Statistical Analysis Plan for the Stepped-wedge Cluster Randomized Controlled Trial of Electronic Early Notification of Sepsis in Hospitalized Ward Patients (SCREEN): a study protocol for a stepped-wedge cluster randomized controlled trial

Yaseen Arabi, MD FCCP, FCCM, ATSF (YA)
Intensive Care Department, Ministry of National Guard Health Affairs
King Abdullah International Medical Research Center
King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
yaseenarabi@yahoo.com

Ramesh Kumar Vishwakarma, PhD (RV)
Bioinformatics and Biostatistics Department, King Abdullah International Medical Research Center
King Saud Bin Abdulaziz University for Health Sciences
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
VISHWAKARMARA@NGHA.MED.SA

Hasan M Al-Dorzi, MD (HD)
Intensive Care Department, Ministry of National Guard Health Affairs
King Abdullah International Medical Research Center
King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
aldorzih@yahoo.com

Eman Al Qasim, RN, MSN (EQ)
Research Office, King Abdullah International Medical Research Center
King Saud Bin Abdulaziz University for Health Sciences
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
Eman77al-qasim@hotmail.com

Sheryl Ann Abdukahil, RN (SA)
Intensive Care Department, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
King Abdullah International Medical Research Center
King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
abdukahil.sheryl@gmail.com

Fawaz Q Al-Rabeeah, RPh (FR)
Information Systems and Informatics Division, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
College of Health Informatics, King Saud Bin Abdulaziz University for Health Sciences
King Abdullah International Medical Research Center
RabeeahF@NGHA.MED.SA

Huda Al Ghamdi (HG)
Information Systems and Informatics Division, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
College of Health Informatics, King Saud Bin Abdulaziz University for Health Sciences
King Abdullah International Medical Research Center
GhamdiH3@NGHA.MED.SA

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Ebtisam Al Ghamdi (EG)
Information Systems and Informatics Division, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
College of Health Informatics, King Saud Bin Abdulaziz University for Health Sciences
King Abdullah International Medical Research Center
Alghamdieb@NGHA.MED.SA

and the SCREEN Trial Group*

Corresponding Author

Yaseen Arabi, MD, FCCP, FCCM, ATSF
Intensive Care Department, Ministry of National Guard Health Affairs
King Abdullah International Medical Research Center
King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
yaseenarabi@yahoo.com

Word Count: 2836
Abstract

Background

It is unclear whether screening for sepsis using an electronic alert in hospitalized ward patients improves outcomes. The objective of the Stepped-wedge Cluster Randomized Controlled Trial of Electronic Early Notification of Sepsis in Hospitalized Ward Patients (SCREEN) is to examine the effect of electronic screening for sepsis compared to no screening among hospitalized ward patients on all-cause 90-day hospital mortality.

Methods

This study is designed as a stepped-wedge cluster randomized controlled trial. A sepsis e-alert was developed in the electronic medical record (EMR), with the feature of being active (visible to treating team) or masked (inactive in EMR frontend for the treating team but active in the backend of the EMR). Forty-five hospital wards in 5 hospitals are randomized to active sepsis e-alert versus masked sepsis e-alert on 2-month sequences, with 5 wards in each sequence totaling 10 sequences. The primary endpoint is in-hospital mortality by 90 days. All data are extracted from EMR.

Discussion

The SCREEN trial provides an opportunity for a novel trial design and analysis of routinely collected and entered data to evaluate the effectiveness of an intervention (sepsis alert) for a common medical problem (sepsis in ward patients). In this statistical analysis plan, we outline details of the planned analyses in advance of trial completion. Prior specification of the statistical methods and outcomes analysis will facilitate unbiased analyses of these important clinical data.
Trial registration ClinicalTrials.gov NCT04078594. Registered on September 6, 2019,

https://clinicaltrials.gov/ct2/show/NCT04078594

Keywords

Sepsis, Alert, Screening, qSOFA, mortality, electronic medical records
Background

Sepsis is a major cause of morbidity and mortality among hospitalized patients. Sepsis outcome is greatly dependent on the time-sensitive administration of appropriate antimicrobials, fluid resuscitation, and source control. (1, 2) Screening for sepsis using an electronic alert in hospitalized patients may improves outcomes by early sepsis recognition and timely implementation of appropriate care processes. However, the evidence for such an intervention is modest, (3) and a randomized controlled trial is needed to measure its true effect.

