The late positive potentials evoked by negative emotional pictures predict autonomic responses to an acute psychosocial stressor in healthy adults

Hongxia Duan1,2, Zhuxi Yao1, Liang Zhang3,4, Nils Kohn2, Jianhui Wu1,5*

1 Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, 518060, China
2 Donders Institute for Brain, Cognition and Behavior, Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
3 CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
4 The University of Chinese Academy of Sciences, Beijing, China
5 Shenzhen Institute of Neuroscience, Shenzhen 518057, China

*Corresponding author: Center for Brain Disorder and Cognitive Science, Shenzhen University, 3688#, Nanhai Avenue, Nanshan District, Shenzhen, 518060 China.

E-mail address: wujh8@szu.edu.cn

Running Title: LPPs predict autonomic stress responses

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract: Individuals vary substantially in their response to an acute stressor. Identifying the factors contributing to these individual differences in stress reactivity is of particular interest but still remains largely unknown in the stress and resilience domain. The present study aimed to investigate whether and how brain reactivity to negative stimuli during a non-stressful state could predict autonomic and neuroendocrine stress responses to an acute psychosocial stressor in healthy adults. To address this issue, fifty-two healthy young adults were recruited to view negative or neutral pictures while their electroencephalogram was recorded during a non-stressful state on the first experimental day. On the second experimental day, their autonomic and neuroendocrine responses to the Trier Social Stress Test (TSST) were measured. Results showed that increased late positive potential (LPP) to negative relative to neutral pictures was significantly associated with higher heart rate response but not with the cortisol response to acute social stress. These results implicate greater neural reactivity to negative stimuli as a physiological marker of heightened acute autonomic responses. These findings may help identify individuals who are at increased risk of developing negative outcomes under stress.

Keywords: ERP, Late positive potential, Negative emotion, Acute stress, Heart rate, Cortisol
1. **Introduction**

We all experience stressors in our daily life. Physiologically, there are two inter-related and separated stress response systems, i.e., the autonomic nervous system (ANS) and the hypothalamic-pituitary-adrenocortical (HPA) axis. The ANS provides fast responses to acute stressors, leading to a rapid increase in heart rate (HR), whereas the HPA axis shows a relatively slower response with an elevated circulating glucocorticoid (cortisol in humans) level, peaking 10–20 minutes after stressor onset. These two interacting physiological systems on the one hand mobilize and reallocate resources aiming at helping individuals to cope with environmental threats and restore homeostasis, and on the other hand temporarily suppress activities that are not essential to survival (de Kloet et al., 2005; Lupien et al., 2009; Ulrich-Lai & Herman, 2009).

Interestingly, one characteristic of our responses to acute stressors is its large variability across individuals, especially for psychological stressors (for a review, see Lupien et al., 2007). Moreover, prior studies have suggested that exaggerated stress responses may decrease cognitive ability and increase emotional sensitivity, which in turn lead to mental problems (de Kloet et al., 2005; Lupien et al., 2009). Therefore, understanding this individual variability can enable us to identify vulnerability to stress-related problems and further prevent maladaptive consequences of stress.

The ANS and HPA responses to acute stressors are initiated and regulated by relatively hard-wired neural circuits in the brain (Ulrich-Lai & Herman, 2009). Especially, the amygdala plays an important role in the up-regulation of physiological stress responses, and the prefrontal cortex and hippocampus, where glucocorticoid receptors are abundantly expressed, are involved in the negative feedback regulation of cortisol response (McEwen, 2004).

Crucially, these physiological responses are primarily driven by subjective explanation: once a situation is interpreted to be (potentially) threatening to the subjective wellbeing, the stress response is triggered to deal with it. What lies at the root of the physiological stress responses is the information processing in the stress-related neural circuits (Ulrich-Lai & Herman, 2009). Thus, quantifying neurocognitive activity in the stress-related neural circuits may shed light...
on our understanding of individual differences in stress responses.

