| | − Nursing home resident
| | − Asylum seeker or other migrant living in a collective housing
| | − Living in another type of collective housing |
| **Symptoms** | − Cough
| | − Presence of sputum
| | − Dyspnea
| | − Fever (>38°C)
| | − Headache
| | − Fatigue
| | − Arthralgia and/or myalgia
| | − ENT complaints (sore throat, rhinorrhea, anosmia or ageusia)
| | − Gastrointestinal symptoms |
| **Factors likely to adversely influence the course of disease** | − High anxiety level
| | − Feeling of isolation
| | − Difficulties in daily management |
| **Red Flags** | − New-onset or worsening dyspnea
| | − Fever for more than 5 days, or worsening fever non responding to treatment
| | − Deterioration of the general status |
- Worsening cough
- Hemoptysis
- Confusion
- Gastrointestinal symptoms with dehydration
- Moderate to severe chest pain

Positive patients’ compliance to recommended isolation measures
- Full compliance
- Partial compliance
- Insufficient compliance

Timeline
- Date of symptom onset
- Date of testing
- Initial date of (self-)isolation

Hospitalizations
- Date of hospitalization
- Date of release
 - Hospitalization ward:
 - Visit at the emergency department only
 - Stay in non-intensive care units
 - Stay in intensive care unit

Deaths
- Site (at home, nursing home, hospital)
- Date

Contact tracing
- Number of close contacts per index case
- Type of contact between index case and close contact:
 - Living in the same household
 - Intimate contact
 - Professional
 - Healthcare environnement
 - Social interaction
 - Recreational
 - Schooling
- Presence of symptoms at first call and follow-up calls
- Compliance to quarantine measures at first call and follow-up calls