The objective of the Stepped-wedge Cluster Randomized Controlled Trial of Electronic Early Notification of Sepsis in Hospitalized Ward Patients (SCREEN) is to examine the effect of electronic screening for sepsis compared to no screening among hospitalized ward patients on all-cause 90-day hospital mortality. The study protocol has been submitted for publication. The electronic screening for sepsis is based on the quick Sequential Organ Failure Assessment qSOFA. (4)

In this manuscript we describe statistical analysis plan (SAP) of the SCREEN trial. This SAP plan complies with the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, and both the “Statistical principles for clinical trials E9” and “Structure and content of clinical study reports E3”. (5, 6) The final study report will follow the CONSORT (Consolidated Standards of Reporting Trials) 2010 guidelines for reporting randomized controlled trials and the CONSORT extension for cluster randomized trials (CRTs). (7-9) This SAP identifies the procedures to be applied to the primary and secondary analyses for the entire trial cohort once trial data is complete. The SAP was finalized during trial implementation, and all analyses were prospectively defined.

Methods

Study Design
This study is designed as a stepped-wedge cluster randomized controlled trial, which allows to sequentially deliver the interventions to all trial clusters over a number of time periods (Figure 1). We present a glossary of terms in line with the CONSORT extension for cluster randomized trials (9) in Table 1. The cluster, refers to the unit of randomization, which is hospital ward.

Hospital wards are randomized to have active sepsis e-alert versus masked sepsis e-alert on sequences. Initially all wards were with masked alert for 2 months. At each 2-month period, the alert is activated in a new sequence of five new randomly selected clusters (wards), until all wards eventually will have active alert (Figure 1). A computer-generated randomly allocated sequence determines the order in which the wards receive the intervention.

The sepsis e-alert appears in EMR as a pop-message and appears also on a hand held device carried by the charge nurse. The sepsis e-alert prompts the nurse to notify the physician and prompt the physician to assess the patient for possible sepsis. Along the implementation of the sepsis e-alert, hospital-wide sepsis awareness campaign in all 5 participating hospitals was started at the beginning of the study with training sessions and was open to all staff on the importance of timely interventions for sepsis. Project in-service training sessions have been provided to the involved medical and nursing departments at the beginning of the project and at the time of activating a new sequence. Regular webinars have been conducted with active ward leaders. An intranet page has been developed with educational resources (videos, presentations, documents, posters and related links) that explains the project and provides clinical guidance and resources. A dashboard with data on the sepsis e-alert has been developed to display data for each active ward on the number of alerts and the percentage and time to acknowledgment by nurses and physicians. We have set 15 minutes as an over-stretch target for nursing acknowledgment and 30 minutes for physician acknowledgment and we have displayed this data on the electronic dashboards. The data on dashboards have been made available in real-time for nursing and medical mangers of each ward. In additions, reports have
been generated every two weeks of the same data and shared with the teams in the active wards. The hospital administration and quality management department has been engaged in the process of feedback and of improving the response time to alerts. The medical management and assessment have been at the discretion of the treating team, and the project has adopted the 2016 Surviving Sepsis Campaign guidelines and the hour-1 bundle, but without any specific monitoring of bundle compliance.(10, 11)

Study Population

The study has been conducted in the 5 Ministry of National Guard Heath Affairs (MNGHA) hospitals: King Abdulaziz Medical City- Riyadh, King Abdulaziz Medical Center- Jeddah, and Prince Mohammed Bin Abdul Aziz Hospital – Al Madinah, King Abdulaziz Hospital - Al Ahsa, and Imam Abdulrahman Al Faisal Hospital – Dammam. A CONSORT diagram will be generated according to the CONSORT extension for cluster randomized trials (CRTs).(9); for each allocated sequence at each period, the number of clusters receiving intervention, the average cluster size, and its variance, and the number of clusters not receiving intervention will be presented (Figure 1).