Neurocognitive processing of negative emotional information can be a promising factor influencing acute stress reactivity. The amygdala plays a central role in the processing of emotional information including threat detection and appraisal and facilitated attention to salient stimuli (Cunningham & Kirkland, 2014; Gupta, 2019; Murray, 2007; Sergerie et al., 2008; Vuilleumier, 2005). Meanwhile, interacting with the hippocampus and medial prefrontal cortex, the amygdala is a key brain region for stress regulation (Ulrich-Lai & Herman, 2009). In fMRI studies, amygdala activity, reflected indirectly by blood oxygen level-dependent (BOLD) fMRI signal, has been widely confirmed with increased response to negative information, and therefore used to index neural reactivity to emotional stimuli (Cunningham & Kirkland, 2014; McLaughlin et al., 2014; Sergerie et al., 2008; Swartz et al., 2015). With event-related potentials (ERPs), which has high temporal resolution, researchers have identified a sustained positive component reflecting sustained attention towards and elaborative processing of emotionally/motivationally salient information, the late positive potential (LPP). The LPP begins at approximately 300 ms after stimulus onset and sustains until stimulus offset with a broad posterior-superior scalp distribution (Cuthbert et al., 2000; Schupp et al., 2000; for a review see Hajcak et al., 2010). Prior studies of source analysis (Keil et al., 2002) and simultaneous fMRI and EEG recordings (De Rover et al., 2012; Liu et al., 2012; Sabatinelli et al., 2007) revealed that neural substrate of the LPP involves cortical and subcortical brain regions including the prefrontal cortex and amygdala.

Increased brain reactivity to negative emotional information may predict exaggerated stress responses considering the up-regulating role of the amygdala in stress response. Emerging evidence showed that relatively exaggerated amygdala reactivity towards negative stimuli predicted more posttraumatic stress symptoms in response to a terrorist attack (McLaughlin et al., 2014) and more behavioral and psychological symptoms in response to highly stressful events in combat (Admon et al., 2009) and in common civilian life (Swartz et al., 2015). Similarly, increased LPP amplitude for negative relative to neutral pictures was correlated with more posttraumatic stress symptoms due to traumatic life events (Lobo et al., 2015).
These findings suggest that pre-trauma individual differences in neural reactivity to negative stimuli are predictive for the risk to develop stress-related mental disorders after traumatic stressor exposure. Meanwhile, impairments of the physiological stress system are implicated in stress-related psychiatric symptoms/disorders (for reviews, see Pitman et al., 2012; Sherin & Nemeroff, 2011). Crucially, the link between stress and emotion processing-related neural circuit (e.g., prefrontal cortex, amygdala) is bidirectional; the neural circuit not only is impaired by stress but also plays an important role in regulating the stress response. So far, only one study demonstrated that reduced emotion regulation ability revealed as decreased prefrontal cortex activation during emotional incongruent trials predicted enhanced responses to acute social stress in cortisol and α-amylase (Kaldewaij et al., 2019).

Therefore, the present study aimed to examine whether and how neurocognitive processing of emotionally negative information, i.e., the emotion processing-related LPP component, could predict physiological response to an acute psychosocial stressor in a healthy population. Participants were instructed to passively view negative and neutral pictures in a non-stressful state with their EEG recorded. Afterwards, participants returned to complete a laboratory-induced psychosocial acute stress task (the Trier Social Stress Test, TSST; Kirschbaum et al., 1993) while their ANS (heart rate) and HPA (cortisol) responses were monitored. According to previous findings, we hypothesized that individuals with enhanced neural activity as indicated by larger LPP amplitudes to negative stimuli would show stronger autonomic and/or neuroendocrine responses to an acute stress response.

2. Methods

2.1 Participants

Fifty-two healthy young adults (19 females and 33 males) with the age ranged from 18 to 25 years ($M = 22.5, SD =1.6$) were recruited to participate in the present study. Considering potential influences on stress responses, all participants were pre-screened and excluded...
according to the following criteria: major chronic physiological disease or endocrine disorder; history of psychiatric or neurological disorders; symptoms of chronic anxiety, depression or insomnia; chronic use of psychiatric, neurological, or endocrine medicine; chronic overnight work or irregular day/night patterns; any medication use within three days before participating in the study; current periodontitis; excessive consumption of alcohol (more than two alcoholic drinks a day) or nicotine (more than five cigarettes a day). For females, we included those who did not take oral contraceptives during recruitment by telephone screen and invited them to participate in the experiment before or after their ovulation period (which is defined as the 12th to 16th days prior to the first day of the next menstrual cycle), in order to control the potential influence of sex hormone on stress responses (Kirschbaum et al., 1999; Kudielka & Kirschbaum, 2005). All participants had normal or corrected-to-normal vision and were right-handed by self-report. All participants gave written informed consent at the beginning of the experiment and got monetary compensation for their participation. This experiment was approved by the Ethics Committee of Human Experimentation at the Institute of Psychology, Chinese Academy of Sciences.