Table 1, Actionable Register of Geneva Outpatients with SARS-CoV-2 (ARGOS) collected data
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of positive patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>241</td>
<td>2793</td>
<td>2785</td>
<td>816</td>
<td></td>
<td>6635</td>
</tr>
<tr>
<td>Number of follow-up per patient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>recorded in ARGOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First contact only</td>
<td>83 (65.9)</td>
<td>1662 (75.5)</td>
<td>1757 (71.7)</td>
<td>223 (28.1)</td>
<td>3725 (66.8)</td>
<td></td>
</tr>
<tr>
<td>1 Follow-up call</td>
<td>9 (7.1)</td>
<td>196 (8.9)</td>
<td>150 (6.1)</td>
<td>105 (13.2)</td>
<td>460 (8.3)</td>
<td></td>
</tr>
<tr>
<td>2 follow-up calls</td>
<td>11 (8.7)</td>
<td>75 (3.4)</td>
<td>71 (2.9)</td>
<td>63 (7.9)</td>
<td>220 (3.9)</td>
<td></td>
</tr>
<tr>
<td>3 or more follow-up calls</td>
<td>23 (18.3)</td>
<td>269 (12.2)</td>
<td>473 (19.3)</td>
<td>404 (50.8)</td>
<td>1169 (21.0)</td>
<td></td>
</tr>
<tr>
<td>Patients addressed to their general</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>practitioner for clinical follow up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>5 (2.1)</td>
<td>496 (18.5)</td>
<td>1057 (44.1)</td>
<td>190 (51.9)</td>
<td>1748 (30.8)</td>
<td></td>
</tr>
<tr>
<td>Patients addressed to a medical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>center (not HUG) for clinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>follow up</td>
<td>1 (0.4)</td>
<td>41 (1.5)</td>
<td>246 (8.8)</td>
<td>16 (2.0)</td>
<td>304 (4.6)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-19</td>
<td>6 (2.5)</td>
<td>65 (2.3)</td>
<td>109 (3.9)</td>
<td>74 (9.1)</td>
<td>254 (3.8)</td>
<td></td>
</tr>
<tr>
<td>20-39</td>
<td>93 (38.6)</td>
<td>795 (28.5)</td>
<td>797 (28.6)</td>
<td>385 (47.5)</td>
<td>2070 (31.2)</td>
<td></td>
</tr>
<tr>
<td>40-64</td>
<td>105 (43.6)</td>
<td>1264 (45.3)</td>
<td>1219 (43.8)</td>
<td>263 (32.5)</td>
<td>2851 (43.0)</td>
<td></td>
</tr>
<tr>
<td>65-80</td>
<td>25 (10.4)</td>
<td>380 (13.6)</td>
<td>279 (10.0)</td>
<td>44 (5.4)</td>
<td>728 (11.0)</td>
<td></td>
</tr>
<tr>
<td>>80</td>
<td>12 (5.0)</td>
<td>289 (10.3)</td>
<td>381 (13.7)</td>
<td>44 (5.4)</td>
<td>726 (11.0)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>114 (47.3)</td>
<td>1242 (44.5)</td>
<td>1196 (42.9)</td>
<td>395 (48.5)</td>
<td>2947 (44.4)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>127 (52.7)</td>
<td>1551 (55.5)</td>
<td>1589 (57.1)</td>
<td>418 (51.3)</td>
<td>3685 (55.5)</td>
<td></td>
</tr>
<tr>
<td>Non binary</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>2 (0.2)</td>
<td>2 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>11 (4.6)</td>
<td>213 (7.6)</td>
<td>183 (6.6)</td>
<td>31 (3.8)</td>
<td>438 (6.6)</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>10 (4.1)</td>
<td>339 (12.1)</td>
<td>258 (9.3)</td>
<td>49 (6.0)</td>
<td>656 (9.9)</td>
<td></td>
</tr>
<tr>
<td>Chronic respiratory illness</td>
<td>12 (5.0)</td>
<td>306 (11.0)</td>
<td>207 (7.4)</td>
<td>21 (2.6)</td>
<td>546 (8.2)</td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>1 (0.4)</td>
<td>36 (1.3)</td>
<td>37 (1.3)</td>
<td>9 (1.1)</td>
<td>83 (1.3)</td>
<td></td>
</tr>
<tr>
<td>Immunosupression</td>
<td>3 (1.2)</td>
<td>108 (3.9)</td>
<td>91 (3.3)</td>
<td>17 (2.1)</td>
<td>219 (3.3)</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>7 (2.9)</td>
<td>149 (5.3)</td>
<td>121 (4.3)</td>
<td>22 (2.7)</td>
<td>299 (4.5)</td>
<td></td>
</tr>
<tr>
<td>No risk factor</td>
<td>215 (89.2)</td>
<td>2241 (80.2)</td>
<td>2343 (84.1)</td>
<td>739 (90.6)</td>
<td>5538 (83.5)</td>
<td></td>
</tr>
<tr>
<td>Age 65 and older</td>
<td>37 (15.4)</td>
<td>669 (24.0)</td>
<td>660 (23.7)</td>
<td>88 (10.9)</td>
<td>1454 (21.9)</td>
<td></td>
</tr>
<tr>
<td>Profession</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>health care professional</td>
<td>27 (11.2)</td>
<td>340 (12.2)</td>
<td>320 (11.5)</td>
<td>34 (4.2)</td>
<td>721 (10.9)</td>
<td></td>
</tr>
<tr>
<td>Environmental risk factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homelessness</td>
<td>0 (0.0)</td>
<td>5 (0.2)</td>
<td>10 (0.4)</td>
<td>0 (0.0)</td>
<td>0.274</td>
<td>15 (0.2)</td>
</tr>
<tr>
<td>Nursing home resident</td>
<td>0 (0.0)</td>
<td>75 (2.7)</td>
<td>238 (8.5)</td>
<td>23 (2.8)</td>
<td><0.001</td>
<td>336 (5.1)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Asylum seeker or other</td>
<td>0 (0.0)</td>
<td>6 (0.2)</td>
<td>19 (0.7)</td>
<td>0 (0.0)</td>
<td>0.007</td>
<td>25 (0.4)</td>
</tr>
<tr>
<td>migrant living in a collective home</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collective home resident</td>
<td>0 (0.0)</td>
<td>2 (0.1)</td>
<td>26 (0.9)</td>
<td>9 (1.1)</td>
<td><0.001</td>
<td>37 (0.6)</td>
</tr>
<tr>
<td>(other than migrant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reason for testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute symptoms</td>
<td>241 (100.0)</td>
<td>2793 (100.0)</td>
<td>2784 (100.0)</td>
<td>678 (86.5)</td>
<td><0.001</td>
<td>6496 (98.4)</td>
</tr>
<tr>
<td>Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of tests</td>
<td>2603</td>
<td>9522</td>
<td>16053</td>
<td>39044</td>
<td></td>
<td>67222</td>
</tr>
<tr>
<td>performed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positivity rate (patient)</td>
<td>9.5 %</td>
<td>30.9 %</td>
<td>18.4 %</td>
<td>2.1 %</td>
<td><0.001</td>
<td>10.2 %</td>
</tr>
</tbody>
</table>

Table 2, ARGOS baseline characteristics of positive patients, Geneva, February 26, 2020 – July 28, 2020. Policy periods are presented by grouping together before any measures, limited testing and confinement, increased testing and confinement, end of confinement. Comparison between subgroups is performed with Fisher’s exact test, with p values computed by Monte Carlo simulation.
Figure 1, Number of cases per age category, Geneva, February 26, 2020 – July 28, 2020. Vertical bars represent the daily cases, solid line represent the weekly moving average.
Figure 2, Epidemic Curve of the Confirmed Cases of Coronavirus Disease 2019 (COVID-19) in Geneva state, February 26, 2020 – July 28, 2020, with policies timeline as described in the text. Vertical bars represent the daily cases (based on the date of the test result), solid blue line represents the weekly moving average and the solid black line the cumulative cases.