Sample Size

The sample size for this stepped-wedge cluster-randomized design was calculated for 45 clusters with 10 time periods (1 baseline time period followed by 9 steps) using Power Analysis and Sample Size (PASS) software (PASS 15 Power Analysis and Sample Size Software (2017). NCSS, LLC. Kaysville, Utah, USA, ncss.com/software/pass). At each of the 9 steps, 5 clusters (wards) switch from masked alert to active alert. Using historical data obtained from the development domain of the EM) for ward patients admitted from 01 July 2018 to 30 June 2019, we calculated a baseline hospital mortality rate of 3.13% by day 90. Based on the same dataset, 18.3% of eligible ward patients had the sepsis e-alert based on qSOFA criteria(4) with a hospital
mortality of 8.16% compared to 2% in the non-sepsis alert patients. For sample size
calculations, we made the following assumptions: A) the impact of intervention on mortality
occurs only in patients who have the alert, B) Only half of patients with the alert have sepsis, C)
90% of deaths among the patients with the alert occurred among septic patients, D) early
intervention resulting from the sepsis alert will reduce the hospital mortality by 50%, i.e. from
8.16% to 4.08% in patients with sepsis and would lead to an overall change in hospital mortality
for the whole cohort from 3.13% to 2.46%, D) 90% power using two-sided Wald Z-Test and
significance level of 5% and, E) an intra-cluster correlation (ICC, a measure of the relatedness
of cluster) of 0.22 as estimated from retrospective electronic database. As such, a reduction of
mortality in hospital by 90 days by 0.67% (from 3.13% to 2.46%) requires a total sample size of
62550 subjects (average of 1390 subjects per cluster with an average of 139 subjects per
cluster per time period). With all five hospitals combined, this is expected to require 20 months
(2 months per time period).

Study Cohorts

a. Intention-to-treat Cohort

The intention-to-treat (ITT) cohort includes all eligible patients admitted to the eligible wards. A
list of ward-level and patient-level eligibility criteria are outlined in the study protocol.(12) This
population constitutes the patients who are subjected to sepsis screening by the sepsis alert
system, whether they had an alert or not. The ITT analysis also implies that patients in the ITT
cohort in the wards belonging to a particular randomization period will be analyzed in
accordance with their planned randomization regardless of what happens during the trial. For
example, if a ward was planned to have active alert during a period and for technical reasons
that alert system was not operational, patients recruited in that ward during that period will be
analyzed as receiving active alert. Although it is not anticipated that there will be wards who
cross-over their study cohort (i.e., change from alert to non-alert, or vice versa), any instances will be documented. Patients who are transferred from one ward to another will be counted as part of the first ward. The primary analysis will be based on this population.

b. Alert Cohort

This cohort represents the subset of patients who had the alert whether in the active wards or the masked wards.

Reporting Baseline Characteristics, Physiological Parameters and Treatments

Baseline characteristics will be presented for the ITT and alert cohorts (Table S1) including age, sex, source of admission, admitting ward, comorbidities (extracted based on ICD-10AM), Charlson comorbidity index, source of infection (pneumonia, urinary tract infection, skin and soft tissue infection, intra-abdominal infection, other infections, and no clear source) and dialysis. We will also report vital signs (systolic blood pressure, diastolic blood pressure, heart rate, temperature, and respiratory rate) as well as laboratory parameters (lactate, white blood cells, bilirubin, creatinine) and whether culture of blood, respiratory, urine or other body fluids (pleural, ascitic, CSF, joint) were obtained and whether treatments (intravenous fluids and antibiotics) were received at baseline. Definitions of these variables were outlined in the study protocol.(12)