2.2 General procedure
Participants completed two experimental sessions within two weeks (the interval between the first and second session was within 6 days, except for one participant with a 13-day delay). For the first session, participants completed the passive viewing task with their EEG continuously recorded. For the second session, participants returned to our lab to complete the TSST while their stress responses were monitored. The TSST was implemented between 1:00 pm to 5:00 pm to avoid the circadian fluctuation of cortisol levels (Dickerson and Kemeny, 2004; Kudielka et al., 2004) and heart rates (e.g., Vandewalle et al., 2007). Upon arrival, participants were instructed to rest in a quiet room for 30 min during which they filled in questionnaires. After the rest period, participants provided the first salivary sample for a baseline measurement. Thereafter, participants completed the TSST task for stress induction, during which heart rate was continuously recorded. Salivary samples were provided at 0 min
(post-TSST 1), 20 min (post-TSST 2), 45 min (post-TSST 3), and 60 min (post-TSST 4) after the end of the TSST task.

2.3 Stimulus Materials

A total of 60 pictures were selected from the International Affective Picture System (IAPS; Lang et al., 1999), of which 30 were negative, depicting unpleasant scenes (e.g., threat and mutilation), and 30 were neutral, depicting neutral scenes (e.g., household objects, leaves, trees). The negative and neutral pictures differed significantly on normative ratings of valence (negative: $M = 2.48$, $SD = 0.57$; neutral: $M = 5.03$, $SD = 0.34$; $t(58) = -21.112$, $p < .001$), arousal (negative: $M = 5.66$, $SD = 0.54$; neutral: $M = 2.92$, $SD = 0.49$; $t(58) = 20.479$, $p < .001$), and dominance (negative: $M = 3.77$, $SD = 0.60$; neutral: $M = 6.02$, $SD = 0.36$; $t(58) = -17.455$, $p < .001$).

2.4 Passive viewing task

After an initial practice block, three experimental blocks were completed with 1-2 min breaks between the blocks. The 60 pictures were presented only once in a random order in each experimental block. Each picture was displayed for 1000 ms in full screen on a 17-in. (43.18-cm) monitor, occupying about 27.3° of horizontal visual angle and about 21.8° of vertical visual angle with a viewing distance of approximately 70 cm. The inter-trial interval varied randomly between 1200 and 1800 ms, during which a white cross was presented in the centre of a black background (Hot et al., 2006). Participants were instructed to watch the pictures attentively.

2.5 EEG recording and preprocessing

During the passive viewing task, the EEG was recorded from 64 scalp sites using Ag/AgCl.

1 The numbers of the IAPS pictures used were the following: negative (1111, 1275, 2751, 3015, 3051, 3062, 3064, 3102, 3130, 3160, 3550, 6244, 6530, 6834, 9007, 9120, 9180, 9253, 9400, 9405, 9415, 9430, 9432, 9433, 9500, 9520, 9530, 9592, 9611, and 9920) and neutral (2214, 2215, 2372, 2381, 2383, 2440, 2480, 2495, 2514, 2516, 2580, 2749, 2850, 2870, 2880, 5520, 5530, 5740, 6150, 7004, 7006, 7031, 7034, 7060, 7090, 7185, 7187, 7205, 7234, and 7950).
electrodes, which were placed according to the international 10–20 system and mounted in an elastic cap (Neuroscan Inc., Charlotte, North Carolina, USA). An on-line reference to the left mastoid and an off-line algebraic re-reference to the average of left and right mastoids were adopted. A pair of electrodes was placed above and below the left eye to record the vertical electrooculogram (VEOG). A pair of electrodes was placed 10 mm from the outer canthi of each eye to record the horizontal electrooculogram (HEOG). All inter-electrode impedance was kept below 5 kΩ. Signals were amplified and bandpass filtered from 0.05 to 100 Hz. Data were digitized at 1000 Hz.

The EEG data were processed using Scan 4.3 software (Neuroscan, USA). Eye-movement artifacts were corrected from the EEG data using a regression procedure implemented in the Neuroscan software (Semlitsch et al., 1986). Data were digitally low-pass filtered with 30 Hz and were epoched into periods of 1400 ms (including 400 ms pre-stimulus time as baseline) time-locked to the onset of the emotional pictures. Trials with artifacts exceeding ±100 μV were rejected from analysis.

2.6 Stress induction

The TSST task has been shown to be effective in eliciting stress responses (Buchanan et al., 2012, 2009). The task was consisted of a 5-min preparation, a 5-min speech, and a 5-min mental arithmetic. In the preparation period, participants were seated in laboratory room A and instructed to prepare a speech for an imagined scenario in which they were accused of shoplifting and they had to defend themselves in front of the store managers. They were also informed that their performance would be videotaped and evaluated. After preparation, participants were escorted to laboratory room B, where three experimenters (two females) in white coats pretending to be managers were presented. After the speech, participants were asked to complete a mental arithmetic task, which was to subtract serially the number 13 starting at 1022 as fast and accurate as possible. Once an error was made, participants had to restart at 1022. Throughout the speech and arithmetic task, participants spoke into a microphone and a video camera in front of the three experimenters. The experimenters
communicated with the participant in a neutral manner with a neutral expression and provided
no facial or verbal feedback.

2.7 Measurement of acute stress response

A wireless chest heart rate transmitter and a wrist monitor recorder (Polar RSC800CX, Polar Electro, Finland) was used for heart rate recording. The heart rate was recorded for 5 min at baseline, continuously recorded for 15 min throughout the TSST task, and recorded for 3 min each for the four post-stress measurements at 0 min, 20 min, 45 min, and 60 min after the end of the TSST (i.e., post-TSST 1-4). Averaged heart rate across each recording period was obtained from the Polar performance software and was defined as the number of beats per minutes (bpm).

Salivette collection tubes (Sarstedt, Rommelsdorf, Germany) were used to collect saliva samples for salivary cortisol levels at baseline and at 0 min (post-TSST 1), 20 min (post-TSST 2), 45 min (post-TSST 3), and 60 min (post-TSST 4) after the end of the TSST. Saliva samples were frozen at -22 °C immediately after collection until analysis and was thawed and centrifuged at 3000 rpm for 5 minutes before analysis. Cortisol concentration was determined by use of a commercial electrochemiluminescence immunoassay (Cobas e 601, Roche Diagnostics, Numbrecht, Germany) with the lower sensitivity being 0.5 nmol/l. Three cortisol values were missing due to insufficient saliva and imputed by combining the group mean and standard deviation for the missing cortisol sample at that time point, and the mean of the available cortisol samples of the participant (Booij et al., 2013).

2.8 Questionnaires

Trait anxiety was measured with the Chinese version of the trait subscale of the State-Trait Anxiety Inventory which showed good reliability and validity (STAI-T; Shek, 1993; Spielberger, 1983; Zhang et al., 2012). The STAI-T consists of 20 items with each rated on a four-point Likert scale, with a range of score from 20 to 80. Personality was assessed by the Big Five Personality Scale which included neuroticism, extraversion, openness to experience,
agreeableness, and conscientiousness (Donnellan et al., 2006; Zhang et al., 2012). The Big Five Personality Scale consists of 20 statements (4 for each personality dimension) rated on a five-point Likert scale, giving a range of 4–20 for each personality dimension.

2.9 Data analysis

For each participant, ERP waveforms were averaged for the negative and neutral pictures separately. The LPP was defined as the mean amplitude in the time window of 400-800 ms at the parietal region (P1, Pz, and P2) where the overall LPP modulation was largest based on visual inspection of the grand average ERPs (see figure 1). To increase stability of the data, the mean LPP amplitude was calculated by averaging the LPP amplitude across the P1, Pz, and P2 electrodes. To validate the valence effect on the LPP amplitude, a one-way repeated-measures ANOVA with valence (negative vs. neutral) as within-subjects factor was performed. Then, the LPP difference waves (ΔLPP) was calculated by subtracting neutral from negative LPPs to serve as an ERP index of emotional processing.

For the stress response, a one-way repeated-measures ANOVA was performed on HR with Time as within-subject factor (baseline, during-TSST, post-TSST 1, post-TSST 2, post-TSST 3, and post-TSST 4). Then, heart rate increase ratio (ΔHR-ratio) was calculated by dividing the difference between the baseline HR and HR during the TSST task by the baseline HR to index autonomic stress response for each participant.