Reporting Alert Information

We will report the number of patients with at least one alert, and the number of alerts per patient, time to first alert and alert information criteria which led to alert trigger (Table S2). We will report vital signs in the 12 hours pre-alert (systolic blood pressure, diastolic blood pressure, heart rate, temperature, and respiratory rate) as well as laboratory parameters in the 12 hours pre-alert (lactate, white blood cells, bilirubin, creatinine) and whether culture of blood,
respiratory, urine or other body fluids (pleural, ascitic, CSF, joint) were obtained and whether treatments (intravenous fluids and antibiotics) were received in the 12 hours pre-alert.

Reporting Process Measures and Post-alert Physiologic Parameters

We will compare the following process measures between the two groups: A) percentage of patients with lactate reported 12 hours if not reported in the 12 hours before alert and highest lactate value reported in the 12 hours after the alert, B) percentage of patients with blood culture ordered in 12 hours if not performed in the 12 hours before alert, C) percentage of patients with respiratory, urine and body fluid cultures ordered in 12 hours if not performed in the 12 hours before alert, D) intravenous fluid administered in 12 hours after alert (yes, no), E) percentage of patients who were not on antibiotics in the 12 hours before alert and had new antibiotic administered within 3 and 12 hours of alert, F) post-alert systolic and diastolic blood pressure: (lowest value in the 12 hours after the alert) and heart and respiratory rate (highest value in the 12 hours after the alert) (Table S2).

Study Outcomes

The primary outcome is defined as all-cause mortality after enrollment in the trial within 90 days. Other outcomes include hospital length of stay (LOS) (ITT cohort and alert cohort), transfer to ICU within 90 days (ITT cohort and alert cohort) and 14 days of alert (alert cohort), ICU-free days in the first 90 days (ITT cohort and alert cohort), critical care response team (CCRT) activation within 90 days (ITT cohort and alert cohort) and 14 days of alert (alert cohort), cardiac arrest within 90 days (ITT cohort and alert cohort) and 14 days of alert (alert cohort), the need for mechanical ventilation, vasopressor therapy, incident renal replacement therapy within 90 days (all in ITT cohort and alert cohort) and 14 days of alert (alert cohort), antibiotic-free days and acquisition of multidrug resistant organisms within 90 days in both groups (ITT cohort and alert cohort) (Table S3 and S4).
Analysis of Primary Outcome

The primary outcome of all-cause hospital mortality by day 90 will be compared between patients who have been exposed to the intervention to those who have not yet been exposed to the intervention using a 2-level multilevel Poisson model with a log link and with an offset term to account for variation due to lengths of time to the no alert and alert periods (Table S3). We will include two-level random effects to account for nested clustering within the data, patients within wards, and wards within the hospitals in the study and one fixed effect term for each period. The model will be adjusted for following covariates: type of wards (medical, surgical, Oncology and mixed), age, baseline systolic blood pressure, baseline respiratory rate and Charlson comorbidity index. Results will be expressed as relative risk with 95% confidence interval (CI). The absolute risk difference and number needed to treat, if applicable, will be also reported. The primary outcome will be also analyzed in a similar fashion in the alert cohort.

Analysis of Secondary Outcomes

Categorical outcomes including ICU admission, critical care response team (CCRT) activation, cardiac arrest, the need for mechanical ventilation, vasopressor therapy, incident renal replacement therapy, acquisition of multidrug resistant organisms and *Clostridium difficile* infection will be compared between patients who have been exposed to the intervention to those who have not yet been exposed to the intervention using a 2-level multilevel mixed-effects logistic regression models (Table S3 & S4). We will include two-level random effects to account for nested clustering within the data, patients within wards, and wards within the hospitals in the study and one fixed effect term for each period. The model will be adjusted for predictors as considered for primary outcome. Results will be expressed as relative risk with 95% CI.
Continuous outcomes including hospital length of stay (LOS), ICU-free days, and antibiotic-free days will be compared using a 2-level multilevel Poisson model with a log link and with an offset term to account for variation due to lengths of time to the no alert and alert periods (Table S3). We will include two-level random effects to account for nested clustering within the data, patients within wards, and wards within the hospitals in the study and one fixed effect term for each period. The model will be adjusted for the same covariates as considered for primary outcome. The results will be expressed as beta estimates with 95% CI.