For the cortisol response to stress, a one-way repeated-measures ANOVA was conducted for salivary cortisol with Time as within-subject factor (baseline, post-TSST 1, post-TSST 2, post-TSST 3, and post-TSST 4). Then, cortisol increase ratio (ΔCort-ratio) was calculated by dividing the difference between baseline cortisol levels and the peak value (which was the cortisol level measured at 20 min after the end of TSST (post-TSST 2)) by the baseline cortisol to index HPA-axis stress response for each participant.

Bivariate correlations between ΔLPP amplitude and the stress response measures (ΔHR-ratio and ΔCort-ratio) were first calculated. Hierarchical regression analyses were then
conducted to investigate the predicting value of the ΔLPP amplitude on the stress response. Two separate hierarchical regression analyses were conducted for the autonomic (ΔHR-ratio) and the endocrine stress response (ΔCort-ratio) as dependent variables, respectively. In the regression models, control variables including age, sex, years of education, neuroticism, and trait-anxiety which might influence stress response (Egloff et al., 2002; Fox et al., 2010; Kudielka et al., 2009; Wu et al., 2017) were entered in Step 1. Subsequently, the ΔLPP amplitude was entered as predictor in Step 2.

Statistical analyses were performed in SPSS 18.0. Greenhouse-Geisser correction was used when sphericity was violated. Partial η² was reported as a measure of effect size where appropriate. Post hoc comparisons were conducted using Bonferroni correction to obtain adjusted p-values. All reported p-values were two-tailed, and the level of significance was set at .05.

3. Results

3.1 ERP data

The ERP waveforms time-locked to the negative and neutral picture onset and the difference wave (negative minus neutral) are shown in Figure 1. Negative pictures elicited larger LPP amplitudes as compared to neutral pictures (F(1,51) = 97.274, p < .001, partial η² = .652). The mean amplitude (± SD) of ΔLPP was 2.87 (± 2.12) μV.

Figure 1: Left: The ERP waveforms time-locked to the negative and neutral picture onset and the difference (negative minus neutral) wave at Pz. Time 0 represents picture onset. Right:
The scalp distribution of ΔLPP mean amplitude.

3.2 Stress responses

The means and standard deviation of HR and salivary cortisol levels measured before, during, and after the TSST are depicted in Figure 2.

![Figure 2: Mean values and standard deviation of heart rate (left) and salivary cortisol level (right) measured before, during, and after the TSST task. Baseline: measured after 30-min rest; TSST: measured during the TSST task; Post-TSST 1 to 4: measured at 0 min, 20 min, 45 min, and 60 min after the end of the TSST task. Error bars are SD.]

For the HR, the repeated-measures ANOVA revealed a significant main effect of Time ($F(5, 255) = 64.575, p < .001, \text{partial } \eta^2 = .559$). Post hoc analysis indicated significantly higher HR during the TSST task compared to the baseline and post TSST measures ($p_s < .001$). The differences between the baseline HR and the four post-TSST measures were not significant ($p_s > .05$). The mean value (\pm SD) of the ΔHR-ratio was 0.16 (\pm 0.12).

For the cortisol response, the repeated-measures ANOVA also revealed a significant main effect of Time ($F(4, 204) = 38.463, p < .001, \text{partial } \eta^2 = .430$). Post hoc analysis showed that salivary cortisol levels measured at 0 min, 20 min, and 45 min after the end of the TSST were significantly higher than cortisol levels measured at baseline and higher than 60 min after the
end of the TSST ($p < .01$). There was no significant difference between cortisol levels at baseline and that measured at 60 min after the end of the TSST ($p > .05$). The cortisol level reached peak at 20 min after the end of the TSST task which was higher than cortisol at 0 min and 45 min after the end of the TSST task ($p < .001$). The mean value (\pm SD) of ΔCort-ratio was 0.82 (\pm 0.86).

3.3 Prediction of stress responses by emotional ERP measure

Pearson correlation analysis showed that the ΔLPP amplitude was positively correlated with ΔHR-ratio ($r = 0.280, p < .05$, Figure 3), but not with ΔCort-ratio ($r = 0.161, p = 0.253$).