Subgroup Analyses

We will use the same model to analyze the primary outcome of all-cause hospital mortality by day 90 across predefined subgroups (Table S6). The statistical model will be adjusted accordingly to fit the subgroup analyses. Results of test of interaction will be reported.

Handling dropouts and missing data

As we are expecting missing observations at patient level, all missing data will be assessed and characterized in terms of their pattern (i.e., Missing Completely at Random, Missing at Random, Missing Not at Random). For Missing Completely at Random data, all analyses will be based on list-wise deletion approach where observation will complete values will be only considered for analysis. For variables with values Missing at Random, multiple imputation techniques will be utilized to impute the missing values as suggested by Rubin’s (1987).(13) And for variables with values Missing Not at Random, a pattern-mixture model technique will be used to impute the missing values.(14)

Graphical Presentation
Kaplan Meier curves will be constructed for all-cause hospital mortality by day 90 in the ITT cohort and the alert cohort and the p-value for log rank test will be reported. The subgroup analyses will be displayed as a forest plot.

Adjustment for Multiplicity

To adjust for multiple testing for secondary outcomes, we will use the False Discovery Rate (FDR) as described by Benjamini and Hochberg.(15) In this procedure all hypothesis tests will be sorted in an descending order based on their calculated p-value. All hypothesis tests below an index K will be rejected where K calculated as follows:

$$K = \max \left\{ i: p(i) \leq \frac{i}{m} \cdot q \right\}$$

where i = m, ..., 1, m is the total number of tested hypotheses; q = 0.05.

Statistical tests and their confidence intervals (CIs) will be calculated with two sided. The statistical significance level set will be at the 5% level. All analyses will be performed using SAS version 9.4.

Discussion

The SCREEN trial provides an opportunity for a novel trial design and analysis of routinely collected and entered data to evaluate the effectiveness of an intervention (sepsis alert) for a common medical problem (sepsis in ward patients).

Stepped-wedge cluster randomized trial involves randomization of clusters to different sequences. This design is suitable for quality improvement projects. In the SCREEN trial, it allows the assessment of the effect of sepsis alert by comparing the outcomes of patients in the
intervention and control cohorts as well as over time. In addition, by having the masked alert, an additional comparison between patients with masked and active alerts will be performed.

Our analysis plan highlights some potential trial limitations, in relation to the low event rate, which we have addressed by the large sample size. We will address multiplicity of secondary analyses by reporting the False Discovery Rate. Our sepsis alert which is based on qSOFA is generalizable in other healthcare settings, although there may be variations across different EMRs. The variability among clusters and over time are inherent issues with stepped-wedge cluster randomized trial, which we addressed in the statistical analysis model.

Trial status

The study has started in October 2019, and is anticipated to have complete implementation and follow up data by the end of October 2021.

Conclusion

In this statistical analysis plan, we outline details of the planned analyses in advance of trial completion. Prior specification of the statistical methods and outcomes analysis will facilitate unbiased analyses of these important clinical data.
Abbreviations

CCRT Critical Care Response Team
CI Confidence interval
EMR Electronic Medical Record
ICU Intensive Care Unit
ITT Intention to Treat
LOS Length of Stay
qSOFA Quick Sequential Organ Failure Assessment
SOFA Sequential Organ Failure Assessment

Declarations

Ethics approval and consent to participate

The study was approved by the Institutional Review Board of the Ministry of National Guard - Health Affairs. Informed consent was waived because of the nature of the study.

Consent for publication

Not applicable.

Availability of data and materials

The datasets will be available from the corresponding author as per the regulations of King Abdullah International Medical Research Center (KAIMRC).
Competing interests

The authors declare that they have no competing interests.

Funding

Not applicable.

Authors' contributions

YA is the Chief Investigator; conception and design, analytical plan, drafting of the manuscript, critical revision of the manuscript for important and intellectual content. RV, HD, EQ, SA, RF, HG, EG contributed to the development of the protocol, critical revision of the manuscript for important intellectual content. All authors agree to be accountable for all aspects of the work and have read and approved the final manuscript.
Acknowledgements (collaborators)- the SCREEN Trial Group*

Management and Development Group:

Yaseen M. Arabi, MD, FCCP, FCCM, ATSF
Chairman, Intensive Care Department
Medical Director, Respiratory Services
King Abdulaziz Medical City, Central Region
Professor, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Abdulmohsen Al Saawi, MD, MSc PH, MSc EBHC
Executive Director, Medical Services
Consultant, Emergency Medicine Department
King Abdulaziz Medical City, Central Region
Assistant Professor, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Mohammed Al Zahrani, FACS, ABS, SSC-Surg
Executive Director, Medical Services
Consultant, Surgical Oncology
King Abdulaziz Medical City, Western Region
Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia

Ali Al Khathaami, MD, MPH, FRCPC
Executive Director, Quality and Patient Safety Department
King Abdulaziz Medical City, Central Region
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Raed H. AlHazme, PhD
Executive Director, Information Systems and Informatics Division (ISID)
King Abdulaziz Medical City, Central Region
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Abdullah Al Mutrafy, MD
Deputy Executive Director, Medical Services
King Abdullah Specialized Children’s Hospital
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Ali Al Qarni, MD, SBIM, JBIM, FACP, FRCP, FACE
Deputy Executive Regional Director, Medical Services, Al Ahsa
Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia

Ahmed Al Shouabi, MD SBFM, ABFM, MSc
Deputy Executive Regional Director, Medical Services, Dammam
Imam Abdulrahman Al Faisal Hospital
Ministry of National Guard Health Affairs, Dammam, Saudi Arabia

Amar Alhasani, MD
Deputy Executive Director-Medical services
Prince Mohammed bin Abdulaziz Hospital
Ministry of National Guard Health Affairs, Madinah, Saudi Arabia

Eman Al Qasim, RN, MSN
Clinical Research Coordinator II, Intensive Care Department
Research Office, King Abdullah International Medical Research Center
King Saud Bin Abdulaziz University for Health Sciences
King Abdulaziz Medical City, Central Region
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Sheryl Ann Abdukahil, RN
Quality Management Specialist II, Intensive Care Department
King Abdulaziz Medical City, Central Region
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Fawaz Q. Al-Rabeeah, RPh
Manager, Medical Application, Corporate Clinical Information Management System
Information Systems and Informatics Division
King Abdulaziz Medical City, Central Region
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Huda Al Ghamdi
Manager, Applications, Department of Database Information Management,
Information Systems and Informatics Division
King Abdulaziz Medical City, Central Region
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Ebtisam Al Ghamdi
Application Analyst, Knowledge Management
Information Systems and Informatics Division
King Abdulaziz Medical City, Central Region
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Abdulaleem Alattasi, MBBS, FRCPC
Consultant, Anesthesia & ICU
Deputy Chairman, Department of Pediatric Anesthesia – KASCH
Director, Faculty Development Program, KSAU-HS
Director of Operating Room Services, KASCH
Deputy Executive Director, Perioperative Quality and Patient Safety
King Abdulaziz Medical City, Central Region
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Raed Al Almoodi
Programmer Analyst
ISID EMS HIS
ALAmoodira@NGHA.MED.SA
Hasan M. Al-Dorzi, MD
Section Head, Trauma ICU & Medical ICU
Consultant, Intensive Care Department
King Abdulaziz Medical City, Central Region
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Ramesh Kumar Vishwakarma, PhD
Biostatistician, Section of Biostatistics
King Abdullah International Medical Research Center
King Saud Bin Abdulaziz University for Health Sciences
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
VISHWAKARMARA@NGHA.MED.SA