![Figure 3: Scatter plot of the bivariate correlation between the ΔLPP amplitude and the heart rate response to acute psychosocial stress (ΔHR-ratio) ($n = 52$). The mean amplitude of ΔLPP calculated as the mean amplitude of the negative minus neutral trials. The heart rate stress response (ΔHR-ratio) was calculated as the difference between the baseline HR and HR during the TSST task divided by baseline value. *: $p < .05$.](image)

Table 1 shows the results of the hierarchical regression analysis for the HR response to stress with the ΔLPP amplitude being predictor and ΔHR-ratio being outcome. Model 2 explained a
significant amount of the variance in the HR response to the acute psychosocial stressor
(ΔHR-ratio). The amplitude of ΔLPP was a significant predictor after controlling for age, sex,
years of education, neuroticism, and trait-anxiety. In contrast, the hierarchical regression model for
the cortisol response to stress (ΔCort-ratio) was not significant and the amplitude of ΔLPP could
not predict the ΔCort-ratio (p > 0.10).

Table 1
Hierarchical regression analyses predicting HR response to the stressor.

<table>
<thead>
<tr>
<th>Predictors</th>
<th>β</th>
<th>t</th>
<th>R2</th>
<th>ΔR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>0.134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>0.230</td>
<td>0.9</td>
<td>0.096*</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>0.121</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.205</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuroticism</td>
<td>-0.107</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trait Anxiety</td>
<td>-0.268</td>
<td>-1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔLPP amplitude</td>
<td>0.313</td>
<td>2.4*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The outcome measure was the ΔHR-ratio during the TSST task (the difference between the
baseline HR and HR during the TSST task divided by the baseline HR). ΔLPP amplitude was the
averaged amplitude of LPP towards negative relative to neutral pictures at the parietal region (P1,
Pz, and P2). Sex, age, neuroticism, and trait-anxiety were included in Model 1 and the ΔLPP
amplitude was further included in Model 2. *: p < .05.

4. Discussion
The present study aimed at investigating the relationship between neurocognitive measure
of emotional processing (i.e., LPP) and physiological responses to acute stress. The results
showed that negative pictures elicited larger LPP amplitudes as compared with neutral
pictures, and the TSST successfully induced acute ANS and HPA responses (as reflected by
increased HR and cortisol, respectively). More importantly, increased LPP amplitudes
towards negative relative to neutral stimuli during the non-stressful state significantly
predicted HR response but not cortisol response to acute psychosocial stress (i.e., the TSST).
We found that enhanced LPP amplitudes to negative compared to neutral pictures in a non-stressful state were associated with higher HR responses to acute psychosocial stress. The LPP has been proposed to indicate sustained attention towards and elaborative processing of motivationally or emotionally salient stimuli (Cuthbert et al. 2000; Schupp et al. 2000; also see Hajcak et al. 2010 for review). Autonomic stress response (i.e., HR response) has been suggested to launch fast fight/flight reaction and initial effort to cope with stressors, yet enhanced response be related to increased health risks such as hypertension, coronary heart disease, diabetes (Egloff et al., 2002; Peters et al., 1998). The current finding showed that individuals who tend to engage more attention to process negative information would also recruit the autonomic system to a higher degree in order to deal with a stressful situation, which in the long-run might increase the risks to develop stress-related health problems.

The positive correlation we found can be explained in three ways. First, with a prospective design, it adds to the evidence that negative processing bias plays a causal role in stress vulnerability (e.g., Fox et al., 2010). For example, prior fMRI and EPR studies found that relatively exaggerated amygdala reactivity and increased LPP amplitude towards negative stimuli before trauma exposure were predictive to posttraumatic symptoms in response to traumatic stressors (Admon et al., 2009; Lobo et al., 2014; McLaughlin et al., 2014; Swartz et al., 2015). Egloff and colleagues (2002) found that attentional bias to negative stimuli measured by response times positively predicted HR and blood pressure responses to an evaluated speech task in females. Characterized by paying more attention to negative environmental cues, individuals may interpret the stressor in a more negative way and in turn be more stressed in the TSST task, as reflected in a higher autonomic response. Second, although only negative pictures were used in our experiment, the LPP can be elicited by arousing stimuli regardless of its valence (Cuthbert et al., 2000; Hajcak et al., 2010; Schupp et al., 2000). Therefore, it is possible that more sustained attentional engagement with emotionally arousing information rather than biased processing of negatively valence information per se may have led to a higher arousal response in the stressful situation, revealed as an exaggerated heart rate increase. In line with this explanation, literature has
shown that attentional bias towards both angry and happy faces was predictive to PTSD symptoms (Schäfer et al., 2016).