Implementation Riyadh:

Khadega A. Abuelgasim, MD
Consultant, Adult Hematology & Oncology Department
King Abdulaziz Medical City, Central Region
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

John Alchin, RN, MHA
Director, Clinical Nursing, Critical Care, Nursing Services Department,
King Abdulaziz Medical City, Central Region
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Ahmad Alharbi, MBBS
Consultant, Infectious Diseases, Medicine Department
King Abdulaziz Medical City, Central Region
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Mufareh Edah AlKatheri, MD, MBBS
Director, Quality and Patient Safety Department
King Abdulaziz Medical City
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Joan Jones, RN, MA (Health Management)
Nurse Manager, Medical-Nursing Services Department
King Abdulaziz Medical City, Central Region
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Saad Al-Qahtani, MD, MMED, MAHA, FRCPC
Section Head, Critical Care Response Team
Chairman, Hospital Mortality & Morbidity Committee
Consultant, Intensive Care Department
Associate Professor, College of Medicine,
King Saud Bin Abdulaziz University for Health Sciences
King Abdulaziz Medical City, Central Region
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Salih Bin Salih, MD, FACP, FRCP (Edin)
Professor, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences
Chairman, Department of Medicine, King Abdulaziz Medical City
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Nahar Alselaim, MBBS, MPH, FRCSC
Consultant, Surgery Department
Assistant Professor, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences
King Abdulaziz Medical City
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Nabeeha Tashkandi, BSN, RN, MSN
Associate Executive Director, Nursing Services
King Abdulaziz Medical City, Central Region
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Zeyad Al Yousef, MD, SSC (Ortho), ABOS
Chairman, Surgery Department
Assistant Professor, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences
King Abdulaziz Medical City, Central Region
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Amal Matroud, RN
Nursing Services Department, King Abdulaziz Medical City
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Rasha Ebeid Al Anazi, RN
Nursing Services Department, King Abdulaziz Medical City
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Implementation Jeddah:

Fahad Al-Hameed, MD, FRCPC
Chairman, Intensive Care Department,
King Abdulaziz Medical City, Western Region
Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia

Wasil Jastaniah, MBBS, FAAP, FRCPC
Professor & Consultant
Pediatric Hematology, Oncology, BMT
Chairman, Princess Noorah Oncology Center
King Abdulaziz Medical City, Western Region
Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia

Hassan Ahmad AlMarhabi, MD
Director, Quality and Patient Safety Department
Assistant Professor, Internal Medicine & Infectious Diseases
College of Medicine, Jeddah, King Saud Bin Abdulaziz University for Health Sciences
Consultant Adult & Transplant Infectious Diseases, Internal Medicine
King Abdulaziz Medical City, Western Region
Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia

Emad AlWafi, MD
Section Head, Internal Medicine
King Abdulaziz Medical City, Western Region
Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia

Ali H. Alyami, MD
Chairman, Surgery Department
King Abdulaziz Medical City, Western Region
Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia

Arwa O Yamani, MD
Deputy Chairman Oncology Quality & Patient Safety
King Abdulaziz Medical City, Western Region
Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia

Mayadah Habshi, BSN, DNE, EFQM, MSN
Quality Improvement Specialist I
King Abdulaziz Medical City, Western Region
Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia

Basem Banat, RN
Manager Nursing Resource Systems
King Abdulaziz Medical City, Western Region
Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia

Omar Abuskout, RN
Director Clinical Nursing
King Abdulaziz Medical City, Western Region
Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia

Adnan Munshi, Eng
Manager Picture Archiving & Communication System
King Abdulaziz Medical City, Western Region
Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia

Implementation: Al Ahsa

Hani T. Mustafa, FRACP
Chairman, Department of Medicine, King Abdulaziz Hospital
Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia

Sami Musalam Aliyyen, RN
Quality & Patients Safety Department
King Abdulaziz Hospital
Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia

Christa Myumi Sian, RN
Clinical Resource Nurse
King Abdulaziz Hospital
Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia

Abdulaziz Al Qasem
Information Systems and Informatics Division, King Abdulaziz Hospital
Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia

Implementation Dammam:

Gaber Madram, MD
Consultant Internal Medicine,
Imam Abdulrahman Al Faisal Hospital
Ministry of National Guard Health Affairs, Dammam, Saudi Arabia

Wafa Nasser, MD
Director Infection Prevention & Control Program, Infection Control
Imam Abdulrahman Al Faisal Hospital
Ministry of National Guard Health Affairs, Dammam, Saudi Arabia

Shaher Qahtani, MD
Director, Quality and Patient Safety Department,
Imam Abdulrahman Al Faisal Hospital
Ministry of National Guard Health Affairs, Dammam, Saudi Arabia

Clara Masala, RN
Nurse Manager
Imam Abdulrahman Al Faisal Hospital
Ministry of National Guard Health Affairs, Dammam, Saudi Arabia

Hannan Al Somali, RN
Manager Nursing Resource Systems
Imam Abdulrahman Al Faisal Hospital
Ministry of National Guard Health Affairs, Dammam, Saudi Arabia

Fatimah Talaqof, RN
Nurse Manager
Imam Abdulrahman Al Faisal Hospital
Ministry of National Guard Health Affairs, Dammam, Saudi Arabia

Maryam Almulhim
Information Services Department-Al Dammam, Imam Abdulrahman Al Faisal Hospital
Ministry of National Guard Health Affairs, Dammam, Saudi Arabia
Implementation Madina:

Ahmad S. Qureshi, MD
Chairman, Intensive Care Unit
Consultant, Pulmonology-ICU, Intensive Care Department, Prince Mohammed bin Abdulaziz Hospital
Ministry of National Guard Health Affairs, Madinah, Saudi Arabia

Mohammad Abd Rabo, MD
Manager, Quality & patient safety department, Prince Mohammed bin Abdulaziz Hospital
Ministry of National Guard Health Affairs, Madinah, Saudi Arabia

Hattan Esilan, MD
Director, Quality and Patient Safety Department
Prince Mohammed bin Abdulaziz Hospital
Ministry of National Guard Health Affairs, Madinah, Saudi Arabia

Azurahazri Abd Rahim, RN
Manager, Nursing Department
Prince Mohammed bin Abdulaziz Hospital
Ministry of National Guard Health Affairs, Madinah, Saudi Arabia

Naif Almughamisi
Information Services Department, Prince Mohammed bin Abdulaziz Hospital
Ministry of National Guard Health Affairs, Madinah, Saudi Arabia
REFERENCES

Table 1: Glossary of terms used in the current report, based on the CONSORT extension for cluster randomized trials(1)

<table>
<thead>
<tr>
<th>Term</th>
<th>Definitions(1)</th>
<th>Applicability to SCREEN trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster</td>
<td>The unit of randomization.</td>
<td>Hospital ward</td>
</tr>
<tr>
<td>Control condition</td>
<td>The comparator treatment.</td>
<td>Masked sepsis e-alert</td>
</tr>
<tr>
<td>Duration of period</td>
<td>Time (e.g., months) between each step.</td>
<td>2 months</td>
</tr>
<tr>
<td>Intervention condition</td>
<td>The treatment under evaluation.</td>
<td>Sepsis e-alert</td>
</tr>
<tr>
<td>Sequence</td>
<td>A sequence of codes defining the order of implementation of the treatment conditions for each cluster. More than one cluster can be allocated to each sequence.</td>
<td>10 sequences, with 5 clusters allocated to each sequence</td>
</tr>
<tr>
<td>Step</td>
<td>A planned point at which a cluster or group of clusters crosses from control to intervention.</td>
<td>The period between two steps is 2 months</td>
</tr>
</tbody>
</table>