Since our findings are correlational in nature, a third possible explanation is common underlying neural mechanisms of emotional information processing and autonomic stress response. Prior studies using simultaneous fMRI and EEG recording (Liu et al., 2012; Sabatinelli et al. 2007; 2013), genetic analysis, and pharmacological manipulation (de Rover et al., 2012) have suggested that the increased LPP amplitude reflects amygdala modulation, which plays an important role in autonomic stress response (e.g., Fortaleza et al., 2012). Thus, a generally hypersensitive amygdala may explain both high amplitude of LPP towards negative stimuli and high HR response to stress.

In contrast to the autonomic stress response, we found that attentional processing of negative stimuli was not a significant predictor of cortisol response to acute psychological stress. These results are consistent with previous behavioral studies, in which the negative attentional bias measured by reaction times was related to HR and blood pressure responses (Egloff et al., 2002) but not to cortisol response (Fox et al., 2010) to a TSST-liked public speech stressor. Previous literature showed that the ANS and HPA stress response systems to some degree have different regulating neural circuits. The central nucleus of the amygdala was suggested to preferentially regulate the autonomic stress response, whereas the medial and basolateral amygdala nuclei weight in more on HPA axis response modulation (for a review, see Ulrich-Lai and Herman, 2009). In emotional information processing, the central nucleus was found being prominent in attentional modulation on the visual system (Krolak-Salmon et al., 2004), which is also a neural source of the LPP (Liu et al., 2012; Sabatinelli et al., 2007; 2013). Future research should use imaging techniques with higher space-resolution (e.g., fMRI and MEG) to further explore the neural circuits of emotion processing in predicting physiological stress response.

Several limitations to the present study should be noted. First, only healthy young adults were recruited. It should be tested whether current finding can be generalized to other age groups. Second, we investigated females of normal menstrual cycles before and after their
ovulation period but did not measure gonadal hormones to determine their menstrual cycle stages. Future research can combine such objective measures to test whether current finding can be generalized to different menstrual cycle stages in female. Third, we only focused on negative emotional neurocognitive processing here. Future studies should address whether positive and negative emotional processing have different predictive power on stress responses. Last but not least, the passive viewing paradigm we used here is relatively simple and no behavioural data is reported. More studies with delicate experimental design should be applied to replicate the current findings. Nevertheless, it is worthwhile to mention that the LPPs in a free-viewing context in the absence of behavioural outputs could be utilized as a sensitive biomarker of emotion processing in clinical populations with impaired motor function, such as Alzheimer’s disease and other neurological disorders.

To summarize, neural processing of negative emotional information reflected by the amplitude of LPP during non-stressful condition showed a positive correlation with HR response toward an acute psychological stressor among healthy young adults. The present findings indicate that the neural processing of negative emotional information can be used as a biomarker of individual autonomic stress reactivity.
Reference

https://doi.org/10.1073/pnas.0903183106

https://doi.org/10.1016/j.psyneuen.2012.08.004

https://doi.org/10.1080/17470919.2011.588723

https://doi.org/10.1016/j.yhbeh.2009.02.011

https://doi.org/10.1016/S0301-0511(99)00044-7

https://doi.org/10.1017.S0048577202394162

https://doi.org/10.1097/00006842-199903000-00006

https://doi.org/10.1016/S0896-6273(04)00264-8

https://doi.org/10.1016/S0306-4530(02)00146-4

https://doi.org/10.1016/j.biopsycho.2004.11.009

Acknowledgement

This work was supported by the National Natural Science Foundation of China (31771246, 31530031), the State Scholarship Fund of China (201604910560), the Natural Science Foundation of Shenzhen University (2019076), and Guangdong Innovative and Entrepreneurial Research Team Program. We acknowledge Xiaofang Sun and Wenyu Li for their help in data collection.
Scalp distribution of the mean amplitude of LPP difference wave (400-800 ms)
The figure shows a scatter plot with the ΔHR-ratio on the y-axis and the mean amplitude of ΔLPP on the x-axis. The correlation coefficient (r) is 0.280*,